Abstract

The main purpose of this work was to combine the advantages of increased material greenness, waste upcycling, reduced raw material demand, and the superior characteristics of traditional engineered cementitious composites (ECCs). To this end, engineered geopolymer composites (EGCs) with matrices based entirely on components from construction and demolition waste (CDW) as precursors and aggregates were developed. The CDW-based precursors included roof tiles, red clay bricks, hollow bricks, glass, and concrete. Different combinations of sodium hydroxide, sodium silicate, and calcium hydroxide were used as alkaline activators. Hybridized polyethylene and nylon fibers were used as fibers. To investigate the influences of the additional calcium source, slag-substituted versions of the same mixtures were produced. At the fresh state, Marsh cone and mini-slump tests were performed. At the hardened state, mechanical property tests (compressive strength and four-point bending) and microstructural characterization tests (X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy) were conducted. The findings revealed that, regardless of the mixture composition, all EGCs exhibited a deflection-hardening response coupled with multiple microcracking behavior. The 28-day average ranges for compressive strength, flexural strength, and midspan deflection results were 25.2–42.1 MPa, 6.2–9.5 MPa, and 14.1–28.3 mm, respectively. Slag substitution mostly improved the mechanical performance of EGCs. The main geopolymerization products were sodium aluminosilicate hydrate (NASH), calcium aluminosilicate hydrate (CASH), and C-(N)-ASH gels, the formation of which varied depending on the type of precursor and activator.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council of Turkey (TUBITAK) provided under Project 117M447.

References

ACI (American Concrete Institute). 1996. State-of-the-art report on fiber reinforced concrete. ACI 544.1R-96. Farmington Hills, MI: ACI.
AECOM Asia Company. 2018. People’s Republic of China: Construction and demolition waste management and recycling. Dallas: PRC Ministry of Housing and Urban-Rural Development and the Asian Development Bank.
Ahmed, S. F. U., and Z. Ronnie. 2017. “Ductile behavior of polyethylene fibre reinforced geopolymer composite.” In Vol. 97 of Proc., MATEC Web of Conf., 1047. Les Ulis, France: Édition Diffusion Presse Sciences.
Akduman, Ş., O. Kocaer, A. Aldemir, M. Şahmaran, G. Yıldırım, H. Almahmood, and A. Ashour. 2021. “Experimental investigations on the structural behaviour of reinforced geopolymer beams produced from recycled construction materials.” J. Build. Eng. 41 (Sep): 102776. https://doi.org/10.1016/j.jobe.2021.102776.
Al Bakri, A. M. M., H. Kamarudin, M. Bnhussain, A. R. Rafiza, and Y. Zarina. 2012. “Effect of Na2SiO3/NaOH ratios and NaOH molarities on compressive strength of fly-ash-based geopolymer.” ACI Mater. J. 109 (5): 503–508.
Aldemir, A., S. Akduman, O. Kocaer, R. Aktepe, M. Sahmaran, G. Yildirim, H. Almahmood, and A. Ashour. 2022. “Shear behaviour of reinforced construction and demolition waste-based geopolymer concrete beams.” J. Build. Eng. 47 (Apr): 103861. https://doi.org/10.1016/j.jobe.2021.103861.
Alhawat, M., A. Ashour, G. Yildirim, A. Aldemir, and M. Sahmaran. 2022. “Properties of geopolymers sourced from construction and demolition waste: A review.” J. Build. Eng. 50 (Jun): 104104. https://doi.org/10.1016/j.jobe.2022.104104.
Alonso, S., and A. Palomo. 2001. “Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures.” Cem. Concr. Res. 31 (1): 25–30. https://doi.org/10.1016/S0008-8846(00)00435-X.
Alrefaei, Y., and J. G. Dai. 2019. “Deflection hardening behavior and elastic modulus of one-part hybrid fiber-reinforced geopolymer composites.” J. Asian Concr. Fed. 5 (2): 37–51. https://doi.org/10.18702/acf.2019.12.5.2.37.
ASTM. 2010. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four point bending. ASTM D6272-10. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM C109. West Conshohocken, PA: ASTM.
Banyhussan, Q. S., G. Yildirim, O. Anıl, R. T. Erdem, A. Ashour, and M. Sahmaran. 2019. “Impact resistance of deflection-hardening fiber reinforced concretes with different mixture parameters.” Struct. Concr. 20 (3): 1036–1050. https://doi.org/10.1002/suco.201800233.
Banyhussan, Q. S., G. Yildirim, E. Bayraktar, S. Demirhan, and M. Sahmaran. 2016. “Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content.” Constr. Build. Mater. 125 (Oct): 41–52. https://doi.org/10.1016/j.conbuildmat.2016.08.020.
Baronio, G., and L. Binda. 1997. “Study of the pozzolanicity of some bricks and clays.” Constr. Build. Mater. 11 (1): 41–46. https://doi.org/10.1016/S0950-0618(96)00032-3.
Beaupré, D., and S. Mindess. 1998. “Rheology of fresh concrete: Principles, measurement, and applications.” In Materials science of concrete V, 149–190. Columbus, OH: American Ceramic Society.
Burduhos Nergis, D. D., M. M. A. B. Abdullah, A. V. Sandu, and P. Vizureanu. 2020. “XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder.” Materials 13 (2): 343. https://doi.org/10.3390/ma13020343.
Cai, J., J. Pan, J. Han, Y. Lin, and Z. Sheng. 2021. “Low-energy impact behavior of ambient cured engineered geopolymer composites.” Ceram. Int. 48 (7): 9378–9389. https://doi.org/10.1016/j.ceramint.2021.12.133.
Choi, J., H. H. Nguyễn, S. Park, R. Ranade, and B. Y. Lee. 2021. “Effects of fiber hybridization on mechanical properties and autogenous healing of alkali-activated slag-based composites.” Constr. Build. Mater. 310 (Dec): 125280. https://doi.org/10.1016/j.conbuildmat.2021.125280.
Choi, J. I., B. Y. Lee, R. Ranade, V. C. Li, and Y. Lee. 2014. “Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite.” Cem. Concr. Compos. 70 (Jul): 153–158. https://doi.org/10.1016/j.cemconcomp.2016.04.002.
Chukanov, N. V., and A. D. Chervonnyi. 2016. Infrared spectroscopy of minerals and related compounds, 10. New York: Springer.
Demirhan, S., G. Yildirim, Q. S. Banyhussan, K. Koca, O. Anıl, and R. T. Erdem. 2020. “Impact behaviour of nanomodified deflection-hardening fibre-reinforced concretes.” Mag. Concr. Res. 72 (17): 865–887. https://doi.org/10.1680/jmacr.18.00541.
Elmesalami, N., and K. Celik. 2022. “A critical review of engineered geopolymer composite: A low-carbon ultra-high-performance concrete.” Constr. Build. Mater. 346 (Sep): 128491. https://doi.org/10.1016/j.conbuildmat.2022.128491.
EPA (Environmental Protection Agency). 2019. Advancing sustainable materials management: 2017. Washington, DC: EPA.
Erdem, T. K., S. Demirhan, G. Yildirim, Q. S. Banyhussan, O. Sahin, and M. H. Balav. 2020. “Effects of mixture design parameters on the mechanical behavior of high-performance fiber-reinforced concretes.” J. Mater. Civ. Eng. 32 (12): 04020368. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003459.
European Commission. 2015. Closing the loop-an EU action plan for the circular economy. Brussels, Belgium: European Commission.
Fan, Y., S. Yin, Z. Wen, and J. Zhong. 1999. “Activation of fly ash and its effects on cement properties.” Cem. Concr. Res. 29 (4): 467–472. https://doi.org/10.1016/S0008-8846(98)00178-1.
Fernández-Jiménez, A., and F. Puertas. 2003. “Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements.” Adv. Cem. Res. 15 (3): 129–136. https://doi.org/10.1680/adcr.2003.15.3.129.
Frías, M., R. Vigil de la Villa, S. Martínez-Ramírez, L. Fernández-Carrasco, E. Villar-Cociña, and R. García-Giménez. 2020. “Multi-technique characterization of a fine fraction of CDW and assessment of reactivity in a CDW/lime system.” Minerals 10 (7): 590. https://doi.org/10.3390/min10070590.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. Macphee. 2011. “Compatibility studies between NASH and CASH gels, study in the ternary diagram Na2OCaOAl2O3SiO2H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Giles, H. F., Jr., E. M. Mount III, and J. R. Wagner. 2004. Extrusion: The definitive processing guide and handbook, 209. Norwich, NY: William Andrew.
Iler, K. R. 1979. The chemistry of the silica: Solubility, polymerization, colloid and surface properties, and biochemistry, 866. Hoboken, NJ: John Wiley and Sons.
Jindal, B. B. 2019. “Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review.” Constr. Build. Mater. 227 (Dec): 116644. https://doi.org/10.1016/j.conbuildmat.2019.08.025.
Kan, L., R. Shi, Y. Zhao, X. Duan, and M. Wu. 2020. “Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites.” J. Cleaner Prod. 254 (May): 120168. https://doi.org/10.1016/j.jclepro.2020.120168.
Kan, L., F. Wang, Z. Zhang, W. Kabala, and Y. Zhao. 2021. “Mechanical properties of high ductile alkali-activated fiber reinforced composites with different curing ages.” Constr. Build. Mater. 306 (Nov): 124833. https://doi.org/10.1016/j.conbuildmat.2021.124833.
Khan, S. U., and T. Ayub. 2022. “PET fiber-reinforced engineered geopolymer and cementitious composites.” J. Mater. Civ. Eng. 34 (3): 06021010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004215.
Kocaer, O., and A. Aldemir. 2022. “Compressive stress–strain model for the estimation of the flexural capacity of reinforced geopolymer concrete members.” Struct. Concr. https://doi.org/10.1002/suco.202200914.
Komljenović, M., Z. Baščarević, and V. Bradić. 2010. “Mechanical and microstructural properties of alkali-activated fly ash geopolymers.” J. Hazard. Mater. 181 (1–3): 35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064.
Komnitsas, K., D. Zaharaki, A. Vlachou, G. Bartzas, and M. Galetakis. 2015. “Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers.” Adv. Powder Technol. 26 (2): 368–376. https://doi.org/10.1016/j.apt.2014.11.012.
Lee, B. Y., C. G. Cho, H. J. Lim, J. K. Song, K. H. Yang, and V. C. Li. 2012. “Strain hardening fiber reinforced alkali-activated mortar—A feasibility study.” Constr. Build. Mater. 37 (Dec): 15–20. https://doi.org/10.1016/j.conbuildmat.2012.06.007.
Lee, W. K. W., and J. S. J. Van Deventer. 2002. “Structural reorganisation of class F fly ash in alkaline silicate solutions.” Colloids Surf. 211 (1): 49–66. https://doi.org/10.1016/S0927-7757(02)00237-6.
Lee, W. K. W., and J. S. J. Van Deventer. 2003. “Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates.” Langmuir 19 (21): 8726–8734. https://doi.org/10.1021/la026127e.
Li, F., Z. Yang, A. Zheng, and S. Li. 2021. “Properties of modified engineered geopolymer composites incorporating multi-walled carbon nanotubes (MWCNTs) and granulated blast furnace slag (GBFS).” Ceram. Int. 47 (10): 14244–14259. https://doi.org/10.1016/j.ceramint.2021.02.008.
Li, J., and E. H. Yang. 2017. “Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines.” Cem. Concr. Compos. 78 (Apr): 33–42. https://doi.org/10.1016/j.cemconcomp.2016.12.013.
Li, V. C., and C. K. Leung. 1992. “Steady-state and multiple cracking of short random fiber composites.” J. Eng. Mech. 118 (11): 2246–2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246).
Ling, Y., K. Wang, W. Li, G. Shi, and P. Lu. 2019. “Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites.” Composites, Part B 164 (May): 747–757. https://doi.org/10.1016/j.compositesb.2019.01.092.
Lu, W., X. Fu, and D. D. L. Chung. 1998. “A comparative study of the wettability of steel, carbon, polyethylene fibers by water.” Cem. Concr. Res. 28 (6): 783–786. https://doi.org/10.1016/S0008-8846(98)00056-8.
Marissen, R. 2011. “Design with ultra-strong polyethylene fibers.” Mater. Sci. Appl. 2 (5): 319. https://doi:10.4236/msa.2011.25042.
Moreno-Maroto, J. M., P. Delgado-Plana, R. Cabezas-Rodríguez, R. M. de Gutiérrez, D. Eliche-Quesada, L. Pérez-Villarejo, R. J. Galán-Arboledas, and S. Bueno. 2022. “Alkaline activation of high-crystalline low-Al2O3 construction and demolition wastes to obtain geopolymers.” J. Cleaner Prod. 330 (Jan): 129770. https://doi.org/10.1016/j.jclepro.2021.129770.
Myers, R. J., J. L. Provis, and B. Lothenbach. 2015. “Composition–solubility–structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N, K-) ASH).” Dalton Trans. 44 (30): 13530–13544. https://doi.org/10.1039/C5DT01124H.
Nematollahi B. 2017. “Investigation of geopolymer as a sustainable alternative binder for fiber-reinforced strain-hardening composites.” Ph.D. thesis, Faculty of Science, Engineering and Technology, Swinburne Univ. of Technology.
Nematollahi, B., J. Sanjayan, J. Qiu, and E. H. Yang. 2017. “High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation.” Arch. Civ. Mech. Eng. 17 (Sep): 555–563. https://doi.org/10.1016/j.acme.2016.12.005.
Nematollahi, B., J. Sanjayan, and F. U. A. Shaikh. 2014. “Comparative deflection hardening behavior of short fiber reinforced geopolymer composites.” Constr. Build. Mater. 70 (Nov): 54–64. https://doi.org/10.1016/j.conbuildmat.2014.07.085.
Ozcelikci, E., A. Kul, M. F. Gunal, B. F. Ozel, G. Yildirim, A. Ashour, and M. Sahmaran. 2023. “A comprehensive study on the compressive strength, durability-related parameters and microstructure of geopolymer mortars based on mixed construction and demolition waste.” J. Cleaner Prod. 396 (Apr): 136522. https://doi.org/10.1016/j.jclepro.2023.136522.
Palacios, M., M. M. Alonso, C. Varga, and F. Puertas. 2019. “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes.” Cem. Concr. Compos. 95 (Jan): 277–284. https://doi.org/10.1016/j.cemconcomp.2018.08.010.
Palomo, A., M. T. Blanco-Varela, M. L. Granizo, F. Puertas, T. Vazquez, and M. W. Grutzeck. 1999. “Chemical stability of cementitious materials based on metakaolin.” Cem. Concr. Res. 29 (7): 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (Jul): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Provis, J. L., G. C. Lukey, and J. S. van Deventer. 2005. “Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results.” Chem. Mater. 17 (12): 3075–3085. https://doi.org/10.1021/cm050230i.
Puertas, F., A. Fernández-Jiménez, and M. T. Blanco-Varela. 2004. “Pore solution in alkali-activated slag cement pastes, relation to the composition and structure of calcium silicate hydrate.” Cem. Concr. Res. 34 (1): 139–148. https://doi.org/10.1016/S0008-8846(03)00254-0.
Qing-Hua, C., A. Tagnit-Hamou, and S. L. Sarkar. 1991. “Strength and microstructural properties of water glass activated slag.” MRS Online Proc. Lib. 245 (Oct): 49. https://doi.org/10.1557/PROC-245-49.
Rao, G. M., and T. G. Rao. 2015. “Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar.” Arabian J. Sci. Eng. 40 (11): 3067–3074. https://doi.org/10.1007/s13369-015-1757-z.
Rashidian-Dezfouli, H., and P. R. Rangaraju. 2017. “Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder.” Mater. Constr. 67 (328): 136. https://doi.org/10.3989/mc.2017.05416.
Reig, L., L. Soriano, M. V. Borrachero, J. Monzó, and J. Payá. 2014. “Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware.” Constr. Build. Mater. 63 (Jul): 214–222. https://doi.org/10.1016/j.conbuildmat.2014.04.023.
Robayo-Salazar, R. A., W. Valencia-Saavedra, and R. Mejía de Gutiérrez. 2020. “Construction and demolition waste (CDW) recycling—As both binder and aggregates—In alkali-activated materials: A novel re-use concept.” Sustainability 12 (14): 5775. https://doi.org/10.3390/su12145775.
Sahin, O., H. Ilcan, A. T. Atesli, A. Kul, G. Yildirim, and M. Sahmaran. 2021. “Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing.” Cem. Concr. Compos. 121 (Aug): 104088. https://doi.org/10.1016/j.cemconcomp.2021.104088.
Sahmaran, M., Z. Bilici, E. Ozbay, T. K. Erdem, H. E. Yucel, and M. Lachemi. 2013a. “Improving the workability and rheological properties of engineered cementitious composites using factorial experimental design.” Composites, Part B 45 (1): 356–368. https://doi.org/10.1016/j.compositesb.2012.08.015.
Sahmaran, M., M. Lachemi, K. M. Hossain, R. Ranade, and V. C. Li. 2009. “Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites.” ACI Mater. J. 106 (3): 308.
Sahmaran, M., and V. C. Li. 2009. “Durability properties of micro-cracked ECC containing high volumes fly ash.” Cem. Concr. Res. 39 (11): 1033–1043. https://doi.org/10.1016/j.cemconres.2009.07.009.
Sahmaran, M., G. Yildirim, and T. K. Erdem. 2013b. “Self-healing capability of cementitious composites incorporating different supplementary cementitious materials.” Cem. Concr. Compos. 35 (1): 89–101. https://doi.org/10.1016/j.cemconcomp.2012.08.013.
Sanalkumar, K. U. A., M. Lahoti, and E. H. Yang. 2019. “Investigating the potential reactivity of fly ash for geopolymerization.” Constr. Build. Mater. 225 (Nov): 283–291. https://doi.org/10.1016/j.conbuildmat.2019.07.140.
Shaikh, F. U. A., A. Fairchild, and R. Zammar. 2018. “Comparative strain and deflection hardening behaviour of polyethylene fibre reinforced ambient air and heat cured geopolymer composites.” Constr. Build. Mater. 163 (Feb): 890–900. https://doi.org/10.1016/j.conbuildmat.2017.12.175.
Sun, G., R. Liang, J. Zhang, Z. Li, and L. T. Weng. 2017. “Mechanism of cement paste reinforced by ultra-high molecular weight polyethylene powder and thermotropic liquid crystalline copolyester fiber with enhanced mechanical properties.” Cem. Concr. Compos. 78 (Apr): 57–62. https://doi.org/10.1016/j.cemconcomp.2016.12.011.
Sun, Z., H. Cui, H. An, D. Tao, Y. Xu, J. Zhai, and Q. Li. 2013. “Synthesis and thermal behavior of geopolymer-type material from waste ceramic.” Constr. Build. Mater. 49 (Dec): 281–287. https://doi.org/10.1016/j.conbuildmat.2013.08.063.
Swanepoel, J. C., and C. A. Strydom. 2002. “Utilisation of fly ash in a geopolymeric material.” Appl. Geochem. 17 (8): 1143–1148. https://doi.org/10.1016/S0883-2927(02)00005-7.
Takeda, H., S. Hashimoto, H. Kanie, S. Honda, and Y. Iwamoto. 2014. “Fabrication and characterization of hardened bodies from Japanese volcanic ash using geopolymerization.” Ceram. Int. 40 (3): 4071–4076. https://doi.org/10.1016/j.ceramint.2013.08.061.
Tan, J., J. Cai, and J. Li. 2022a. “Recycling of unseparated construction and demolition waste (UCDW) through geopolymer technology.” Constr. Build. Mater. 341 (Jul): 127771. https://doi.org/10.1016/j.conbuildmat.2022.127771.
Tan, J., Ö. Cizer, J. De Vlieger, H. Dan, and J. Li. 2022b. “Impacts of milling duration on construction and demolition waste (CDW) based precursor and resulting geopolymer: Reactivity, geopolymerization and sustainability.” Resour. Conserv. Recycl. 184 (Sep): 106433. https://doi.org/10.1016/j.resconrec.2022.106433.
Tan, J., Ö. Cizer, B. Vandevyvere, J. De Vlieger, H. Dan, and J. Li. 2022c. “Efflorescence mitigation in construction and demolition waste (CDW) based geopolymer.” J. Build. Eng. 58 (Oct): 105001. https://doi.org/10.1016/j.jobe.2022.105001.
Temuujin, J., A. Van Riessen, and R. Williams. 2009. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard. Mater. 167 (1–3): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Torres-Carrasco, M., J. G. Palomo, and F. P. Maroto. 2014. “Sodium silicate solutions from dissolution of glasswastes, Statistical analysis.” Mater. Constr. 64 (314): e014. https://doi.org/10.3989/mc.2014.05213.
Trindade, A. C., I. Curosu, M. Liebscher, V. Mechtcherine, and A. Silva. 2021. “Mechanical evaluation of Na-based strain-hardening geopolymer composites (SHGC) reinforced with PVA, UHMWPE, and PBO fibers.” In Proc., Fibre Reinforced Concrete: Improvements and Innovations II: X RILEM-fib Int. Symp. on Fibre Reinforced Concrete (BEFIB). New York: Springer.
Ulugol, H., M. F. Gunal, I. O. Yaman, G. Yildirim, and M. Sahmaran. 2021a. “Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction-and demolition-waste-based geopolymer composites.” Cem. Concr. Compos. 121 (Aug): 104081. https://doi.org/10.1016/j.cemconcomp.2021.104081.
Ulugol, H., A. Kul, G. Yildirim, M. Sahmaran, A. Aldemir, and D. Figueira. 2021b. “Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass.” J. Cleaner Prod. 280 (Jan): 124358. https://doi.org/10.1016/j.jclepro.2020.124358.
Van Jaarsveld, J. G. S., J. S. Van Deventer, and G. C. Lukey. 2002. “The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers.” Chem. Eng. J. 89 (1–3): 63–73. https://doi.org/10.1016/S1385-8947(02)00025-6.
Wallevik, J. E. 2006. “Relationship between the Bingham parameters and slump.” Cem. Concr. Res. 36 (7): 1214–1221. https://doi.org/10.1016/j.cemconres.2006.03.001.
Wang, S. D., K. L. Scrivener, and P. L. Pratt. 1994. “Factors affecting the strength of alkali-activated slag.” Cem. Concr. Res. 24 (6): 1033–1043. https://doi.org/10.1016/0008-8846(94)90026-4.
Wu, H. C., and V. C. Li. 1999. “Fiber/cement interface tailoring with plasma treatment.” Cem. Concr. Compos. 21 (3): 205–212. https://doi.org/10.1016/S0958-9465(98)00053-5.
Yildirim, G. 2019. “Dimensional stability of deflection-hardening hybrid fiber reinforced concretes with coarse aggregate: Suppressing restrained shrinkage cracking.” Struct. Concr. 20 (2): 836–850. https://doi.org/10.1002/suco.201800096.
Yildirim, G., A. Alyousif, M. Sahmaran, and M. Lachemi. 2015. “Assessing the self-healing capability of cementitious composites under increasing sustained loading.” Adv. Cem. Res. 27 (10): 581–592. https://doi.org/10.1680/adcr.14.00111.
Yildirim, G., F. E. Khiavi, Ö. Anıl, O. Şahin, M. Şahmaran, and R. T. Erdem. 2020. “Performance of engineered cementitious composites under drop-weight impact: Effect of different mixture parameters.” Struct. Concr. 21 (3): 1051–1070. https://doi.org/10.1002/suco.201900125.
Yildirim, G., A. Kul, E. Özçelikci, M. Şahmaran, A. Aldemir, and D. Figueira. 2021. “Development of alkali-activated binders from recycled mixed masonry-originated waste.” J. Build. Eng. 33 (Jan): 101690. https://doi.org/10.1016/j.jobe.2020.101690.
Yip, C. K., G. C. Lukey, and J. S. Van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Zhang, J., S. Li, Z. Li, Q. Zhang, H. Li, and J. Du. 2019. “Properties of fresh and hardened geopolymer-based grouts.” Ceram. Silik. 63 (2): 164–173. https://doi.org/10.13168/cs.2019.0008.
Zhang, S., V. C. Li, and G. Ye. 2020. “Micromechanics-guided development of a slag/fly ash-based strain-hardening geopolymer composite.” Cem. Concr. Compos. 109 (May): 103510. https://doi.org/10.1016/j.cemconcomp.2020.103510.
Zhong, H., and M. Zhang. 2021. “Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites.” Cem. Concr. Compos. 122 (Sep): 104167. https://doi.org/10.1016/j.cemconcomp.2021.104167.
Zhong, H., and M. Zhang. 2022. “Engineered geopolymer composites: A state-of-the-art review.” Cem. Concr. Compos. 135 (Nov): 104850. https://doi.org/10.1016/j.cemconcomp.2022.104850.
Zhou, Y., S. Zheng, X. Huang, B. Xi, Z. Huang, and M. Guo. 2021. “Performance enhancement of green high-ductility engineered cementitious composites by nano-silica incorporation.” Constr. Build. Mater. 281 (Apr): 122618. https://doi.org/10.1016/j.conbuildmat.2021.122618.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 1January 2024

History

Received: Nov 2, 2022
Accepted: Jun 28, 2023
Published online: Oct 31, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 31, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Institute of Science, Dept. of Civil Engineering, Hacettepe Univ., Beytepe, Ankara 06800, Turkey (corresponding author). ORCID: https://orcid.org/0000-0003-4985-0797. Email: [email protected]
Institute of Science, Dept. of Civil Engineering, Hacettepe Univ., Beytepe, Ankara 06800, Turkey. ORCID: https://orcid.org/0000-0002-6112-9735. Email: [email protected]
Graduate School, Dept. of Civil Engineering, Yozgat Bozok Univ., Yozgat 66000, Turkey. ORCID: https://orcid.org/0000-0002-7077-7160. Email: [email protected]
Muhammed Faruk Gunal [email protected]
General Directorate of Construction Works, Ministry of Environment, Urbanization and Climate Change, Ankara 06510, Turkey. Email: [email protected]
Gurkan Yildirim [email protected]
Associate Professor, Dept. of Civil Engineering, Hacettepe Univ., Ankara 06800, Turkey; Dept. of Civil and Structural Engineering, Univ. of Bradford, Bradford BD7 1DP, UK. Email: [email protected]
Ismail Raci Bayer [email protected]
Dept. of Civil Engineering, Kirikkale Univ., Kirikkale 06510, Turkey; Directorate General for European Union and Foreign Relations, Ministry of Environment, Urbanization and Climate Change, Ankara 06510, Turkey. Email: [email protected]
Ilhami Demir [email protected]
Professor, Dept. of Civil Engineering, Kirikkale Univ., Kirikkale 71451, Turkey. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share