Abstract

This study investigated the effect of incorporating three types of nanosilica (NS), two powders, and one colloidal suspension on the hydration, strength, and microstructure of calcium sulfoaluminate (CSA) cement pastes prepared with and without a superplasticizer (SP). X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and compressive strength tests were performed after 2, 5, and 28 days of hydration. The results showed that both NS powders delayed cement hydration at an early age, which was attributed to particle agglomeration (confirmed by dynamic light scattering). Whereas well-dispersed colloidal NS did not significantly affect the hydration of CSA at the investigated ages. SP incorporation improved the dispersion of CSA cement particles, resulting in a 10% increase in the degree of hydration of ye’elimite at 28 days for the system without NS. Conversely, when the SP was incorporated in NS-containing mixtures, it hindered cement hydration of the systems with powdered NS, but did not significantly affect the cement hydration of the system containing colloidal NS. The SEM images suggested that the SP changed the ettringite morphology, thereby negatively affecting the mechanical strength of the CSA pastes.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the Brazilian governmental funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under the projects 208380/2017-5 and 151890/2020-0; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) under the project 21/2551-0000723-0. The X-Ray Diffraction Laboratory (LDRX-UFSC) is acknowledged for XRD analysis.

References

Alatawna, A., M. Birenboim, R. Nadiv, M. Buzaglo, S. Peretz-damari, and A. Peled. 2020. “The effect of compatibility and dimensionality of carbon nanofillers on cement composites.” Constr. Build. Mater. 232 (Jan): 117141. https://doi.org/10.1016/j.conbuildmat.2019.117141.
Allevi, S., M. Marchi, F. Scotti, S. Bertini, and C. Cosentino. 2016. “Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate sources.” Mater. Struct. 49 (1–2): 453–466. https://doi.org/10.1617/s11527-014-0510-5.
Cheary, R. W., and A. Coelho. 1992. “Fundamental parameters approach to x-ray line-profile fitting.” J. Appl. Crystallogr. 25 (2): 109–121. https://doi.org/10.1107/S0021889891010804.
Chen, I. A., C. W. Hargis, and M. C. G. Juenger. 2012. “Understanding expansion in calcium sulfoaluminate: Belite cements.” Cem. Concr. Res. 42 (1): 51–60. https://doi.org/10.1016/j.cemconres.2011.07.010.
Collins, F., J. Lambert, and W. H. Duan. 2012. “The influences of admixtures on the dispersion, workability, and strength of carbon nanotube: OPC paste mixtures.” Cem. Concr. Compos. 34 (2): 201–207. https://doi.org/10.1016/j.cemconcomp.2011.09.013.
Cuesta, A., G. Álvarez-Pinazo, S. G. Sanfélix, I. Peral, M. A. G. Aranda, and A. G. De La Torre. 2014. “Hydration mechanisms of two polymorphs of synthetic ye’elimite.” Cem. Concr. Res. 63 (Sep): 127–136. https://doi.org/10.1016/j.cemconres.2014.05.010.
Cuesta, A., J. D. Zea-Garcia, D. Londono-Zuluaga, A. G. De La Torre, I. Santacruz, O. Vallcorba, and M. A. G. Aranda. 2017. “Synchrotron radiation pair distribution function analysis of gels in cements.” Crystals 7 (10): 317. https://doi.org/10.3390/cryst7100317.
da Costa, E. B., E. D. Rodríguez, S. A. Bernal, J. L. Provis, L. A. Gobbo, and A. P. Kirchheim. 2016. “Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge.” Constr. Build. Mater. 122 (Sep): 373–383. https://doi.org/10.1016/j.conbuildmat.2016.06.022.
de Azevedo, N. H., P. R. de Matos, P. J. Gleize, and A. M. Betioli. 2021. “Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of portland cement pastes.” Cem. Concr. Compos. 117 (Mar): 103903. https://doi.org/10.1016/j.cemconcomp.2020.103903.
De Azevedo, N. H., and P. J. P. Gleize. 2018. “Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a portland cement paste.” Constr. Build. Mater. 169 (Apr): 388–395. https://doi.org/10.1016/j.conbuildmat.2018.02.185.
de Matos, P. R., R. D. Sakata, P. J. P. Gleize, J. de Brito, and W. L. Repette. 2020. “Eco-friendly ultra-high performance cement pastes produced with quarry wastes as alternative fillers.” J. Cleaner Prod. 269 (Oct): 122308. https://doi.org/10.1016/j.jclepro.2020.122308.
Feng, J., F. Yang, and S. Qian. 2021. “Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification.” Constr. Build. Mater. 269 (Feb): 121249. https://doi.org/10.1016/j.conbuildmat.2020.121249.
Fernández-Carrasco, L., and T. Vázquez. 1996. “Aplicación de la espectroscopía infrarroja al estudio de cemento aluminoso.” Mater. Constr. 46 (241): 53–65. https://doi.org/10.3989/mc.1996.v46.i241.538.
FYM-HeidelbergCement Group. 2018. Garma i.tech ALI CEM GREEN. Heidelberg, Germany: HeidelbergCement Group.
Gallardo-Heredia, M., J. M. Almanza-Robles, R. X. Magallanes-Rivera, D. A. Cortes-Hernández, J. C. Escobedo-Bocardo, and U. Avila-López. 2017. “Calcium sulfoaluminate cement pastes from industrial wastes: Effect of hemihydrate content.” Mater. Struct. 50 (1): 1–10. https://doi.org/10.1617/s11527-016-0960-z.
Gao, D., Y. Meng, L. Yang, J. Tang, and M. Lv. 2019. “Effect of ground granulated blast furnace slag on the properties of calcium sulfoaluminate cement.” Constr. Build. Mater. 227 (Dec): 116665. https://doi.org/10.1016/j.conbuildmat.2019.08.046.
García-Maté, M., I. Santacruz, Á. G. De La Torre, L. León-Reina, and M. A. G. Aranda. 2012. “Rheological and hydration characterization of calcium sulfoaluminate cement pastes.” Cem. Concr. Compos. 34 (5): 684–691. https://doi.org/10.1016/j.cemconcomp.2012.01.008.
Gartner, E. 2004. “Industrially interesting approaches to ‘low-CO2’ cements.” Cem. Concr. Res. 34 (9): 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
Guo, Y., M. Wang, H. Zhang, G. Liu, L. Zhang, and X. Qu. 2007. “The surface modification of nanosilica, preparation of nanosilica/acrylic core-shell composite latex, and its application in toughening PVC matrix.” J. Appl. Polym. Sci. 107 (4): 2671–2680. https://doi.org/10.1002/app.27310.
Hong, Z., J. Zuo, Z. Zhang, C. Liu, L. Liu, and H. Liu. 2020. “Effects of nano-clay on the mechanical and microstructural properties of cement-based grouting material in sodium chloride solution.” Constr. Build. Mater. 245 (Jun): 118420. https://doi.org/10.1016/j.conbuildmat.2020.118420.
Hou, P., J. Shi, S. Prabakar, X. Cheng, K. Wang, X. Zhou, and S. P. Shah. 2020. “Effects of mixing sequences of nanosilica on the hydration and hardening properties of cement-based materials.” Constr. Build. Mater. 263 (Dec): 120226. https://doi.org/10.1016/j.conbuildmat.2020.120226.
Indukuri, C. S. R., R. Nerella, and S. R. C. Madduru. 2019. “Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites.” Constr. Build. Mater. 229 (Dec): 116863. https://doi.org/10.1016/j.conbuildmat.2019.116863.
Ioannou, S., L. Reig, K. Paine, and K. Quillin. 2014. “Properties of a ternary calcium sulfoaluminate-calcium sulfate-fly ash cement.” Cem. Concr. Res. 56 (Feb): 75–83. https://doi.org/10.1016/j.cemconres.2013.09.015.
Jansen, D., J. J. Wolf, and N. Fobbe. 2020. “The hydration of nearly pure ye’elimite with a sulfate carrier in a stoichiometric ettringite binder system. Implications for the hydration process based on in-situ XRD, 1H-TD-NMR, pore solution analysis, and thermodynamic modeling.” Cem. Concr. Res. 127 (Jan): 105923. https://doi.org/10.1016/j.cemconres.2019.105923.
Jing, G., J. Wu, T. Lei, S. Wang, V. Strokova, V. Nelyubova, M. Wang, and Z. Ye. 2020. “From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites.” Constr. Build. Mater. 248 (Jul): 118699. https://doi.org/10.1016/j.conbuildmat.2020.118699.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. H. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Júnior, L. U. T., P. R. de Matos, G. S. Lima, L. Silvestro, J. C. Rocha, C. E. Campos, and P. J. Gleize. 2022. “Effect of the nanosilica source on the rheology and early-age hydration of calcium sulfoaluminate cement pastes.” Constr. Build. Mater. 327 (Apr): 126942. https://doi.org/10.1016/j.conbuildmat.2022.126942.
Ke, G., J. Zhang, Y. Liu, and S. Xie. 2021. “Pore characteristics of calcium sulfoaluminate cement paste with impact of supplementary cementitious materials and water to binder ratio.” Powder Technol. 387 (Jul): 146–155. https://doi.org/10.1016/j.powtec.2021.04.027.
Li, G., Q. Liu, M. Niu, L. Cao, B. Nan, and C. Shi. 2020. “Characteristic of silica nanoparticles on mechanical performance and microstructure of sulphoaluminate cement/ordinary portland cement binary blends.” Constr. Build. Mater. 242 (May): 118158. https://doi.org/10.1016/j.conbuildmat.2020.118158.
Li, H., K. Yang, and X. Guan. 2019. “Properties of sulfoaluminate cement-based grouting materials modified with LiAl-layered double hydroxides in the presence of PCE superplasticizer.” Constr. Build. Mater. 226 (Nov): 399–405. https://doi.org/10.1016/j.conbuildmat.2019.07.210.
Lima, G. T. D. S., A. Zaleski, L. U. D. Tambara Júnior, J. C. Rocha, F. Pelisser, and P. J. P. Gleize. 2022. “Evaluation of the effect of nanosilica and recycled fine aggregate in portland cement rendering mortars.” Ibracon Struct. Mater. J. 15 (5): 1–17. https://doi.org/10.1590/S1983-41952022000500009.
Liu, M., S. Luo, L. Yang, and J. Ren. 2020. “Influence of water removal techniques on the composition and microstructure of hardened calcium sulfoaluminate cement pastes.” Mater. Struct. 53 (4): 1–11. https://doi.org/10.1617/s11527-020-01527-3.
Luz, C. A., J. C. Rocha, M. Cheriaf, and J. Pera. 2006. “Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge.” J. Hazard. Mater. 136 (3): 837–845. https://doi.org/10.1016/j.jhazmat.2006.01.020.
Ma, B., H. Li, J. Mei, and X. Li. 2017. “Influence of nano-SiO2 addition on properties of sulphoaluminate cement based material.” J. Wuhan Univ. Technol.-Mater. Sci. Ed. 32 (1): 106–112. https://doi.org/10.1007/s11595-017-1567-0.
Macleod, A. J. N., A. Fehervari, W. P. Gates, E. O. Garcez, L. P. Aldridge, and F. Collins. 2020. “Enhancing fresh properties and strength of concrete with a pre-dispersed carbon nanotube liquid admixture.” Constr. Build. Mater. 247 (Jun): 118524. https://doi.org/10.1016/j.conbuildmat.2020.118524.
Mendoza, O. A., P. Duda, E. C. C. M. Silva, and M. D. M. Paiva. 2019. “Nanosilica particles as structural buildup agents for 3D printing with portland cement pastes.” Constr. Build. Mater. 219 (Sep): 91–100. https://doi.org/10.1016/j.conbuildmat.2019.05.174.
Mohan, M. K., A. V. Rahul, G. De Schutter, and K. Van Tittelboom. 2021. “Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete.” Constr. Build. Mater. 275 (Mar): 122136. https://doi.org/10.1016/j.conbuildmat.2020.122136.
Padilla-Encinas, P., A. Palomo, M. T. Blanco-Varela, and A. Fernández-Jiménez. 2020. “Calcium sulfoaluminate clinker hydration at different alkali concentrations.” Cem. Concr. Res. 138 (Dec): 106251. https://doi.org/10.1016/j.cemconres.2020.106251.
Péra, J., and J. Ambroise. 2004. “New applications of calcium sulfoaluminate cement.” Cem. Concr. Res. 34 (4): 671–676. https://doi.org/10.1016/j.cemconres.2003.10.019.
Ren, C., W. Wang, Y. Yao, S. Wu, and X. Yao. 2020. “Complementary use of industrial solid wastes to produce green materials and their role in CO2 reduction.” J. Cleaner Prod. 252 (Apr): 119840. https://doi.org/10.1016/j.jclepro.2019.119840.
Salih, A., S. Rafiq, W. Mahmood, H. Al-darkazali, R. Noaman, K. Ghafor, and W. Qadir. 2020. “Systemic multi-scale approaches to predict the flowability at various temperature and mechanical properties of cement paste modified with nano-calcium carbonate.” Constr. Build. Mater. 262 (Mar): 120777. https://doi.org/10.1016/j.conbuildmat.2020.120777.
Sánchez-Herrero, M. J., A. Fernández-Jiménez, and A. Palomo. 2013. “C4A3Š hydration in different alkaline media.” Cem. Concr. Res. 46 (Apr): 41–49. https://doi.org/10.1016/j.cemconres.2013.01.008.
Sargam, Y., and K. Wang. 2021. “Influence of dispersants and dispersion on properties of nanosilica modified cement-based materials.” Cem. Concr. Compos. 118 (Apr): 103969. https://doi.org/10.1016/j.cemconcomp.2021.103969.
Seung, H., B. Balasubramanian, G. V. T. Gopalakrishna, S. Kwon, S. P. Karthick, and V. Saraswathy. 2018. “Durability performance of CNT and nanosilica admixed cement mortar.” Constr. Build. Mater. 159 (Jan): 463–472. https://doi.org/10.1016/j.conbuildmat.2017.11.003.
Sharp, J. H., C. D. Lawrence, and R. Yang. 1999. “Calcium sulfoaluminate cements—Low-energy cements, special cements or what?” Adv. Cem. Res. 11 (1): 3–13. https://doi.org/10.1680/adcr.1999.11.1.3.
Silvestro, L., G. T. dos Santos Lima, A. S. Ruviaro, D. Z. Mezalira, and P. J. P. Gleize. 2022. “Effect of multiwalled carbon nanotube functionalization with 3-aminopropyltriethoxysilane on the rheology and early-age hydration of portland cement pastes.” J. Mater. Civ. Eng. 34 (8): 04022176. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004329.
Silvestro, L., A. Ruviaro, G. Lima, P. de Matos, A. R. de Azevedo, S. N. Monteiro, and P. Gleize. 2021. “Influence of ultrasonication of functionalized carbon nanotubes on the rheology, hydration, and compressive strength of portland cement pastes.” Materials (Basel) 14 (18): 5248. https://doi.org/10.3390/ma14185248.
Taborda-Barraza, M., F. Pelisser, and P. J. P. Gleize. 2021. “Thermal-mechanical properties of metakaolin-based geopolymer containing silicon carbide microwhiskers.” Cem. Concr. Compos. 123 (Oct): 104168. https://doi.org/10.1016/j.cemconcomp.2021.104168.
Tambara, L. U. D., Jr., M. Cheriaf, J. C. Rocha, A. Palomo, and A. Fernández-Jiménez. 2020. “Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration.” Cem. Concr. Res. 128 (Feb): 105953. https://doi.org/10.1016/j.cemconres.2019.105953.
Tambara, L. U. D., Jr., J. C. Rocha, M. Cheriaf, P. Padilla-Encinas, A. Fernández-Jiménez, and A. Palomo. 2021. “Effect of alkaline salts on calcium sulfoaluminate cement hydration.” Molecules (Basel, Switzerland) 26 (7): 1938. https://doi.org/10.3390/molecules26071938.
Van der Marel, H. W., and H. Beutelspacher. 1976. Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam, Netherlands: Elsevier.
Wang, S., R. Gong, Z. Li, C. Yuan, G. Jiang, J. Wang, and C. Ye. 2019. “Water-blocking nano-composite cement-based grouting materials.” Appl. Nanosci. 9 (7): 1565–1578. https://doi.org/10.1007/s13204-019-00975-w.
Winnefeld, F., and B. Lothenbach. 2010. “Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modeling.” Cem. Concr. Res. 40 (8): 1239–1247. https://doi.org/10.1016/j.cemconres.2009.08.014.
Wu, Y., Q. Li, G. Li, S. Tang, M. Niu, and Y. Wu. 2021. “Effect of naphthalene-based superplasticizer and polycarboxylic acid superplasticizer on the properties of sulfoaluminate cement.” Materials (Basel) 14 (3): 662. https://doi.org/10.3390/ma14030662.
Xingjun, L. V., Y. Duan, and G. Chen. 2021. “Electromagnetic wave-absorbing properties of graphene nanoplatelets: Calcium sulfoaluminate cement-based composites.” Cement Wapno Beton 26 (1): 55–66. https://doi.org/10.32047/CWB.2021.26.1.6.
Xu, L., N. Li, R. Wang, and P. Wang. 2018. “A comprehensive study on the relationship between mechanical properties and microstructural development of calcium sulfoaluminate cement based self-leveling underlayments.” Constr. Build. Mater. 163 (Feb): 225–234. https://doi.org/10.1016/j.conbuildmat.2017.12.089.
Yao, Y., W. Wang, Z. Ge, C. Ren, X. Yao, and S. Wu. 2020. “Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes.” Cem. Concr. Compos. 112 (Sep): 103687. https://doi.org/10.1016/j.cemconcomp.2020.103687.
Yu, J., H. Li, C. K. Y. Leung, X. Lin, J. Y. K. Lam, and I. M. L. Sham. 2017. “Matrix design for waterproof engineered cementitious composites (ECCs).” Constr. Build. Mater. 139 (May): 438–446. https://doi.org/10.1016/j.conbuildmat.2017.02.076.
Zahedi, M., A. A. Ramezanianpour, and A. M. Ramezanianpour. 2015. “Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration.” Constr. Build. Mater. 78 (Mar): 354–361. https://doi.org/10.1016/j.conbuildmat.2015.01.045.
Zhang, J., Y. Ke, J. Zhang, Q. Han, and B. Dong. 2020. “Cement paste with well-dispersed multi-walled carbon nanotubes: Mechanism and performance.” Constr. Build. Mater. 262 (Nov): 120746. https://doi.org/10.1016/j.conbuildmat.2020.120746.
Zhang, L. 2000. “Microstructure and performance of calcium sulfoaluminate cements.” Ph.D. dissertation, Dept. of Chemistry, Univ. of Aberdeen.
Zhang, Y., J. Chang, and J. Ji. 2018. “AH3 phase in the hydration product system of AFt-AFm-AH3 in calcium sulfoaluminate cements: A microstructural study.” Constr. Build. Mater. 167 (Apr): 587–596. https://doi.org/10.1016/j.conbuildmat.2018.02.052.
Zhou, Q., N. B. Milestone, and M. Hayes. 2006. “An alternative to portland cement for waste encapsulation: The calcium sulfoaluminate cement system.” J. Hazard. Mater. 136 (1): 120–129. https://doi.org/10.1016/j.jhazmat.2005.11.038.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 7July 2023

History

Received: Sep 5, 2022
Accepted: Dec 13, 2022
Published online: May 2, 2023
Published in print: Jul 1, 2023
Discussion open until: Oct 2, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Luís Urbano Durlo Tambara Jr., Ph.D. https://orcid.org/0000-0002-3269-4911 [email protected]
Postdoctoral Researcher, Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; Division 7.4 Technology of Construction Materials, Bundesanstalt für Materialforschung und Prüfung (BAM), Berlin 12205, Germany (corresponding author). ORCID: https://orcid.org/0000-0002-3269-4911. Email: [email protected]; [email protected]
Professor, Coordenadoria Acadêmica, Federal Univ. of Santa Maria (UFSM), Cachoeira do Sul 96503-205, Brazil. ORCID: https://orcid.org/0000-0002-3695-1356. Email: [email protected]
Geannina dos Santos Lima [email protected]
Ph.D. Student, Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil. Email: [email protected]
Professor, Dept. of Civil Engineering Coordination, Federal Univ. of Technology - Paraná (UTFPR), Guarapuava, Paraná 85053-525, Brazil. ORCID: https://orcid.org/0000-0002-6437-3047. Email: [email protected]
Janaíde Cavalcante Rocha [email protected]
Professor, Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil. Email: [email protected]
Carlos Eduardo Maduro de Campos [email protected]
Professor, Laboratory of X-ray Diffraction (LDRX), Dept. of Physics, Federal Univ. of Santa Catarina, Florianópolis 88040-970, Brazil. Email: [email protected]
Professor, Laboratory of Nanotechnology Applications in Civil Construction (LabNANOTEC), Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil. ORCID: https://orcid.org/0000-0003-4029-9345. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share