Technical Papers
Oct 19, 2023

Molecular Dynamics Simulation and Durability Experiment on Functional GO-Modified Cementitious Composites

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 1

Abstract

Microscopic characterization and macroscopic specific experiments are combined to explore the influence of functional graphene oxide (GO) on cementitious composites performance. The simulation through molecular dynamics (MD) characterizes the adsorption at the GO/C–S–H interface by analyzing the adsorption energy, radial distribution function (RDF), mean square displacement (MSD) and time correlation function (TCF), and the adsorption morphology of GO by radius of gyration (Rg) and concentration profile, reflecting the interface contact area used to further characterize interfacial bonding. The mechanical properties of mortar were tested, scanning electron microscopy (SEM) observed the mortar interface, and energy dispersive spectroscopy (EDS) calculated the ratio of Ca/Si. The durability of mortar was characterized, showing that the adsorption capacity of GO/C–S–H interface is: GO-C > GO-O > GO-N > GO-S. The GO-C has the strongest adsorption effect, and the interface adsorption effect of GO-S is the weakest. When the functionalized GO incorporation is 0.1%, GO-C can significantly improve the mechanical properties and durability of mortar. The enhancements of GO-O and GO-N are secondary, while GO-S showed the least improvement.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Financial support from Postgraduate Innovation Program of Qingdao Agricultural University (Grant No. QNYCX22050), and the National Natural Science Foundation of China (Grant No. 51808310). Teaching research project of Qingdao Agricultural University, High-level Talent Scientific Research Fund project of Qingdao Agricultural University (1114324), College students innovation and entrepreneurship plan of Shandong province (S202210435085), and the shiyanjia lab (www.shiyanjia.com) is also thanked for providing SEM testing.

References

Allington, R. D., D. Attwood, I. Hamerton, J. N. Hay, and B. J. Howlin. 1998. “A model of the surface of oxidatively treated carbon fibre based on calculations of adsorption interactions with small molecules.” Composites, Part A 29 (9–10): 1283–1290. https://doi.org/10.1016/S1359-835X(98)00011-6.
ASTM. 1997. Standard test method for density, absorption, and voids in hardened concrete. ASTMC 642-97. West Conshohocken, PA: ASTM.
Cai, Y., D. Liu, Z. J. Pan, Y. B. Yao, J. Q. Li, and Y. K. Qiu. 2013. “Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance.” Fuel 108 (Jun): 292–302. https://doi.org/10.1016/j.fuel.2013.02.031.
Cao, M. L., H. X. Zhang, and C. Zhang. 2016. “Effect of graphene on mechanical properties of cement mortars.” J. Cent. South Univ. 23 (4): 919–925. https://doi.org/10.1007/s11771-016-3139-4.
Chabot, V., D. Higgins, A. Yu, X. Xiao, Z. Chen, and J. Zhang. 2014. “A review of graphene and GO sponge: Material synthesis and applications towards energy and the environment.” Energy Environ. Sci. 7 (5): 1564–1596. https://doi.org/10.1039/c3ee43385d.
Chen, Y., G. H. Li, L. L. Li, W. J. Zhang, and K. Dong. 2023. “Molecular dynamics simulation and experimental study on mechanical properties and microstructure of cement-based composites enhanced by graphene oxide and graphene.” Mol. Simul. 49 (3): 251–262. https://doi.org/10.1080/08927022.2022.2156560.
Chinese Standard. 2001. Test code for hydraulic concrete. DL/T 5150-2001. Beijing: Electric Power Press of China.
Chinese Standard. 2009a. Standard for test method of basic properties of construction mortar. JGJ/T70-2009. Beijing: China Architecture and Building Press of China.
Chinese Standard. 2009b. Standard for test methods of long-term performance and durability of ordinary concrete. GB/T50082-2009. Beijing: Architecture and Building Press of China.
Chinese Standard. 2021. Test method of cement mortar strength. GB/T 17671-2021. Beijing: Standard Press of China.
Chuah, S., Z. Pan, J. G. Sanjayan, C. M. Wang, and W. H. Duan. 2014. “Nano reinforced cement and concrete composites and new perspective from GO.” Constr. Build. Mater. 73 (Dec): 113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040.
Ding, Z. H., Y. Zhang, P. Wang, M. H. Wang, Q. Q. Xu, Z. R. Xin, X. P. Wang, J. Guan, and D. S. Hou. 2023. “First-principle insights of initial hydration behavior affected by copper impurity in alite phase based on static and molecular dynamics calculations.” J. Cleaner Prod. 398 (Apr): 136478. https://doi.org/10.1016/j.jclepro.2023.136478.
Dodziuk, H., and G. Dolgonos. 2002. “Molecular modeling study of hydrogen storage in carbon nanotubes.” Chem. Phys. Lett. 356 (1–2): 79–83. https://doi.org/10.1016/S0009-2614(02)00368-8.
Fan, Q. C., X. Meng, Z. D. Li, G. Y. Ma, Z. P. Wang, K. Zhang, C. He, and D. Meng. 2022. “Experiment and molecular dynamics simulation of functionalized cellulose nanocrystals as reinforcement in cement composites.” Constr. Build. Mater. 341 (Jul): 127879. https://doi.org/10.1016/j.conbuildmat.2022.127879.
Gao, P., W. Pu, P. C. Wei, and M. Q. Kong. 2022. “MD simulations on adhesion energy of PDMS-silica interface caused by molecular structures and temperature.” Appl. Surf. Sci. 577 (Mar): 151930. https://doi.org/10.1016/j.apsusc.2021.151930.
Garza-Castañón, M., C. Vela, K. Serrano, and J. C. Tudón-Martínez. 2016. “CNT-based functionalization of 9Å tobermorite to optimize concrete flexural strength.” MRS Online Proc. Lib. 1813 (Jun): 6. https://doi.org/10.1557/opl.2016.6.
He, Y. J., X. G. Zhao, L. N. Lu, L. J. Stuble, and S. J. Hu. 2011. “Effect of C/S ratio on morphology and structure of hydrothermally synthesized calcium silicate hydrate.” Wuhan Univ. Technol. Mater. Sci. Ed. 26 (4): 770–773. https://doi.org/10.1007/s11595-011-0308-z.
Hou, D. S., Z. Y. Lu, X. Y. Li, H. Y. Ma, and Z. J. Li. 2017. “Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms.” Carbon 115 (May): 188–208. https://doi.org/10.1016/j.carbon.2017.01.013.
Hou, D. S., T. J. Yang, J. H. Tang, and S. C. Li. 2018. “Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: Functional group de-protonation, interfacial bonding and strengthening mechanism.” Phys. Chem. Chem. Phys. 20 (13): 8773–8789. https://doi.org/10.1039/C8CP00006A.
Hou, D. S., Q. Zhang, M. H. Wang, J. H. Zhang, P. Wang, and Y. M. Ge. 2019. “MD study on water and ions on the surface of GO sheet: Effects of functional groups.” Comput. Mater. Sci. 167 (Sep): 237–247. https://doi.org/10.1016/j.commatsci.2019.05.038.
Humphrey, W., A. Dalke, and K. Schulten. 1996. “VMD: Visual molecular dynamics.” J. Mol. Graphics 14 (1): 33–38. https://doi.org/10.1016/0263-7855(96)00018-5.
Kang, D., K. S. Seo, H. Y. Lee, and W. Chung. 2017. “Experimental study on mechanical strength of GO-cement composites.” Constr. Build. Mater. 131 (Jan): 303–308. https://doi.org/10.1016/j.conbuildmat.2016.11.083.
Kim, B., H. Park, and W. M. Sigmund. 2003. “Electrostatic interactions between shortened multiwall carbon nanotubes and polyelectrolytes.” Langmuir 19 (6): 2525–2527. https://doi.org/10.1021/la026746n.
Kim, K. S., Z. Yue, J. Houk, L. S. Yoon, K. Jong Min, K. S. Kim, A. Jong-Hyun, K. Philip, C. Jae-Young, and H. Byung Hee. 2009. “Large-scale pattern growth of graphene films for stretchable transparent electrodes.” Nature 457 (7230): 706–710. https://doi.org/10.1038/nature07719.
Kuilla, T., S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee. 2010. “Recent advances in graphene-based polymer composites.” Prog. Polym. Sci. 35 (11): 1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005.
Lee, C. G., X. D. Wei, J. W. Kysar, and J. Hone. 2008. “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” Science 321 (5887): 385–388. https://doi.org/10.1126/science.1157996.
Lv, C., Q. Z. Xue, D. Xia, and M. Ma. 2012. “Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites.” Appl. Surf. Sci. 258 (6): 2077–2082. https://doi.org/10.1016/j.apsusc.2011.04.056.
Lv, S. H., Y. Ma, C. C. Qiu, T. Sun, J. J. Liu, and Q. F. Zhou. 2013. “Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites.” Constr. Build. Mater. 49 (Dec): 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022.
Merlino, S., E. Bonaccorsi, and T. Armbruster. 1999. “Tobermorites: Their real structure and order-disorder (OD) character.” Am. Mineral. 84 (10): 1613–1621. https://doi.org/10.2138/am-1999-1015.
Mohammadkazemi, F., K. Doosthoseini, E. Ganjian, and M. Azin. 2015. “Manufacturing of bacterial nano-cellulose reinforced fiber-cement composites.” Constr. Build. Mater. 101 (Dec): 958–964. https://doi.org/10.1016/j.conbuildmat.2015.10.093.
Nair, R. R., P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim. 2008. “Fine structure constant defines visual transparency of graphene.” Sci. 320 (5881): 1308. https://doi.org/10.1126/science.1156965.
Pan, Z., L. He, L. Qiu, A. H. Korayem, G. Li, J. W. Zhu, F. Collins, D. Li, W. H. Duan, and M. C. Wang. 2015. “Mechanical properties and microstructure of a GO–cement composite.” Cem. Concr. Compos. 58 (Apr): 140–147. https://doi.org/10.1016/j.cemconcomp.2015.02.001.
Potts, J. R., D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff. 2011. “Graphene-based polymer nanocomposites.” Polymer 52 (1): 5–25. https://doi.org/10.1016/j.polymer.2010.11.042.
Qiu, L., X. W. Yang, X. L. Gou, W. R. Yang, Z. F. Ma, G. G. Wallace, and D. Li. 2010. “Dispersing carbon nanotubes with GO in water and synergistic effects between graphene derivatives.” Chem. Eur. J. 16 (35): 10653–10658. https://doi.org/10.1002/chem.201001771.
Rehman, S. K. U., Z. Ibrahim, S. A. Memon, M. T. H. Aunkor, M. F. Javed, K. Mehmood, and S. M. A. Shah. 2018. “Influence of graphene nanosheets on rheology, microstructure, strength development and self-sensing properties of cement based composites.” Sustainability 10 (3): 822. https://doi.org/10.3390/su10030822.
Sanchez, F., and L. Zhang. 2008. “Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics.” J. Colloid Interface Sci. 323 (2): 349–358. https://doi.org/10.1016/j.jcis.2008.04.023.
Sanchez, F., and L. Zhang. 2010. “Interaction energies, structure, and dynamics at functionalized graphitic structure-liquid phase interfaces in an aqueous calcium sulfate solution by molecular dynamics simulation.” Carbon 48 (4): 1210–1223. https://doi.org/10.1016/j.carbon.2009.11.044.
Sreeja, K., and T. N. Kumar. 2021. “Effect of GO on fresh, hardened and mechanical properties of cement mortar.” Mater. Today: Proc. 46 (6): 2235–2239. https://doi.org/10.1016/j.matpr.2021.03.574.
Sun, H. F., Z. L. Ren, L. Ling, S. A. Memon, J. Ren, B. Liu, and F. Xing. 2020. “Influence of GO on interfacial transition zone of mortar.” J. Nanomater. 2020 (Feb): 1–11. https://doi.org/10.1155/2020/8919681.
Tang, Y. B., C. S. Lee, Z. H. Chen, G. D. Yuan, Z. H. Kang, L. B. Luo, H. S. Song, Y. Liu, Z. B. He, and W. J. Zhang. 2009. “High-quality graphenes via a facile quenching method for field-effect transistors.” Nano. Lett. 9 (4): 1374–1377. https://doi.org/10.1021/nl803025e.
Tong, T., Z. Fan, Q. Liu, S. Wang, S. S. Tan, and Q. Yu. 2016. “Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and macro-properties of cementitious materials.” Constr. Build. Mater. 106 (Mar): 102–114. https://doi.org/10.1016/j.conbuildmat.2015.12.092.
Wang, M. H., S. R. Wu, P. Wang, B. Q. Dong, M. L. Ma, Z. Wang, J. Zhong, H. S. Li, and D. S. Hou. 2023. “Nano-deterioration of steel passivation film: Chloride attack in material defects.” Mater. Struct. 56 (Feb): 1–14. https://doi.org/10.1617/s11527-023-02121-z.
Wang, P., G. Qiao, Y. Zhang, D. S. Hou, and J. R. Zhang. 2020. “MD simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers.” Constr. Build. Mater. 257 (Oct): 119557. https://doi.org/10.1016/j.conbuildmat.2020.119557.
Xue, D. J., H. W. Zhou, Y. T. Liu, L. S. Deng, and L. Zhang. 2018. “Study of drainage and percolation of nitrogen-water flooding in tight coal by NMR imaging.” Rock. Mech. Rock. Eng. 51 (11): 3421–3437. https://doi.org/10.1007/s00603-018-1473-6.
Yang, T. J. 2018. “Mechanism study of GO toughened cement-based materials based on MD theory.” M.A. thesis, Dept. of Civil and Engineering, Qingdao Technol Univ.
Yao, Y. B., D. M. Liu, Y. Che, D. Z. Tang, S. H. Tang, and W. H. Hang. 2010. “Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR).” Fuel 89 (7): 1371–1380. https://doi.org/10.1016/j.fuel.2009.11.005.
Yin, B., H. F. Xu, F. Y. Fan, D. M. Qi, X. J. Hua, T. Y. Xu, C. H. Liu, and D. S. Hou. 2023. “Superhydrophobic coatings based on bionic mineralization for improving the durability of marine concrete.” Constr. Build. Mater. 362 (Jan): 129705. https://doi.org/10.1016/j.conbuildmat.2022.129705.
Zeng, H. Y., Y. M. Lai, S. Qu, and Y. H. Qin. 2020. “Graphene oxide-enhanced cementitious materials under external sulfate attack: Implications for long structural life.” ACS Appl. Nano Mater. 3 (10): 9784–9795. https://doi.org/10.1021/acsanm.0c01885.
Zhang, W., Y. T. Ma, D. S. Hou, H. Z. Zhang, and B. Q. Dong. 2023. “A multiscale model for mechanical and fracture behavior of calcium-silicate-hydrate: From molecular dynamics to peridynamics.” Theor. Appl. Fract. Mech. 124 (Apr): 103816. https://doi.org/10.1016/j.tafmec.2023.103816.
Zhang, W., M. Zhang, and D. S. Hou. 2022a. “Nanoscale insights into the anti-erosion performance of concrete: A molecular dynamics study.” Appl. Surf. Sci. 593 (Aug): 153403. https://doi.org/10.1016/j.apsusc.2022.153403.
Zhang, Y., L. Guo, J. Y. Shi, Q. Luo, J. Y. Jiang, and D. S. Hou. 2022b. “Full process of calcium silicate hydrate decalcification: Molecular structure, dynamics, and mechanical properties.” Cem. Concr. Res. 161 (Nov): 106964. https://doi.org/10.1016/j.cemconres.2022.106964.
Zhao, H. X., Y. W. Wang, Y. Yang, X. Shu, and H. Yan. 2017. “Effect of hydrophobic groups on the adsorption conformation of modified polycarboxylate superplasticizer investigated by MD simulation.” Appl. Surf. Sci. 407 (Jun): 8–15. https://doi.org/10.1016/j.apsusc.2017.02.132.
Zhao, Y., D. Ding, J. Bi, C. L. Wang, and P. F. Liu. 2021. “Experimental study on mechanical properties of precast cracked concrete under different cooling methods.” Constr. Build. Mater. 301 (Sep): 124141. https://doi.org/10.1016/j.conbuildmat.2021.124141.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 1January 2024

History

Received: Feb 7, 2023
Accepted: May 25, 2023
Published online: Oct 19, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 19, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Xue Meng
Graduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Qichang Fan
Graduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Liyu Zhou
Undergraduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Zhanpeng Wang
Undergraduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Liang Fan
Undergraduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Tian Yang
Undergraduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Zihao Yu
Undergraduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Qingshuo Zeng
Undergraduate Student, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China.
Associate Professor, School of Architectural Engineering, Qingdao Agricultural Univ., Qingdao 266109, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share