Technical Papers
Nov 27, 2023

Durability, Long-Term, and Environmental Evaluation of Alkali-Activated Alternative Soluble Silica Source for Recycled Asphalt Pavement Stabilization

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 2

Abstract

The preservation of natural resources has been gaining considerable space in recent decades, encouraging the use of industrial and civil construction waste. In this work, the recycled asphalt pavement (RAP) from the milling of the pavements was used to replace virgin aggregates for the construction of road base layers. Due to the large amounts of materials involved in road construction, it is necessary to develop alternative binders. Particularly when it comes to alkali-activated materials, the use of residues in the production of sodium silicate has not yet been investigated for RAP stabilization. Therefore, in this study, rice husk ash (RHA) was activated in an alkaline environment, playing the role of an alternative source of silica, for the formation of an alkali-activated binder (AAB). The exposure of these mixtures to seasonal variations in humidity and temperature was evaluated through durability tests from wet–dry cycles and the unconfined compressive strength (UCS) retained in the samples after the cycles. AAB permanence was also verified through long-term mechanical performance and its environmental impact through leaching tests. The results indicated that mixtures with a RAP to AAB ratio = 40:40, 50:30, and 50:40 reached the minimum design strength (2.1 MPa) even after wet–dry cycles; however the mixture with RAP:AAB = 40:40 is potentially superior for better performance in field conditions, possibly without premature failure. In addition, this mixture has no environmental impact because the results of environmental tests did not show any significant risk or hazardous characteristics.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to explicit their appreciation to National Council for Scientific and Technological Development-CNPq for the support to the research group.

References

ABNT (Associação Brasileira de Normas Técnicas). 2004a. Procedimento para obtenção de extrato de lixiviado de resíduos sólidos. ABNT NBR 10005. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2004b. Resíduos sólidos–Classificação. ABNT NBR 10004. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009a. Agregado graúdo–Determinação de massa específica, massa específica aparente e absorção de água. ABNT NBR NM 53. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009b. Agregados miúdo–Determinação da massa específica e massa específica aparente. ABNT NBR NM 52. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009c. Procedimento para obtenção de extreto de solubilizado de resíduos sólidos. ABNT NBR 10006. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2012a. Solo-cimento–Dosagem para emprego como camada de pavimento. ABNT NBR 12253. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2012b. Solo-cimento–Ensaio de durabilidade por molhagem e secagem–Método de ensaio. ABNT NBR 13554. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2013. Misturas asfálticas–Determinação do teor de betume pelo Soxhlet, pelo Rotarex e pelo refluxo duplo. ABNT NBR 16208. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Solo–Análise granulométrica. ABNT NBR 7181. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2022. Solo - Determinação da resistência à compressão não confinada de solo coesivo. ABNT NBR 12770. São Paulo, Brazil: ABNT.
Abraham, S. M., and G. D. Ransinchung. 2018. “Influence of RAP aggregates on strength, durability and porosity of cement mortar.” Constr. Build. Mater. 189 (Nov): 1105–1112. https://doi.org/10.1016/j.conbuildmat.2018.09.069.
Abraham, S. M., and G. D. Ransinchung. 2019. “Effects of reclaimed asphalt pavement aggregates and mineral admixtures on pore structure, mechanical and durability properties of cement mortar.” Constr. Build. Mater. 216 (Aug): 202–213. https://doi.org/10.1016/j.conbuildmat.2019.05.011.
Adhikari, S., M. J. Khattak, and B. Adhikari. 2020. “Mechanical characteristics of soil-RAP-geopolymer mixtures for road base and subbase layers.” Int. J. Pavement Eng. 21 (4): 483–496. https://doi.org/10.1080/10298436.2018.1492131.
Al-Hdabi, A. 2016. “Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler.” Constr. Build. Mater. 126 (Apr): 544–551. https://doi.org/10.1016/j.conbuildmat.2016.09.070.
Arulrajah, A., M. M. Disfani, H. Haghighi, A. Mohammadinia, and S. Horpibulsuk. 2015. “Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends.” Constr. Build. Mater. 84 (Jun): 146–155. https://doi.org/10.1016/j.conbuildmat.2015.03.048.
Arulrajah, A., J. Piratheepan, M. M. Disfani, and M. W. Bo. 2013. “Resilient moduli response of recycled construction and demolition materials in pavement subbase applications.” J. Mater. Civ. Eng. 25 (12): 1920–1928. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000766.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM.
Avirneni, D., P. R. T. Peddinti, and S. Saride. 2016. “Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses.” Constr. Build. Mater. 121 (Sep): 198–209. https://doi.org/10.1016/j.conbuildmat.2016.05.162.
Awoyera, P., and A. Adesina. 2019. “A critical review on application of alkali activated slag as a sustainable composite binder.” Case Stud. Constr. Mater. 11 (Dec): e00268. https://doi.org/10.1016/j.cscm.2019.e00268.
Bernal, S. A., E. D. Rodríguez, R. M. De Gutiérrez, and J. L. Provis. 2015. “Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators.” Mater. Constr. 65 (318): 20–49. https://doi.org/10.3989/mc.2015.03114.
Bernal, S. A., E. D. Rodríguez, R. M. De Gutiérrez, J. L. Provis, and S. Delvasto. 2012. “Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash.” Waste Biomass Valorization 3 (1): 99–108. https://doi.org/10.1007/s12649-011-9093-3.
Bouzón, N., J. Payá, M. V. Borrachero, L. Soriano, M. M. Tashima, and J. Monzó. 2014. “Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders.” Mater. Lett. 115 (Jan): 72–74. https://doi.org/10.1016/j.matlet.2013.10.001.
Bruschi, G. J., C. P. dos Santos, S. T. Ferrazzo, M. T. de Araújo, and N. C. Consoli. 2021a. “Parameters controlling loss of mass and stiffness degradation of green stabilized bauxite tailings.” Proc. Inst. Civ. Eng. Geotech. Eng. 176 (3): 1–9. https://doi.org/10.1680/jgeen.21.00119.
Bruschi, G. J., C. P. dos Santos, W. M. K. Levandoski, S. T. Ferrazzo, E. P. Korf, R. B. Saldanha, and N. C. Consoli. 2022. “Leaching assessment of cemented bauxite tailings through wetting and drying cycles of durability test.” Environ. Sci. Pollut. Res. 29 (39): 59247–59262. https://doi.org/10.1007/s11356-022-20031-5.
Bruschi, G. J., C. P. dos Santos, M. Tonini de Araújo, S. T. Ferrazzo, S. F. V. Marques, and N. C. Consoli. 2021b. “Green stabilization of bauxite tailings: Mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007 https://doi.org/10.1061/(ASCE)MT.1943-5533.0003949.
Consoli, N. C., A. P. da Silva, H. P. Nierwinski, and J. Sosnoski. 2018a. “Durability, strength, and stiffness of compacted gold tailings—Cement mixes.” Can. Geotech. J. 55 (4): 486–494. https://doi.org/10.1139/cgj-2016-0391.
Consoli, N. C., L. Festugato, H. C. S. Filho, G. D. Miguel, A. T. Neto, and D. Andreghetto. 2020. “Durability assessment of soil-pozzolan-lime blends through ultrasonic-pulse velocity test.” J. Mater. Civ. Eng. 32 (8): 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., D. N. Giese, H. B. Leon, D. M. Mocelin, R. Wetzel, and S. F. V. Marques. 2018b. “Sodium chloride as a catalyser for crushed reclaimed asphalt pavement–fly ash–carbide lime blends.” Transp. Geotech. 15 (Jun): 13–19. https://doi.org/10.1016/j.trgeo.2018.02.001.
Consoli, N. C., H. B. Leon, M. da Silva Carretta, J. V. L. Daronco, and D. E. Lourenço. 2019. “The effects of curing time and temperature on stiffness, strength and durability of sand-environment friendly binder blends.” Soils Found. 59 (5): 1428–1439. https://doi.org/10.1016/j.sandf.2019.06.007.
Consoli, N. C., E. Pasche, L. P. Specht, and M. Tanski. 2018c. “Key parameters controlling dynamic modulus of crushed reclaimed asphalt paving–powdered rock–portland cement blends.” Road Mater. Pavement Des. 19 (8): 1716–1733. https://doi.org/10.1080/14680629.2017.1345779.
Consoli, N. C., R. A. Q. Samaniego, L. E. González, and E. J. Bittar. 2018d. “Impact of severe climate conditions on loss of mass, strength, and stiffness of compacted fine-grained soils–portland cement blends.” J. Mater. Civ. Eng. 30 (8): 04018174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002392.
Consoli, N. C., R. A. Q. Samaniego, and N. M. K. Villalba. 2016. “Durability, strength, and stiffness of dispersive clay–lime blends.” J. Mater. Civ. Eng. 28 (11): 04016124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001632.
Consoli, N. C., A. Tebechrani Neto, B. R. S. Correa, R. A. Quiñónez Samaniego, and N. Cristelo. 2021a. “Durability evaluation of reclaimed asphalt pavement, ground glass and carbide lime blends based on unconfined compression tests.” Transp. Geotech. 27 (Mar): 100461. https://doi.org/10.1016/j.trgeo.2020.100461.
Consoli, N. C., and L. F. Tomasi. 2018. “The impact of dry unit weight and cement content on the durability of sand-cement blends.” Proc. Inst. Civ. Eng. Ground Improv. 171 (2): 96–102. https://doi.org/10.1680/jgrim.17.00034.
Consoli, N. C., M. Tonini de Araújo, S. Tonatto Ferrazzo, V. de Lima Rodrigues, and C. Gravina da Rocha. 2021b. “Increasing density and cement content in stabilization of expansive soils: Conflicting or complementary procedures for reducing swelling?” Can. Geotech. J. 58 (6): 866–878. https://doi.org/10.1139/cgj-2019-0855.
Costa, J. O., P. H. R. Borges, F. A. dos Santos, A. C. S. Bezerra, W. Van den Bergh, and J. Blom. 2020. “Cementitious binders and reclaimed asphalt aggregates for sustainable pavement base layers: Potential, challenges and research needs.” Constr. Build. Mater. 265 (Mar): 120325. https://doi.org/10.1016/j.conbuildmat.2020.120325.
Davidovits, J. 1989. “Geopolymers and geopolymeric materials.” J. Therm. Anal. 35 (May): 429–441. https://doi.org/10.1007/BF01904446.
Debbarma, S., G. D. Ransinchung, and S. Singh. 2019. “Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement.” Constr. Build. Mater. 199 (Mar): 508–525. https://doi.org/10.1016/j.conbuildmat.2018.12.047.
de Lorena Diniz Chaves, G., R. R. Siman, G. M. Ribeiro, and N. Bin Chang. 2021. “Synergizing environmental, social, and economic sustainability factors for refuse derived fuel use in cement industry: A case study in Espirito Santo, Brazil.” J. Environ. Manage. 288 (Nov): 112401. https://doi.org/10.1016/j.jenvman.2021.112401.
de Oliveira, L. B., A. R. G. de Azevedo, M. T. Marvila, E. C. Pereira, R. Fediuk, and C. M. F. Vieira. 2022. “Durability of geopolymers with industrial waste.” Case Stud. Constr. Mater. 16 (Dec): e00839. https://doi.org/10.1016/j.cscm.2021.e00839.
DNER (Departamento Nacional de Estradas Rodagem). 1994. Determinação da durabilidade através da perda de massa por molhagem e secagem. DNER-ME 203. Sao Paulo, Brazil: DNER.
DNIT (Departamento Nacional de Infraestrutura de Transportes). 2022. Pavimentação – Base de solo-cimento – Especificação de serviço. DNIT-ES 143. Sao Paulo, Brazil: DNIT.
Edeh, J. E., O. J. J. Onche, and K. J. Osinubi. 2012. “Rice husk ash stabilization of reclaimed asphalt pavement using cement as additive.” In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, 3863–3872. Reston, VA: ASCE.
Geraldo, R. H., L. F. R. Fernandes, and G. Camarini. 2017. “Water treatment sludge and rice husk ash to sustainable geopolymer production.” J. Cleaner Prod. 149 (Mar): 146–155. https://doi.org/10.1016/j.jclepro.2017.02.076.
Grilli, A., F. Cardone, and E. Bocci. 2018. “Mechanical behaviour of cement-bitumen treated materials containing different amounts of reclaimed asphalt.” Eur. J. Environ. Civ. Eng. 22 (7 https://doi.org/10.1080/19648189.2016.1219972.
Horpibulsuk, S., M. Hoy, P. Witchayaphong, R. Rachan, and A. Arulrajah. 2017. “Recycled asphalt pavement–fly ash geopolymer as a sustainable stabilized pavement material.” IOP Conf. Ser. Mater. Sci. Eng. 273 (Nov): 012005. https://doi.org/10.1088/1757-899x/273/1/012005.
Hoy, M., S. Horpibulsuk, and A. Arulrajah. 2016a. “Strength development of recycled asphalt pavement—Fly ash geopolymer as a road construction material.” Constr. Build. Mater. 117 (Aug): 209–219. https://doi.org/10.1016/j.conbuildmat.2016.04.136.
Hoy, M., S. Horpibulsuk, A. Arulrajah, and A. Mohajerani. 2018. “Strength and microstructural study of recycled asphalt pavement: Slag geopolymer as a pavement base material.” J. Mater. Civ. Eng. 30 (8): 04018177. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002393.
Hoy, M., S. Horpibulsuk, R. Rachan, A. Chinkulkijniwat, and A. Arulrajah. 2016b. “Recycled asphalt pavement–fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations.” Sci. Total Environ. 573 (Apr): 19–26. https://doi.org/10.1016/j.scitotenv.2016.08.078.
Jallu, M., A. Arulrajah, S. Saride, and R. Evans. 2020. “Flexural fatigue behavior of fly ash geopolymer stabilized-geogrid reinforced RAP bases.” Constr. Build. Mater. 254 (Sep): 119263. https://doi.org/10.1016/j.conbuildmat.2020.119263.
Kang, X., L. Ge, G. C. Kang, and C. Mathews. 2015. “Laboratory investigation of the strength, stiffness, and thermal conductivity of fly ash and lime kiln dust stabilised clay subgrade materials.” Road Mater. Pavement Des. 16 (4): 928–945. https://doi.org/10.1080/14680629.2015.1028970.
Lloyd, R. R. 2009. “Accelerated ageing of geopolymers.” In Geopolymers, 139–166. Sawston, UK: Woodhead.
Longhi, M. A., F. Gaedke, E. D. Rodríguez, A. Passuello, A. P. Kirchheim, S. A. Bernal, and J. L. Provis. 2014. “Geopolymers based on calcined kaolin sludge/ bottom ash blends and an alternative sodium silicate activator.” In Proc., 34th Cement and Concrete Science Conf., 182. Sheffield, UK: Univ. of Sheffield.
Mullapudi, R. S., P. S. Chowdhury, and K. S. Reddy. 2020. “Fatigue and healing characteristics of RAP binder blends.” J. Mater. Civ. Eng. 32 (8): 04020214. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003284.
Pasche, E., L. P. Specht, M. C. Tansky, and N. C. Consoli. 2018. “Avaliação da rigidez de misturas recicladas cimentadas: Abordagem elástica e viscoelásticas.” Transportes 26 (1): 94–107. https://doi.org/10.14295/transportes.v26i1.1342.
PCA (Portland Cement Association). 1956. Soil-cement laboratory handbook. Washington, DC: PCA.
Pelissaro, D. T., G. J. Bruschi, E. P. Korf, and F. Dalla Rosa. 2023. “Rice husk ash as an alternative soluble silica source for alkali-activated metakaolin systems applied to recycled asphalt pavement stabilization.” Transp. Geotech. 39 (Mar): 100940. https://doi.org/10.1016/j.trgeo.2023.100940.
Pereira dos Santos, C., G. J. Bruschi, J. R. G. Mattos, and N. C. Consoli. 2022. “Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash.” Transp. Geotech. 32 (Nov): 100704. https://doi.org/10.1016/j.trgeo.2021.100704.
Phoo-ngernkham, T., V. Sata, S. Hanjitsuwan, C. Ridtirud, S. Hatanaka, and P. Chindaprasirt. 2015. “Compressive strength, bending and fracture characteristics of high calcium fly ash geopolymer mortar containing portland cement cured at ambient temperature.” Arab. J. Sci. Eng. 41 (4): 1263–1271. https://doi.org/10.1007/s13369-015-1906-4.
Puertas, F., S. Martínez-Ramírez, S. Alonso, and T. Vázquez. 2000. “Alkali-activated fly ash/slag cement strength behaviour and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Puppala, A. J., L. R. Hoyos, and A. K. Potturi. 2011. “Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates.” J. Mater. Civ. Eng. 23 (7): 990–998. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000268.
Queiróz, L. C., L. L. S. Batista, L. M. P. Souza, M. D. Lima, S. Danieli, G. J. Bruschi, and C. P. Bergmann. 2022. “Alkali-activated system of carbide lime and rice husk for granular soil stabilization.” Proc. Inst. Civ. Eng. Ground Improv. 175 (6): 1–37. https://doi.org/10.1680/jgrim.21.00048.
Rahman, M. A., M. Imteaz, A. Arulrajah, and M. M. Disfani. 2014. “Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials.” J. Cleaner Prod. 66 (Mar): 75–84. https://doi.org/10.1016/j.jclepro.2013.11.005.
Saride, S., D. Avirneni, and S. Challapalli. 2016. “Micro-mechanical interaction of activated fly ash mortar and reclaimed asphalt pavement materials.” Constr. Build. Mater. 123 (Oct): 424–435. https://doi.org/10.1016/j.conbuildmat.2016.07.016.
Saride, S., and M. Jallu. 2020. “Effect of fly ash geopolymer on layer coefficients of reclaimed asphalt pavement bases.” J. Transp. Eng. Part B Pavements 146 (3): 04020033. https://doi.org/10.1061/JPEODX.0000169.
Saride, S., A. J. Puppala, and R. Williammee. 2010. “Assessing recycled/secondary materials as pavement bases.” Proc. Inst. Civ. Eng. Ground Improv. 163 (1): 3–12. https://doi.org/10.1680/grim.2010.163.1.3.
Singh, S., G. D. Ransinchung, S. Debbarma, and P. Kumar. 2018. “Utilization of reclaimed asphalt pavement aggregates containing waste from Sugarcane Mill for production of concrete mixes.” J. Cleaner Prod. 174 (Feb): 42–52. https://doi.org/10.1016/j.jclepro.2017.10.179.
Singh, S., G. D. Ransinchung, and P. Kumar. 2017. “Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete.” Constr. Build. Mater. 156 (Dec): 19–27. https://doi.org/10.1016/j.conbuildmat.2017.08.144.
Singh, S., and G. D. R. RN. 2020. “Laboratory and field evaluation of RAP for cement concrete pavements.” J. Transp. Eng. Part B Pavements 146 (2): 04020011. https://doi.org/10.1061/JPEODX.0000162.
Sukprasert, S., M. Hoy, S. Horpibulsuk, A. Arulrajah, A. S. A. Rashid, and R. Nazir. 2021. “Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications.” Road Mater. Pavement Des. 22 (2): 357–371. https://doi.org/10.1080/14680629.2019.1621190.
Syed, M., A. GuhaRay, and D. Goel. 2022. “Strength characterisation of fiber reinforced expansive subgrade soil stabilized with alkali activated binder.” Road Mater. Pavement Des. 23 (5): 1037–1060. https://doi.org/10.1080/14680629.2020.1869062.
Tabyanga, W., C. Suksiripattanapong, C. Phetchuay, C. Laksanakit, and N. Chusilp. 2021. “Evaluation of municipal solid waste incineration fly ash based geopolymer for stabilised recycled concrete aggregate as road material.” Road Mater. Pavement Des. 23 (9): 2178–2189. https://doi.org/10.1080/14680629.2021.1959385.
Takeda, H., S. Hashimoto, H. Yokoyama, S. Honda, and Y. Iwamoto. 2013. “Characterization of zeolite in zeolite-geopolymer hybrid bulk materials derived from kaolinitic clays.” Materials 6 (5): 1767–1778. https://doi.org/10.3390/ma6051767.
Tayeh, B. A., A. M. Zeyad, I. S. Agwa, and M. Amin. 2021. “Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete.” Case Stud. Constr. Mater. 15 (Aug): e00673. https://doi.org/10.1016/j.cscm.2021.e00673.
Tchakouté, H. K., C. H. Rüscher, S. Kong, E. Kamseu, and C. Leonelli. 2016. “Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study.” Constr. Build. Mater. 114 (May): 276–289. https://doi.org/10.1016/j.conbuildmat.2016.03.184.
Tong, K. T., R. Vinai, and M. N. Soutsos. 2018. “Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders.” J. Cleaner Prod. 201 (1): 272–286. https://doi.org/10.1016/j.jclepro.2018.08.025.
Tonini de Araújo, M., S. Tonatto Ferrazzo, G. J. Jordi Bruschi, and N. C. Consoli. 2021. “Mechanical and environmental performance of eggshell lime for expansive soils improvement.” Transp. Geotech. 31 (Oct): 100681. https://doi.org/10.1016/j.trgeo.2021.100681.
Torres-Carrasco, M., J. G. Palomo, and F. Puertas. 2014. “Sodium silicate solutions from dissolution of glasswastes. Statistical analysis.” Mater. Constr. 64 (314): e014–e014. https://doi.org/10.3989/mc.2014.05213.
USEPA. 2022. Ground water and drinking water: National primary drinking water regulations. Washington, DC: USEPA.
Villaquirán-Caicedo, M. A., R. Mejia De Gutiérrez, and N. Gallego. 2017. “A novel MK-based geopolymer composite activated with rice husk ash and KOH: Performance at high temperature.” Mater. Constr. 67: 1–13.
Wirtgen. 2012. Wirtgen cold recycling technology. Windhagen, Germany: Wirtgen.
Zhuang, X. Y., L. Chen, S. Komarneni, C. H. Zhou, D. S. Tong, H. M. Yang, W. H. Yu, and H. Wang. 2016. “Fly ash-based geopolymer: Clean production, properties and applications.” J. Cleaner Prod. 125 (Jul): 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 2February 2024

History

Received: Dec 16, 2022
Accepted: Aug 4, 2023
Published online: Nov 27, 2023
Published in print: Feb 1, 2024
Discussion open until: Apr 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Deise Trevizan Pelissaro [email protected]
Ph.D. Student, Graduate Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Passo Fundo, RS 99052-900, Brazil (corresponding author). Email: [email protected]
Francisco Dalla Rosa [email protected]
Professor, Graduate Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Passo Fundo, RS 99052-900, Brazil. Email: [email protected]
Eduardo Pavan Korf [email protected]
Professor, Graduate Program in Environmental Science and Technology, Universidade Federal da Fronteira Sul, Erechim, RS 99700-000, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share