Technical Papers
Jan 19, 2024

Evaluation of the Performance of Sawdust Ash in Bituminous Concrete against Moisture Damage

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 4

Abstract

In tropical regions, lack of moisture-damage-resistant fillers in flexible pavements poses significant challenges for infrastructure development and maintenance. Hence, this study examined sawdust ash (SDA) for such purposes. SDA is abundant as agricultural waste in rice-producing countries like India and China. Durability assessment of SDA-enriched bituminous concrete (BC) against moisture damage is considered as state-of-art in this investigation. To implement this study, numerous laboratory tests were carried out. First, the Marshall test was carried out to estimate the optimal bitumen content (OBC) and several Marshall properties, including Marshall volumetric properties. After that, a modified Marshall immersion test, energy loss ratio test, ultrasonic pulse velocity (UPV) test, indirect tensile strength test (ITS), resilient modulus ratio test, and rutting resistance test were done to execute this investigation. Furthermore, the morphological characteristics of the studied filler were investigated by atomic force microscopy (AFM). The experimental result shows that the 8% SDA-enriched BC mix may be applied in low-volume roads in tropical regions like India with 86.94% structural integrity for the presence of ample amounts of calcium oxide (CaO), silicon oxide (SiO2), ferric oxide (Fe2O3), and higher loss on ignition value in that ash. Moreover, the results have shown that the mixes containing 8% SDA perform exceptionally well against moisture damage with the highest energy loss ratio (63.27%) and dynamic modulus (12.1 MPa) after 14 days of immersion. Similarly, this type of mix delivers the highest tensile strength ratio (96.27%) and resilient modulus ratio (89.21%), with minimum rutting depth (9.55 mm), and performs not only in terms of moisture resistance but also in its ability to withstand rutting deformation significantly. These results make it a promising choice for asphalt pavements, to mitigate the detrimental effects of both rutting and moisture on the overall durability and longevity of the road.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors are grateful to the Public Works Department, Shibpur Sub-division of Howrah in West Bengal (India), for supplying the materials used in the investigation. The authors are also thankful to the owner of the puffed rice mill that provided the SDA used in the study. Further, the constant help and support rendered by the faculties and staff members of the Highway Engineering Laboratory in IIEST, Shibpur, are acknowledged.

References

AASHTO. 2011. Standard method of test for determination of dynamic modulus of hot mix asphalt (HMA). AASHTO TP62. Washington, DC: AASHTO.
AASHTO. 2014. Standard method of test for Hamburg wheel-track testing of compacted hot-mix asphalt (HMA)standard by American Association of State and Highway Transporta category. AASHTO T324. Washington, DC: AASHTO.
AASHTO. 2022. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T 283-22. Washington, DC: AASHTO.
Abed, A. H., Z. I. Qasim, H. Al-Mosawe, and H. H. Norri. 2019. “The effect of hybrid anti-stripping agent with polymer on the moisture resistance of hot-mix asphalt mixtures.” J. Civ. Environ. Eng. 6 (1): 1–15. https://doi.org/10.1080/23311916.2019.1659125.
Ahirich, R. C. 1991. The effects of natural sands on asphalt concrete engineering properties. Vicksburg, MS: Dept. of the Army.
Ahmed, H. Y., A. M. Othman, and A. A. Mahmoud. 2006. “Effect of using waste cement dust as a mineral filler on the mechanical properties of hot mix asphalt.” J. Ass. Univ. Bull. Environ. 9 (1): 51–60.
Akbulut, H., C. Gürer, S. Çetin, and A. Elmaci. 2012. “Investigation of using granite sludge as filler in bituminous hot mixtures.” Constr. Build. Mater. 36 (Jul): 430–436. https://doi.org/10.1016/j.conbuildmat.2012.04.069.
Ali, N. 2013. “The experimental study on the resistance of asphalt concrete with butonic bitumen against water saturation.” Int. J. Eng. Technol. 3 (5): 508–516.
Ali, N., M. I. Ramli, and M. Hustim. 2012. “Influences of flood puddle on the durability of the asphalt concrete using marble waste as filler.” Int. J. Basic Appl. Sci. 12 (4): 6–11.
Ali, N., M. W. Tjaronge, L. Samang, and M. I. Ramli. 2011. “Experimental study on effects of flood puddle to durability of asphaltic concrete containing refined butonic asphalt.” J. East Asia Soc. Transp. Stud. 9 (Feb): 1364–1375. https://doi.org/10.11175/easts.9.1364.
Al-Mufti, R. L., and A. N. Fried. 2018. “Non-destructive evaluation of reclaimed asphalt cement concrete.” Eur. J. Environ. Civ. Eng. 22 (6): 770–782. https://doi.org/10.1080/19648189.2016.1219877.
Al-Shalout, I., R. Stas, and O. Miro. 2007. “Effects of moisture, compaction temperature and gradation types on durability of asphalt concrete mixtures.” Damascus Univ. J. 23 (2): 7–35.
Ameri, M., S. V. Abdipour, A. R. Yengejeh, M. Shahsavari, and A. A. Yousefi. 2022. “Evaluation of rubberised asphalt mixture including natural zeolite as a warm mix asphalt (WMA) additive.” Int. J. Pavement Eng. https://doi.org/10.1080/10298436.2022.2057977.
Ameri, M., H. Ziari, A. A. Yousefi, and A. Behnood. 2021. “Moisture susceptibility of asphalt mixtures: Thermodynamic evaluation of the effects of antistripping additives.” J. Mater. Civ. Eng. 33 (2): 04020457. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003561.
Apeagyei, A. K. 2011. “Rutting as a function of dynamic modulus and gradation.” J. Mater. Civ. Eng. 23 (9): 1302–1310. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000309.
Arabani, M., A. T. Seyed, and T. Mohammad. 2017. “Laboratory investigation of hot mix asphalt containing waste materials.” Road Mater. Pavement Des. 18 (3): 713–729. https://doi.org/10.1080/14680629.2016.1189349.
Arabani, M., and S. A. Tahami. 2017. “Assessment of mechanical properties of rice husk ash modified asphalt mixture.” Constr. Build. Mater. 149 (Aug): 350–358.
Arambula, E., E. Masad, and A. Epps. 2007. “The influence of crack growth distribution on the moisture susceptibility of asphalt mixes.” J. Mater. Civ. Eng. 19 (8): 655–664. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(655).
Arbabpour Bidgoli, M., P. Hajikarimi, K. Naderi, and A. Golroo. 2020. “Introducing adhesion–cohesion index to evaluate moisture susceptibility of asphalt mixtures using a registration image-processing method.” J. Mater. Civ. Eng. 32 (12): 04020376. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003477.
Arepalli, U. M. 2018. “A study of moisture induced material loss of hot mix asphalt (HMA).” A Thesis of Doctoral Study, Dept. of Civil Engineering, Worcester Polytechnic Institute.
Arshad, A. K., E. Shaffie, F. Y. Ismail, W. Hashim, and Z. A. Rahman. 2018. “Asphaltic concrete evaluation for mechanistic pavement design.” Int. J. Civ. Eng. Technol. 8 (9): 513–521.
Asphalt Institute. 2014. Asphalt mix design methods. 7th ed. Lexington, KY: Asphalt Institute.
ASTM. 1991. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTMC618-19. West Conshohocken, PA: ASTM.
ASTM. 1994. Standard test method for liquid limit, plastic limit and plasticity index. ASTM D4318-10. West Conshohocken, PA: ASTM.
ASTM. 2004. Indirect tension test for resilient modulus of bituminous mixtures. ASTM D4123. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM C127. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard specification for mineral filler for asphalt mixtures. ASTM D242 M-19. West Conshohocken, PA: ASTM.
ASTM. 2010a. Standard practice for scanning electron microscope beam size characterization. ASTM E986-04. West Conshohocken, PA: ASTM.
ASTM. 2010b. Standard practice for preparation of bituminous specimens using Marshall apparatus. ASTM D6926-10. West Conshohocken, PA: ASTM.
ASTM. 2010c. Standard test methods for loss on ignition (LOI) of solid combustion residues. ASTM D7348-08. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard guide for elemental analysis by wavelength dispersive X-ray fluorescence spectrometry. ASTM E1621-13. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard test method for effect of moisture on asphalt concrete paving mixtures. ASTM D4867/D4867M-09. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854-14. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for percent air voids in compacted asphalt mixtures. ASTM D3203–17. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test method for methylene blue index of clay. ASTM C837-09. West Conshohocken, PA: ASTM.
Ayazi, M. J., A. Moniri, and P. Barghabany. 2017. “Moisture susceptibility of warm mixed-reclaimed asphalt pavement containing Sasobit and Zycotherm additives.” J. Pet. Technol. 35 (9): 890–895. https://doi.org/10.1080/10916466.2017.1290655.
Bagampadde, U., U. Isacsson, and B. M. Kiggundu. 2006. “Impact of bitumen and aggregate composition on stripping in bituminous mixtures.” Mater. Struct. 39 (3): 303–315. https://doi.org/10.1007/s11527-005-9040-5.
Bhat, M. A., and O. P. Mittal. 2016. “Effect of filler on bituminous mixes.” Int. J. Adv. Res. Educ. Technol. (IJARET) 3 (2): 178–182.
BIS (Bureau of Indian Standards). 1963a. Methods of test for aggregates for concrete. II: Estimation of deleterious materials and organic impurities. IS:2386 (Part II). New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1963b. Methods of test for aggregates for concrete. IV: Mechanical properties. IS:2366 (Part IV). New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1978a. Methods for testing tar and bituminous materials: Determination of absolute viscosity. IS:1206(Part-II). New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1978b. Methods for testing tar and bituminous materials: Determination of ductility. IS:1208. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1978c. Methods for testing tar and bituminous materials: Determination of penetration. IS:1203. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1978d. Methods for testing tar and bituminous materials: Determination of softening point. IS:1205. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1978e. Methods for testing tar and bituminous materials: Determination of specific gravity. IS:1202. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1992. Methods of non-destructive testing of concrete - methods of test. IS331 (Part I). New Delhi, India: BIS.
Chandra, S., and R. Choudhary. 2013. “Performance characteristics of bituminous concrete with industrial wastes as filler.” J. Mater. Civ. Eng. 25 (11): 1666–1673. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000730.
Choudhary, J., B. Kumar, and A. Gupta. 2020. “Feasible utilization of waste limestone sludge as filler in bituminous concrete.” Constr. Build. Mater. 239 (Apr): 117781. https://doi.org/10.1016/j.conbuildmat.2019.117781.
Clopotel, C., R. A. Velasquez, and H. U. Bahia. 2012. “Measuring physico-chemical interaction in mastics using glass transition.” Road Mater. Pavement Des. 13 (Feb): 304–320. https://doi.org/10.1080/14680629.2012.657095.
Colbert, B. W., and Z. You. 2012. “Properties of modified asphalt binders blended with electronic waste powders.” J. Mater. Civ. Eng. 24 (10): 1261–1267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000504.
Dai, X., Y. Jia, S. Wang, and Y. Gao. 2020. “Evaluation of the rutting performance of the field specimen using the Hamburg wheel-tracking test and dynamic modulus test.” Adv. Civ. Eng. 20: 1–15. https://doi.org/10.1155/2020/9525179.
Diab, A., and M. Enieb. 2018. “Investigating influence of mineral filler at asphalt mixture and mastic scales.” Int. J. Pavement Res. Technol. 11 (3): 213–224. https://doi.org/10.1016/j.ijprt.2017.10.008.
Dimter, S., M. Simun, M. Zagvozda, and T. Rukavina. 2021. “Laboratory evaluation of the properties of asphalt mixture with wood ash filler.” Open Access J. 14 (3): 1–17. https://doi.org/10.3390/ma14030575.
El-Hmrawey, S., A. E. A. El-Maaty, and A. I. Elmohr. 2015. “Durability of hot asphalt mixtures containing reclaimed asphalt pavements.” Open Access Lib. J. 2 (Mar): 1–18. https://doi.org/10.4236/oalib.1101508.
Fayissa, B., O. Gudina, and B. Yigezu. 2020. “Application of saw dust ash as filler material in asphalt concrete production.” Int. J. Eng. 16 (2): 351–359. https://doi.org/10.2478/cee-2020-0035.
Fu, Z., W. Shen, Y. Huang, G. Hang, and X. Li. 2017. “Laboratory evaluation of pavement performance using modified asphalt mixture with a new composite reinforcing material.” Int. J. Pavement Res. Technol. 10 (6): 507–516. https://doi.org/10.1016/j.ijprt.2017.04.001.
Grajales, J. A., L. M. Perez, A. P. Schwab, and D. N. Little. 2021. “Quantum chemical modeling of the effects of hydrated lime (calcium hydroxide) as a filler in bituminous materials.” ACS Omega 6 (Jun): 3130–3139. https://doi.org/10.1021/acsomega.0c05519.
Guilian Zou, G., J. Xu, and C. Wu. 2017. “Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design.” Int. J. Pavement Res. Technol. 10 (Jun): 282–288. https://doi.org/10.1016/j.ijprt.2017.03.008.
Hadiwardoyo, S. P., and H. Fikri. 2013. “Use of buton asphalt additive on moisture damage sensitivity and rutting performance of asphalt mixtures.” Civ. Environ. Res. 3 (3): 100–108.
Hafeez, I., F. Ashfaq, and S. Hussan. 2018. “Assessing the rutting propensity of reclaimed asphalt pavement using wheel tracker.” In Proc., 17th Annual Int. Conf. on Asphalt, Pavement Engineering and Infrastructure. Liverpool, UK.
Hailesilassie, B. W., M. Hugener, and M. N. Partl. 2015. “Influence of foaming water content on foam asphalt mixtures.” Constr. Build. Mater. 85 (Mar): 65–77. https://doi.org/10.1016/j.conbuildmat.2015.03.071.
Hamzaha, O. M., M. R. Kakara, and M. R. Haininb. 2015. “An overview of moisture damage in asphalt mixtures.” J. Teknologi (Sci. Eng.). 73 (4): 125–131.
Harun-Or-Rashid, G. M., and M. M. Islam. 2020. “A review paper on effect of different type of filler materials on Marshall characteristics of bitumen hot mix.” Int. J. Mater. Sci. Appl. 9 (3): 40–46. https://doi.org/10.10.11648/j.ijmsa.20200903.11.
Heinicke, J. J., and T. S. Vinson. 1988. “Effect of test condition parameters on IRMr.” J. Transp. Eng. 114 (2): 153–172. https://doi.org/10.1061/(ASCE)0733-947X(1988)114:2(153).
Hilal, M. M., and M. Y. Fattah. 2022. “Evaluation of resilient modulus and rutting for warm asphalt mixtures: A local study in Iraq.” Appl. Sci. 12 (24): 12841. https://doi.org/10.3390/app122412841.
Hou, S., Y. Deng, R. Jin, X. Shi, and X. Luo. 2022. “Relationships between physical, mechanical and acoustic properties of asphalt mixtures using ultrasonic testing.” Buildings 12 (3): 306. https://doi.org/10.3390/buildings12030306.
Hou, Y., L. Wang, D. Wang, M. Guo, P. Liu, and J. Yu. 2017. “Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation.” Materials 10 (2): 208. https://doi.org/10.3390/ma10020208.
Huang, C. W., T. H. Yang, and G. B. Lin. 2020. “The evaluation of short- and long-term performance of cold-mix asphalt patching materials.” J. Adv. Mater. Sci. Eng. 220 (Mar): 1–11. https://doi.org/10.1155/2020/8968951.
Igwe, E. A., and D. A. Niyebuchi. 2017. “Improving durability of asphalt pavement wearing course submerged in water using candle wax as water proofing agent: An assessment using RSI, FDI and SDI.” Int. Concr. Technol. 3 (2): 1–10.
Igwe, E. A., and C. G. Ottos. 2017. “Increasing durability of bituminous pavements using hydro carbon void fillers produced from recycled polyethylene wastes (RPEW).” J. Sci. Eng. Res. 4 (12): 24–30.
Indian Road Congress. 2018. Guidelines for the design of flexible pavements. IRC:37. New Delhi, India: Bureau of Indian Standards.
Indian Standard. 1985. Methods of test for soils. IS:2720(Part 4). New Delhi, India: Bureau of Indian Standards.
Indian Standard. 2013. Paving bitumen—Specification. IS:73. New Delhi, India: Bureau of Indian Standards.
Ishi, I., and S. Nesichi. 1988. “Laboratory evaluation of moisture damage to bituminous paving mixtures by long-term hot immersion.” Transp. Res. Rec. 1171 (1): 12–17.
Jäger, A., R. Lackner, Ch. Eisenmenger-Sittner, and R. Blab. 2004. “Identification of four material phases in bitumen by atomic force microscopy.” Supplement, Road Mater. Pavement Des. 5 (S1): 9–24. https://doi.org/10.1080/14680629.2004.9689985.
Jiang, Z. Y., J. Ponniah, and G. Cacscante. 2006. “Improved ultrasonic pulse velocity technique for bituminous material characterization.” In Proc., Annual Conf. of the Transportation Association of Canada Charlottetown, Prince Edward Island. Waterloo, ON, Canada: Univ. of Waterloo.
Jiao, Y., Y. Zhang, L. Fu, M. Guo, and L. Zhang. 2019. “Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures.” Supplement, J. Road Mater. Pavement Des. 20 (S1): S196–S216. https://doi.org/10.1080/14680629.2019.1590223.
Kadium, N. S., and S. I. Sarsam. 2020. “Evaluating asphalt concrete properties by the implementation of ultrasonic pulse velocity.” J. Civ. Archit. Eng. 26 (6): 140–151. https://doi.org/10.31026/j.eng.2020.06.12.
Kamaruddin, I., M. Napiah, and M. H. Nahi. 2016. “The influence of moisture on the performance of polymer fibre-reinforced asphalt mixture.” In Vol. 78 of MATEC Web Conf. Tronoh, Perak, Malaysia: Universiti Teknologi Petronas. https://doi.org/10.1051/matecconf/20167801040.
Kandhal, P. S., K. Y. Foo, and R. B. Mallick. 1998. A critical review of VMA requirements in superpave. Auburn, AL: National Center for Asphalt Technology.
Karati, S., S. Karmakar, and T. K. Roy. 2022. “Moisture effect analysis on bituminous mix containing reclaimed asphalt pavement material by durability index.” J. Mater. Civ. Eng. 34 (3): 04021482. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004120.
Karati, S., and T. K. Roy. 2022. “Moisture damage potential of reclaimed asphalt pavement (RAP) in bituminous mixes by ultrasonic pulse velocity.” Mater. Today:. Proc. 60 (Jan): 414–420. https://doi.org/10.1016/j.matpr.2022.01.265.
Karmakar, S., D. Majhi, T. K. Roy, and D. Chanda. 2018. “Moisture damaged analysis of bituminous mix by durability index utilizing waste plastic cup.” J. Mater. Civ. Eng. 30 (9): 04018216. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002366.
Karmakar, S., and T. K. Roy. 2021a. “Effect of different waste plastic fractions on the thermal kinetics and microstructural behaviour of bitumen used for bituminous mix.” Can. J. Civ. Eng. 48 (9): 1139–1146. https://doi.org/10.1139/cjce-2020-0007.
Karmakar, S., and T. K. Roy. 2021b. “Influence of plastic waste on chemical and mechanical properties of modified bitumen used in the bituminous mix for flexible pavement.” J. Mater. Civ. Eng. 33 (2): 04020440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003545.
Katamine, N. M. 2000. “Phosphate waste in mixtures to improve their deformation.” J. Transp. Eng. 126 (5): 382–389. https://doi.org/10.1061/(ASCE)0733-947X(2000)126:5(382).
Kim, K. W., S. N. Amirkhanian, H. H. Kim, M. Lee, and Y. S. Doh. 2010. “A new static strength test for characterization of rutting of dense-graded asphalt mixtures.” J. Test. Eval. 39 (1): 59–68.
Kuity, A., and A. Das. 2016. “Homogeneity of filler distribution within asphalt mix—A microscopic study.” Constr. Build. Mater. 95 (Mar): 497–505. https://doi.org/10.1016/j.conbuildmat.2015.07.043.
Kuity, A., S. Jayaprakasan, and A. Das. 2014. “Laboratory investigation on volume proportioning scheme of mineral fillers in asphalt mixture.” Constr. Build. Mater. 68 (Jun): 637–643. https://doi.org/10.1016/j.conbuildmat.2014.07.012.
Kumain, M. C., K. Negi, and J. Chand. 2019. “Utilization of saw dust ash as mineral filler in hot mix bituminous concrete.” Int. J. Innovative Res. Sci. Eng. Technol. 8 (9): 153–161.
Kütük-Sert, T., and S. Kütük. 2012. “Physical and Marshall properties of borogypsum used as filler aggregate in asphalt concrete.” J. Mater. Civ. Eng. 25 (2): 266–273. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000580.
Liphardt, A., J. Król, and P. Radziszewski. 2016. “Influence of polymer modified binder content from RAP on stone mastic asphalt rutting resistance.” Procedia Eng. 153 (Jan): 407–413. https://doi.org/10.1016/j.proeng.2016.08.142.
Loeber, L., G. Muller, J. Morel, and O. Sutton. 1998. “Bitumen in colloid science: A chemical, structural and rheological approach.” Fuel 77 (13): 1443–1450. https://doi.org/10.1016/S0016-2361(98)00054-4.
Loeber, L., O. Sutton, J. Morel, J. M. Valleton, and G. Muller. 1996. “New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy.” J. Microsc. 182 (1): 32–39. https://doi.org/10.1046/j.1365-2818.1996.134416.x.
Lottman, R. P. 1978. Predicting moisture-induced damage to asphaltic concrete. Moscow, ID: Univ. of Idaho Moscow.
Lv, Q., W. Huang, H. Sadek, F. Xiao, and C. Yan. 2019. “Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg wheel-tracking device test and multiple stress creep recovery test.” Constr. Build. Mater. 206 (Aug): 62–70. https://doi.org/10.1016/j.conbuildmat.2019.02.015.
Lytton, R. L., A. E. Masad, C. Zollinger, R. Bulut, and D. N. Little. 2005. Measurements of surface energy and its relationship with moisture damage. Washington, DC: FHWA.
Ma, X., H. Wang, and P. Zhou. 2020. “Novel gradation design of porous asphalt concrete with balanced functional and structural performances.” Appl. Sci. 10 (20): 1–12. https://doi.org/10.3390/app10207019.
Masad, E., C. Zollinger, R. Bulut, D. Little, and R. Lytton. 2006. “Characterization of HMA moisture damage using surface energy and fracture properties.” J. Assoc. Asphalt Paving Technol. 76 (Feb): 713–754.
Masson, J. F., V. Leblond, and J. Margeson. 2006. “Bitumen morphologies by phase detection atomic force microscopy.” J. Microsc. 221 (1): 17–29. https://doi.org/10.1111/j.1365-2818.2006.01540.x.
Medina, J. R., B. S. Underwood, and M. Mamlouk. 2018. “Estimation of asphalt concrete modulus using the ultrasonic pulse velocity test.” J. Transp. Eng. Part B: Pavements 144 (2): 04018008. https://doi.org/10.1061/JPEODX.0000036.
Mistry, R., S. Karmakar, and T. K. Roy. 2019. “Experimental evaluation of rice husk ash and fly ash as alternative fillers in hot-mix asphalt.” Road Mater. Pavement Des. 20 (4): 979–990. https://doi.org/10.1080/14680629.2017.1422791.
Mistry, R., and T. K. Roy. 2020. “Performance evaluation of bituminous mix and mastic containing rice husk ash and fly ash as filler.” Constr. Build. Mater. 268 (Jan): 121187. https://doi.org/10.1016/j.conbuildmat.2020.121187.
Mo, L., M. Huurman, S. Wu, and A. A. A. Molenaar. 2009. “Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen–stone adhesion and mortar.” Mater. Des. 30 (1): 170–179. https://doi.org/10.1016/j.matdes.2008.04.031.
Moreno-Navarro, F., M. Sol-Sánchez, M. C. Rubio-Gámez, and M. Segarra-Martínez. 2014. “The use of additives for the improvement of the mechanical behavior of high modulus asphalt mixes.” Constr. Build. Mater. 70 (Nov): 65–70. https://doi.org/10.1016/j.conbuildmat.2014.07.115.
MoRTH (Ministry of Road Transport and Highways). 2013. Specifications of road and bridge works. New Delhi, India: Indian Roads Congress.
Oba, K. M., and E. L. Tigbara. 2021. “Characterization of saw dust ash–quarry dust bituminous concrete.” Int. J. Eng. Manage. Res. 11 (1): 123–128. https://doi.org/10.31033/ijemr.11.1.17.
Okobia, E. 2016. “Evaluation of saw dust ash as mineral filler in asphalt mixture.” Thesis of Master of Science Degree in Civil Engineering, Dept. of Civil Engineering, Faculty of Engineering, Ahmadu Bello Univ.
Omar, H. A., N. I. Md Yusoff, M. Mubaraki, and H. Ceylan. 2020. “Effects of moisture damage on asphalt mixtures.” J. Traffic Transp. Eng. (English Ed.) 7 (5): 600–628. https://doi.org/10.1016/j.jtte.2020.07.001.
Osuya, D. O., and H. Mohmmed. 2017. “Evaluation of sawdust ash as a partial replacement for mineral filler in asphaltic concrete.” Ife. J. Sci. 19 (2): 431–440. https://doi.org/10.4314/ijs.v19i2.23.
Ouyang, Q., Z. Xie, J. Liu, M. Gong, and H. Yu. 2022. “Application of atomic force microscopy as advanced asphalt testing technology: A comprehensive review.” Polymers 14 (14): 2851. https://doi.org/10.3390/polym14142851.
Pan, W. H., X. D. Sun, L. M. Wu, K. K. Yang, and N. Tang. 2019. “Damage detection of asphalt concrete using piezo-ultrasonic wave technology.” J. Mater. 12 (3): 443. https://doi.org/10.3390/ma12030443.
Pasandín, A. R., I. Perez, A. Ramírez, and M. M. Cano. 2016. “Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler.” J. Cleaner Prod. 112 (Jan): 853–862. https://doi.org/10.1016/j.jclepro.2015.06.016.
Pauli, A. T., J. F. Branthaver, R. E. Robertson, W. Grimes, and C. M. Eggleston. 2001. “Atomic force microscopy investigation of SHRP asphalts.” ACS Div. Fuel Chem. 46 (2): 104–110.
Pauli, A. T., R. W. Grimes, A. G. Beemer, T. F. Turner, and J. F. Branthaver. 2011. “Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy.” Int. J. Pavement Eng. 12 (4): 291–309. https://doi.org/10.1080/10298436.2011.575942.
Pradyumna, T. A., A. Mittal, and P. K. Jain. 2013. “Characterization of reclaimed asphalt pavement (RAP) for use in bituminous road construction.” Procedia Social Behav. Sci. 104 (Jun): 1149–1157. https://doi.org/10.1016/j.sbspro.2013.11.211.
Putri, A. M., and L. B. Suparma. 2009. “Laboratory study on the durability characteristics (moisture damage evaluation) of asphalt concrete wearing course (ACWC) utilizing bantak and clereng as aggregate (using Marshall methods).” J. East. Asia Soc. Transp. Stud. 7 (Aug): 1555–1567. https://doi.org/10.11175/easts.8.1555.
Qin, Q., M. J. Farrar, A. T. Pauli, and J. J. Adams. 2014. “Morphology thermal analysis and rheology of sasobit modified warm mix asphalt binders.” Fuel 115 (May): 416–425. https://doi.org/10.1016/j.fuel.2013.07.033.
Raj, A., and J. M. Krishnan. 2019. “Influence of gauge length on the measurement of resilient modulus of bituminous mixtures.” S.N. Appl. Sci. 1 (118): 1–6. https://doi.org/10.1007/s42452-018-0087-7.
Rajitha, R. K., and T. Koramutla. 2019. “Effect of fillers on bituminous paving mixes.” Int. J. Eng. Res. Technol. (IJERT). 8 (5): 71–75. https://doi.org/10.17577/IJERTV8IS050070.
Saha, A., B. Singh, and S. Biswas. 2017. “Effect of nano-materials on asphalt concrete mixes. A case study.” Eur. Transp. 65 (1): 1–12.
Saride, S., D. Avirneni, and S. C. P. Javvadi. 2016. “Utilization of reclaimed asphalt pavements in Indian low-volume roads.” J. Mater. Civ. Eng. 28 (2): 1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001374.
Sarsam, S. I. 2021. “Suitability of non-destructive testing of asphalt concrete for detecting the impact of moisture damage.” Br. Int. Exact Sci. J. 3 (1): 75–83. https://doi.org/10.33258/bioex.v3i1.385-73.
Sarsam, S. I., and N. S. Kadium. 2018. “Feasibility of using pulse velocity to evaluate asphalt concrete properties.” J. Adv. Civ. Eng. Constr. Mater. 1 (1): 51–63.
Sarsam, S. I., and N. S. Kadium. 2020. “Verifying moisture damage impact in asphalt concrete with the aid of non-destructive test NDT.” J. Adv. Sci. Eng. 12 (1): 13–20. https://doi.org/10.32732/ase.2020.12.1.13.
Sharma, V., S. Chandra, and R. Choudhary. 2010. “Characterization of fly ash bituminous concrete mixes.” J. Mater. Civ. Eng. 22 (12): 1209–1216. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000125.
Siswosoebrotho, B. I., R. H. Karsaman, and B. H. Setiadji. 2003. “Development of a cyclic water vapor test for durability assessment of bituminous mixtures for pavement material.” J. East. Asia Soc. Transp. Stud. 5 (6): 940–950.
Soni, B., U. Patel, G. Mishra, and S. K. Karme. 2019. “Continuous pyrolysis of sawdust in a vertical moving type continuous reactor.” In Proc., Conf. Advances in Chemical Engineering and Science (ACES) 2019, Department of Chemical Engineering, Indian Institute of Science Education and Research. Madhya Pradesh, India: Sardar Patel Renewable Energy Research Institute.
Sourty, E., A. Tamminga, M. Michels, W. P. Vellinga, and H. Meijer. 2011. “The microstructure of petroleum vacuum residue films for bituminous concrete: A microscopy approach.” J. Microsc. 241 (2): 132–146. https://doi.org/10.1111/j.1365-2818.2010.03409.x.
Taib, A., F. M. Jakarni, M. F. Rosli, N. I. Md. Yusoff, and M. A. Aziz. 2019. “Comparative study of moisture damage performance test.” IOP Conf. Ser. Mater. Sci. Eng. 512 (2019): 012008. https://doi.org/10.1088/1757-899X/512/1/012008.
Tavassoti-Kheiry, P., X. Chen, and M. Solaimanian. 2017. “Application of ultrasonic pulse velocity testing of asphalt concrete mixtures to improve the prediction accuracy of dynamic modulus master curve.” In Proc., ASCE Int. Conf. on Highway Pavements and Airfields, 152–164. Reston, VA: ASCE. https://doi.org10.1061/9780784480939.014.
Tayfur, S., H. Ozen, and A. Aksoy. 2007. “Investigation of rutting performance of asphalt mixtures containing polymer modifiers.” Constr. Build. Mater. 21 (2): 328–337. https://doi.org/10.1016/j.conbuildmat.2005.08.014.
Taylor, R. 2007. “Surface interactions between bitumen and mineral fillers and their effects on the rheology of bitumen-filler mastics.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Nottingham.
Ting, T. L., P. J. Ramadhansyah, A. H. Norhidayah, H. Yaacob, M. R. Hainin, M. H. W. Ibrahim, D. S. Jayanti, and A. M. Abdullahi. 2018. “Effect of treated coconut shell and fiber on the resilient modulus of double-layer porous asphalt at different aging.” IOP Conf. Ser.: Earth Environ. Sci. 140 (APr): 012065. https://doi.org/10.1088/1755-1315/140/1/012065.
Tomar, R., R. K. Jain, and M. K. Kostha. 2013. “Effect of fillers on bituminous paving mixes.” Int. J. Eng. Res. Sci. Technol. 2 (4): 137–142.
Vandewalle, D., A. J. Neves, and A. C. Freire. 2020. “Assessment of eco-friendly pavement construction and maintenance using multi-recycled RAP mixtures.” Recycling 5 (17): 1–21. https://doi.org/10.3390/recycling5030017.
Wasilewska, M., D. Małaszkiewicz, and N. Ignatiuk. 2017. “Evaluation of different mineral filler aggregates for asphalt mixtures.” IOP Conf. Ser.: Mater. Sci. Eng. 245 (2): 022042. https://doi.org/10.1088/1757-899X/245/2/022042.
Xiao, F., S. Amirkhanian, and C. H. Juang. 2007. “Rutting resistance of rubberized asphalt concrete pavements containing reclaimed asphalt pavement mixtures.” J. Mater. Civ. Eng. 19 (6): 475–483. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(475).
Xiao, Y. 2009. “Evaluation of engineering properties of hot mix asphalt concrete for the mechanistic-empirical pavement design.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Florida State Univ. College of Engineering.
Xing, C., M. Li, G. Zhao, N. Liu, and M. Wang. 2022. “Analysis of bitumen material test methods and bitumen surface phase characteristics via atomic force microscopy-based infrared spectroscopy.” Constr. Build. Mater. 346 (Sep): 128373. https://doi.org/10.1016/j.conbuildmat.2022.128373.
Xing, C., L. Liu, and M. Li. 2020. “Analysis of the nanoscale phase characteristics of bitumen and bitumen in mastics and mixtures via AFM.” J. Microsc. 280 (1): 19–29. https://doi.org/10.1111/jmi.12931.
Yasanthi, R. G. N., T. M. Rengarasu, and W. M. K. R. T. W. Bandara. 2017. “Effects of temperature variation on hot mix asphalt concrete with saw dust ash used as aggregates.” In Proc., 5th Int. Symp. on Advances in Civil and Environmental Engineering, 244–251. Galle, Sri Lanka: Univ. of Ruhuna Hapugala.
Yousefi, A., A. Behnood, A. Nowruzi, and H. Haghshenas. 2020. “Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP).” Constr. Build. Mater. 268 (May): 121200. https://doi.org/10.1016/j.conbuildmat.2020.121200.
Yousefi, A. A., H. F. Haghshenas, B. S. Underwood, J. Harvey, and P. Blankenship. 2023. “Performance of warm asphalt mixtures containing reclaimed asphalt pavement, an anti-stripping agent, and recycling agents: A study using a balanced mix design approach.” Constr. Build. Mater. 363 (Jan): 129633. https://doi.org/10.1016/j.conbuildmat.2022.129633.
Yousefi, A. A., S. Sobhi, M. R. M. Aliha, S. Pirmohammad, and H. F. Haghshenas. 2021. “Cracking properties of warm mix asphalts containing reclaimed asphalt pavement and recycling agents under different loading modes.” Constr. Build. Mater. 300 (Sep): 124130. https://doi.org/10.1016/j.conbuildmat.2021.124130.
Yu, X., N. A. Burnham, B. R. Mallick, and M. Tao. 2013. “A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders.” Fuel 113 (2013): 443–447. https://doi.org/10.1016/j.fuel.2013.05.084.
Zhang, H., H. Li, Y. Zhang, D. Wang, J. Harvey, and H. Wang. 2018. “Performance enhancement of porous asphalt pavement using red mud as alternative filler.” J. Constr. Build. Mater. 160 (Jun): 707–713. https://doi.org/10.1016/j.conbuildmat.2017.11.105.
Zhang, Y., X. Wang, G. Ji, Z. Fan, Y. Guo, and W. Gao. 2020. “Mechanical performance characterization of lignin-modified asphalt mixture.” Appl. Sci. 10 (19): 1–12. https://doi.org/10.3390/app10093324.
Zoorob, S. E., and L. B. Suparma. 2000. “Laboratory design and investigation of the properties of continuously graded asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt).” J. Cem. Compos. 22 (4): 233–242. https://doi.org/10.1016/S0958-9465(00)00026-3.
Zulkati, A., W. Y. Diew, and D. S. Delai. 2012. “Effects of fillers on properties of asphalt-concrete mixture.” J. Transp. Eng. 138 (7): 902–910. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000395.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 4April 2024

History

Received: Apr 10, 2023
Accepted: Sep 15, 2023
Published online: Jan 19, 2024
Published in print: Apr 1, 2024
Discussion open until: Jun 19, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Sukanta Karati [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India (corresponding author). Email: [email protected]
Tapas Kumar Roy, Aff.M.ASCE [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share