Technical Papers
Jan 24, 2024

Estimating the Resilient Modulus of Marginal Granular Materials through a Novel Approach of Strain-Stage Dynamic CBR Test

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 4

Abstract

Stiffness quantification of unbound granular materials (UGMs) is essential for designing pavement structures. This stiffness can be determined directly through the resilient modulus test, or indirectly, by correlation, with the California bearing ratio (CBR) test. Alternatively, the dynamic CBR test (dCBR) has been proposed as a simple and low-cost method for this assessment. This study investigated a new dCBR test protocol based on a novel strain-stage approach, applying 20 load cycles/stage. This testing protocol is expected to facilitate characterization and on-site control of stiffness for UGMs, including marginal granular materials (MGMs). The study characterized four MGMs using the new dCBR test protocol and the resilient modulus test; four replicate specimens manufactured by gyratory compaction were assessed per material and test. The protocol was implemented successfully for the MGMs studied to compute an equivalent resilient modulus. A methodology is proposed for calculating an adjusted equivalent resilient modulus with values similar to those of the resilient modulus. Further research is suggested to explore the relationship between the dCBR and CBR tests to advance the characterization of granular materials for pavement structures and expand the experimental data using a broader set of soils to validate the protocol.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study is a product of the IMP-ING-3404 high-impact project funded by the Vice-rectorship of Research at Universidad Militar Nueva Granada and Universidad Industrial de Santander, Colombia. The authors express their gratitude for this financial support. The first author acknowledges the financial support of the Colombian Army through its program of scholarships for the doctoral education of officers from the Escuela Militar de Cadetes General José María Córdova.

Disclaimer

This paper does not constitute a standard or specification, nor is it intended for design, bidding, construction, contracting, tendering, or permitting purposes. Trade names were used solely for information purposes and not for product endorsement.

References

AASHTO. 2021. Standard method of test for determining the resilient modulus of soils and aggregate materials. AASHTO T 307-99. Washington, DC: AASHTO.
Abid, A. N., A. O. Salih, and E. A. Nawaf. 2017. “The influence of fines content on the mechanical properties of aggregate subbase course material for highway construction using repeated load CBR test.” Al-Nahrain J. Eng. Sci. 20 (3): 615–624.
Alvarez, A. E., L. V. Espinosa, P. A. Ortiz, M. D. Hurtado, L. E. Cotes, and Y. M. López. 2019. “Evaluación de la degradación por compactación de materiales granulares tipo subbase.” Rev. EIA 16 (31): 13–25. https://doi.org/10.24050/reia.v16i31.746.
Anuroopa, K. 2004. “Resilient modulus and permanent deformation testing of unbound granular materials.” Doctoral dissertation, Zachry Dept. of Civil and Environmental Engineering, Texas A&M Univ.
Arabali, P., S. I. Lee, S. Sebesta, M. S. Sakhaeifar, and R. L. Lytton. 2018. “Application of Superpave gyratory compactor for laboratory compaction of unbound granular materials.” In Proc., Int. Conf. on Transportation and Development 2018, 359–370. Reston, VA: ASCE.
Araya, A., A. Molenaar, and L. Houben. 2010a. “Characterization of unbound granular materials using repeated load CBR and triaxial testing.” In Proc., Paving Materials and Pavement Analysis, 355–363. Reston, VA: ASCE.
Araya, A. A. 2011. Characterization of unbound granular materials for pavements. Delft, Netherlands: Delft Univ. of Technology.
Araya, A. A. 2014. “Simplified characterization techniques for (sub) tropical base materials and modeling.” Int. J. Comput. Methods Exp. Meas. 2 (1): 92–106. https://doi.org/10.2495/CMEM-V2-N1-92-106.
Araya, A. A., A. A.A. Molenaar, and L. J. M. Houben. 2010b. “A realistic method of characterizing granular materials for low-cost road pavements.” In Proc., 11th Int. Conf. on Asphalt Pavements (ISAP 2010), 1–10. Delft, Netherland: Delft Univ. of Technology.
Arshad, A. K., E. Shaffie, F. Ismail, W. Hashim, and Z. Abd Rahman. 2018. “Evaluation of subbase materials for mechanistic pavement design.” Int. J. Civ. Eng. Technol. 9 (8): 504–512.
Arshad, M. 2019. “Development of a correlation between the resilient modulus and CBR value for granular blends containing natural aggregates and RAP/RCA materials.” Adv. Mater. Sci. Eng. 2019 (Apr): 1. https://doi.org/10.1155/2019/8238904.
Asha, M. N., and G. M. Latha. 2012. “Strength behaviour of reinforced soil-aggregate systems under repeated and cyclic loading.” In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Geotechnical Special Publication 225, edited by R. D. Hryciw, A. Athanasopoulos-Zekkos, and N. Yesiller, 1513–1522. Reston, VA: ASCE.
ASTM. 2009. Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM C131-06. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM C127-07. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM International.
ASTM. 2014b. Standard test methods for specific gravity of soil solids by water pycnometers. ASTM D854-10. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for correction of unit weight and water content for soils containing oversize particles. ASTM D4718-87. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for particle-size analysis of soils. ASTM D422-63. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test method for resistance of coarse aggregate to degradation by abrasion in the micro-deval apparatus. ASTM D6928-10. West Conshohocken, PA: ASTM.
ASTM. 2017d. Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. ASTM D4791-99. West Conshohocken, PA: ASTM.
ASTM. 2021a. Standard test method for California bearing ratio (CBR) of laboratory-compacted soils. ASTM D1883. West Conshohocken, PA: ASTM.
ASTM. 2021b. Standard test methods for laboratory compaction characteristics of soil using modified effort. ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2022a. Standard test method for sand equivalent value of soils and fine aggregate. ASTM D2419-09. West Conshohocken, PA: ASTM.
ASTM. 2022b. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821-01. West Conshohocken, PA: ASTM.
Browne, M. J. 2006. “Feasibility of using a gyratory compactor to determine compaction characteristics of soil.” Doctoral dissertation, College of Engineering, Montana State Univ.-Bozeman.
Caicedo, B., O. Coronado, J.-M. Fleureau, and A. Gomes Correia. 2009. “Resilient behaviour of non standard unbound granular materials.” Road Mater. Pavement Des. 10 (2): 287–312. https://doi.org/10.1080/14680629.2009.9690196.
Camacho Tauta, J. F., O. J. Reyes Ortiz, and D. F. Méndez González. 2007. “Ensayo de compactación giratoria en suelos como alternativa al ensayo de compactación proctor.” Cienc. Ing. Neogranadina 17 (2): 67–81. https://doi.org/10.18359/rcin.1075.
CEN (European Committee for Standardization). 2004. Unbound and hydraulically bound mixtures—Part 7: Cyclic load triaxial test for unbound mixtures. EN 13286-7. Brussels, Belgium: CEN.
Cerni, G., and S. Camilli. 2011. “Comparative analysis of gyratory and proctor compaction processes of unbound granular materials.” Road Mater. Pavement Des. 12 (2): 397–421. https://doi.org/10.1080/14680629.2011.9695251.
Cerni, G., A. Corradini, E. Pasquini, and F. Cardone. 2015. “Resilient behaviour of unbound granular materials through repeated load triaxial test: Influence of the conditioning stress.” Road Mater. Pavement Des. 16 (1): 70–88. https://doi.org/10.1080/14680629.2014.964294.
Dan, H.-C., L.-H. He, and L.-H. Zhao. 2018. “Experimental investigation on the resilient response of unbound graded aggregate materials by using large-scale dynamic triaxial tests.” Road Mater. Pavement Des. 21 (2): 434–451. https://doi.org/10.1080/14680629.2018.1500300.
El-Ashwah, A. S., E. Mousa, S. M. El-Badawy, and M. A. Abo-Hashema. 2022. “Advanced characterization of unbound granular materials for pavement structural design in Egypt.” Int. J. Pavement Eng. 23 (2): 476–488. https://doi.org/10.1080/10298436.2020.1754416.
Fattah, M. Y., M. M. Hilal, and H. B. Flyeh. 2016. “Effect of fine material on compaction characteristics of subbase material using the superpave gyratory compactor.” Int. J. Civ. Eng. Technol. 7 (5): 466–476.
García, N. P., P. G. Anguas, D. G. Fredlund, M. A. R. Rodríguez, H. G. García Cruz, and R. P. Pérez Luis. 2016. “Compaction and mechanical properties of soils compacted in the gyratory compactor.” Infraestructura Vial. 18 (31): 20–29.
George, K. P. 2004. Prediction of resilient modulus from soil index properties. University, MS: Univ. of Mississippi.
Haghighi, H., A. Arulrajah, A. Mohammadinia, and S. Horpibulsuk. 2018. “A new approach for determining resilient moduli of marginal pavement base materials using the staged repeated load CBR test method.” Road Mater. Pavement Des. 19 (8): 1848–1867. https://doi.org/10.1080/14680629.2017.1352532.
Hao, S., and T. Pabst. 2020. “Determination of resilient behavior of crushed waste rock using cyclic load CBR test.” In GeoVirtual 2020, 1–6. Vancouver, BC, Canada: Canadian Geotechnical Society.
Hao, S., and T. Pabst. 2021. “Estimation of resilient behavior of crushed waste rocks using repeated load CBR tests.” Transp. Geotech. 28 (Nov): 1–13. https://doi.org/10.1016/j.trgeo.2021.100525.
IDU (Instituto Desarrollo Urbano). 2019. “Especificación 510-18 Base y subbase granular para vías vehículares.” In Especificaciones técnicas Gen. Mater. y construcción, para Proy. Infraestruct. vial y Espac. público, para Bogotá D.C, 1–11. Bogotá, Colombia: Alcaldía mayor de Bogotá D.C.
Instituto Mexicano del Transporte. 2001. Módulos de resiliencia en suelos finos y materiales granulares. Sanfandila, Mexico: Publicación Técnica.
INVIAS. 2022. Artículo 320-22 Subbase granular, Especificaciones generales de construcción de carreteras. Bogotá, Colombia: Instituto Nacional de Vías.
Lekarp, F., U. Isacsson, and A. Dawson. 2000. “State of the art. II: Permanent strain response of unbound aggregates.” J. Transp. Eng. 126 (Feb): 76–83. https://doi.org/10.1061/(ASCE)0733-947X(2000)126:1(76).
Mehrpazhouh, A., S. N. Moghadas Tafreshi, and M. Mirzababaei. 2019. “Impact of repeated loading on mechanical response of a reinforced sand.” J. Rock Mech. Geotech. Eng. 11 (4): 804–814. https://doi.org/10.1016/j.jrmge.2018.12.013.
Mneina, A., and A. Shalaby. 2020. “Relating gradation parameters to mechanical and drainage performance of unbound granular materials.” Transp. Geotech. 23 (Jul): 100315. https://doi.org/10.1016/j.trgeo.2019.100315.
Molenaar, A. A. A. 2007. “Characterization of some tropical soils for road pavements.” Transp. Res. Rec. 1989 (1): 186–193. https://doi.org/10.3141/1989-63.
Nagula, S. S., J. M. Krishnan, and R. G. Robinson. 2016. “Use of repeated load CBR test to characterize pavement granular materials.” In Proc., 4th Chinese-European Workshop on Functional Pavement Design, CEW 2016, edited by S. Erkens, X. Liu, K. Anupam, and Y. Tan, 1011–1018. London: CRC Press.
Nagula, S. S., R. G. Robinson, and J. M. Krishnan. 2018. “Mechanical characterization of pavement granular materials using hardening soil model.” Int. J. Geomech. 18 (12): 1–13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001291.
Narzary, B. K., and K. U. Ahamad. 2021. “Estimation of equivalent modulus of fine-grained subgrade soil from numerical model.” J. Transp. Eng. Part B: Pavements 147 (1): 04020084. https://doi.org/10.1061/JPEODX.0000246.
Pan, T., E. Tutumluer, and J. Anochie-Boateng. 2006. “Aggregate morphology affecting resilient behavior of unbound granular materials.” Transp. Res. Rec. 1952 (1): 12–20. https://doi.org/10.1177/0361198106195200102.
Pasetto, M., and N. Baldo. 2004. “Comparative analysis of compaction procedures of unbound traditional and non-conventional materials.” Pavements Unbound 1 (Mar): 65–73.
Qamhia, I. I. A., L. C. Chow, D. Mishra, and E. Tutumluer. 2017. “Dense-graded aggregate base gradation influencing rutting model predictions.” Transp. Geotech. 13 (Dec): 43–51. https://doi.org/10.1016/j.trgeo.2017.07.002.
Rada, G., and M. W. Witczack. 1981. “Comprehensive evaluation of laboratory resilient moduli results for granular material.” Transp. Res. Rec. 810: 23–33.
Rincón-Morantes, J. F., A. E. Alvarez, and O. J. Reyes-Ortiz. 2022. “Estimación de la rigidez de materiales granulares marginales no ligados mediante ensayo CBR dinámico.” Ing. Desarrollo 40 (1): 92–113. https://doi.org/10.14482/inde.40.01.621.992.
Salmi, A., L. Bousshine, and K. Lahlou. 2019. “Two unbound granular materials stiffness analysis with staged repeated load CBR test.” MATEC Web Conf. 286 (Aug): 06003. https://doi.org/10.1051/matecconf/201928606003.
Salmi, A., L. Bousshine, and K. Lahlou. 2020. “A new model of equivalent modulus derived from repeated load CBR test.” Int. J. Eng. 33 (7): 1321–1330. https://doi.org/10.5829/ije.2020.33.07a.19.
Sánchez González, R. 2003. Confiabilidad en el diseño estructural de pavimentos. Bogotá, Colombia: Universidad de los Andes.
Sas, W., A. Gluchowski, K. Gabryś, and A. Szymański. 2015. “Application of cyclic CBR test for the estimation of resilient modulus in the pavement construction.” In ICE Proc., XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, 793–798. London: Institution of Civil Engineers.
Sas, W., A. Gluchowski, and A. Szymanski. 2016. “Behavior of recycled concrete aggregate improved with lime addition during cyclic loading.” Int. J. GEOMATE 10 (1): 1662–1669. https://doi.org/10.21660/2016.19.4250.
Sas, W., A. Gluchowski, and A. Szymanski. 2017. “The geotechnical properties of recycled concrete aggregate with addition of rubber chips during cyclic loading.” Int. J. GEOMATE 12 (29): 25–32. https://doi.org/10.21660/2017.29.5216.
Seed, H. B., C. K. Chan, and C. L. Monismith. 1955. “Effects of repeated loading on the strength and deformation of compacted clay.” In Proc., 34th Annual Meeting on Highway Research Board, 541–558. Washington, DC: Highway Research Board.
Seed, H. B., F. G. Mitry, C. L. Monismith, and C. K. Chan. 1967. Prediction of flexible pavement deflections from laboratory repeated-load tests. Washington, DC: Transportation Research Board.
Ševelová, L., A. Florian, and P. Hrůza. 2020. “Using resilient modulus to determine the subgrade suitability for forest road construction.” Forests 11 (11): 1–17. https://doi.org/10.3390/f11111208.
Stolle, D. F. E., P. Guo, and Y. Liu. 2006. “Resilient modulus properties of typical granular base materials of Ontario.” In Proc., 59th Canadian Geotechnical Conf. Vancouver, BC, Canada: Canadian Geotechnical Society.
Stroup-Gardiner, M., and G. N. Durham. 2003. Resilient modulus testing for pavement components. West Conshohocken, PA: ASTM.
Uzan, J. 1992. “Resilient characterization of pavement materials.” Int. J. Numer. Anal. Meth. Geomech. 16 (6): 453–459. https://doi.org/10.1002/nag.1610160605.
Xiao, Y., E. Tutumluer, Y. Qian, and J. A. Siekmeier. 2012. “Gradation effects influencing mechanical properties of aggregate base–granular subbase materials in Minnesota.” Transp. Res. Rec. 2267 (1): 14–26. https://doi.org/10.3141/2267-02.
Zhalehjoo, N., A. Tolooiyan, R. Mackay, and D. Bodin. 2018. “The effect of instrumentation on the determination of the resilient modulus of unbound granular materials using advanced repeated load triaxial testing.” Transp. Geotech. 14 (Mar): 190–201. https://doi.org/10.1016/j.trgeo.2018.01.003.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 4April 2024

History

Received: Apr 3, 2023
Accepted: Sep 27, 2023
Published online: Jan 24, 2024
Published in print: Apr 1, 2024
Discussion open until: Jun 24, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil Engineering, Escuela Militar de Cadetes General José María Córdova, Calle 80 # 38–00, Bogota D.C. 111211, Colombia; Doctoral Student, Faculty of Engineering, Universidad Militar Nueva Granada, Carrera 11 # 101-80, Bogota D.C. 110111, Colombia (corresponding author) ORCID: https://orcid.org/0000-0002-4626-4365. Email: [email protected]; [email protected]
Full Professor, School of Civil Engineering, Universidad Industrial de Santander, Carrera 27-calle 9, Bucaramanga 680003, Colombia. ORCID: https://orcid.org/0000-0001-9010-7642
Oscar J. Reyes-Ortiz, Ph.D. https://orcid.org/0000-0002-2001-2450
Full Professor, Civil Engineering Program, Universidad Militar Nueva Granada, Carrera 11 # 101-80, Bogota D.C. 110111, Colombia. ORCID: https://orcid.org/0000-0002-2001-2450

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share