Technical Papers
Aug 24, 2023

Effect of the Number of Loading Cycles on the Behavior of a Stabilized Fiber-Reinforced Soft Soil: Energy Evaluation

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 11

Abstract

When a material is subjected to cyclic loading, there are changes in the material’s geomechanical behavior that need to be known and characterized for a safe design. To this end, a series of unconfined compressive strength (UCS) tests was performed, with and without the application of cyclic loading, to study the effect of the number of loading cycles on the behavior of a soft soil stabilized with different binder contents, unreinforced and reinforced with polypropylene fibers. The results were analyzed in terms of the evolution of elastic and plastic deformation energy, and it was observed that plastic energy prevailed in the first cycles, but decreased with the increase in the number of loading cycles. The accumulated plastic deformation occurring during the cyclic loading induced a strain-hardening effect that was responsible for the increase in the undrained resilient modulus and in the postcyclic unconfined compressive strength, regardless of the binder content and fiber reinforcement. The addition of polypropylene fibers led to a reduction in the elastic deformation energy, which was more noticeable in the first cycles, leading to an increase in the accumulated plastic axial strains and to a reduction in the undrained resilient modulus during the cyclic loading. These facts are explained by the high compressibility of the fibers and by the weakening of the stabilized matrix as a result of the physical presence of the fibers which may prevent the development of some cementitious bonds. However, the addition of fibers led to an increase in the energy absorption capacity, explained by the fact that the deformations occurring during the cyclic loading allow an earlier mobilization of the fibers as the UCS test proceeds.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors express their thanks to CIMPOR and Biu International for supplying the binders and the fibers, and to the institutions that financially supported the research: Individual Research Grant 2021.05748.BD, Project Research Grant FCT (PTDC/ECI-CON/28382/2017), and the R&D Units CIEPQPF (UIDB/00102/2020), ISISE (UIDB/04029/2020), and ACIV.

References

Abbaspour, M., S. S. Narani, E. Aflaki, F. H. Nejad, and S. M. Mir Mohammad Hosseini. 2020. “Strength and swelling properties of a waste tire textile fiber-reinforced expansive soil.” Geosynth. Int. 27 (5): 476–489. https://doi.org/10.1680/jgein.20.00010.
Abdullah, H. H., M. A. Shahin, M. L. Walske, and A. Karrech. 2020. “Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization.” Can. Geotech. J. 57 (9): 1356–1368. https://doi.org/10.1139/cgj-2019-0215.
Agboola, O., E. R. Sadiku, P. Popoola, O. S. I. Fayomi, A. O. Ayeni, D. T. Dick, A. T. Adegbola, L. Moropeng, and M. Ramakhokhovhu. 2021. “Surface roughness of ternary blends: Polypropylene/chitosan/sisal fiber membranes.” Mater. Today: Proc. 38 (Jul): 2342–2346. https://doi.org/10.1016/j.matpr.2020.06.513.
Ahmed, A., and M. H. El Naggar. 2018. “Effect of cyclic loading on the compressive strength of soil stabilized with bassanite–tire mixture.” J. Mater. Cycles Waste Manage. 20 (1): 525–532. https://doi.org/10.1007/s10163-017-0617-1.
Åhnberg, H. 2006. “Strength of stabilized soil—A laboratory study on clays and organic soils stabilized with different types of binder.” Ph.D. thesis, Dept. of Construction Sciences, Lund Univ.
Akbari, H. R., H. Sharafi, and A. R. Goodarzi. 2021. “Effect of polypropylene fiber inclusion in kaolin clay stabilized with lime and nano-zeolite considering temperatures of 20 and 40°C.” Bull. Eng. Geol. Environ. 80 (2): 1841–1855. https://doi.org/10.1007/s10064-020-02028-x.
ASTM. 1998. Standard practice for classification of soils for engineering purposes (unified soil classification). ASTM D2487. West Conshohocken, PA: ASTM.
Azeiteiro, R. J. N., P. A. L. F. Coelho, D. M. G. Taborda, and J. C. D. Grazina. 2017. “Energy-based evaluation of liquefaction potential under non-uniform cyclic loading.” Soil Dyn. Earthquake Eng. 92 (Jul): 650–665. https://doi.org/10.1016/j.soildyn.2016.11.005.
Basha, E. A., R. Hashim, H. B. Mahmud, and A. S. Muntohar. 2005. “Stabilization of residual soil with rice husk ash and cement.” Constr. Build. Mater. 19 (6): 448–453. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
BSI (British Standards Institution). 1990. Methods of test for soils for civil engineering purposes. Shear strength tests (total stress). BS 1377-7. London: BSI.
CEN (European Committee for Standardization). 2000. Cement—Part 1: Composition, specifications and conformity criteria for common cements. EN 197-1. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2004. Unbound and hydraulically bound mixtures—Part 7: Cyclic load triaxial test for unbound mixtures. EN 13286-7. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2007. Concrete—Part 1: Specification, performance, production and conformity. EN 206-1. Brussels, Belgium: CEN.
Chauhan, M. S., S. Mittal, and B. Mohanty. 2008. “Performance evaluation of silty sand subgrade reinforced with fly ash and fibre.” Geotext. Geomembr. 26 (5): 429–435. https://doi.org/10.1016/j.geotexmem.2008.02.001.
Choobbasti, A. J., and S. S. Kutanaei. 2017. “Effect of fiber reinforcement on deformability properties of cemented sand.” J. Adhes. Sci. Technol. 31 (14): 1576–1590. https://doi.org/10.1080/01694243.2016.1264681.
Coelho, P. A. L. F., and L. J. L. Lemos. 2017. “Compressibility characteristics of a Portuguese soft deposit.” In Soft soil engineering, 663–668. London: Routledge.
Consoli, N. C., M. A. Arcari Bassani, and L. Festugato. 2010. “Effect of fiber-reinforcement on the strength of cemented soils.” Geotext. Geomembr. 28 (4): 344–351. https://doi.org/10.1016/j.geotexmem.2010.01.005.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., R. R. Moraes, and L. Festugato. 2011a. “Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils.” Geosynth. Int. 18 (2): 57–62. https://doi.org/10.1680/gein.2011.18.2.57.
Consoli, N. C., R. R. Moraes, and L. Festugato. 2013a. “Parameters controlling tensile and compressive strength of fiber-reinforced cemented soil.” J. Mater. Civ. Eng. 25 (10): 1568–1573. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000555.
Consoli, N. C., R. R. Moraes, and L. Festugato. 2013b. “Variables controlling strength of fibre-reinforced cemented soils.” Proc. Inst. Civ. Eng. Ground Improv. 166 (4): 221–232. https://doi.org/10.1680/grim.12.00004.
Consoli, N. C., D. A. Rosa, R. C. Cruz, and A. Dalla Rosa. 2011b. “Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil.” Eng. Geol. 122 (3): 328–333. https://doi.org/10.1016/j.enggeo.2011.05.017.
Consoli, N. C., M. A. Vendruscolo, A. Fonini, and F. Dalla Rosa. 2009. “Fiber reinforcement effects on sand considering a wide cementation range.” Geotext. Geomembr. 27 (3): 196–203. https://doi.org/10.1016/j.geotexmem.2008.11.005.
Consoli, N. C., F. Zortéa, M. de Souza, and L. Festugato. 2011c. “Studies on the dosage of fiber-reinforced cemented soils.” J. Mater. Civ. Eng. 23 (12): 1624–1632. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000343.
Corrêa-Silva, M., T. Miranda, M. Rouainia, N. Araújo, S. Glendinning, and N. Cristelo. 2020. “Geomechanical behaviour of a soft soil stabilized with alkali-activated blast-furnace slags.” J. Cleaner Prod. 267 (13): 122017. https://doi.org/10.1016/j.jclepro.2020.122017.
Correia, A. A. S. 2011. “Applicability of deep mixing technique to the soft soil of Baixo Mondego.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Coimbra.
Correia, A. A. S., L. Lopes, and M. S. Reis. 2021. “Advanced predictive modelling applied to the chemical stabilisation of soft soils.” Proc. Inst. Civ. Eng. Geotech. Eng. 175 (5): 461–471. https://doi.org/10.1680/jgeen.19.00295.
Correia, A. A. S., P. J. Venda Oliveira, and D. G. Custódio. 2015. “Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilized with binders.” Geotext. Geomembr. 43 (2): 97–106. https://doi.org/10.1016/j.geotexmem.2014.11.008.
Correia, A. A. S., P. J. Venda Oliveira, and L. J. L. Lemos. 2019. “Strength assessment of chemically stabilized soft soils.” Proc. Inst. Civ. Eng. Geotech. Eng. 172 (3): 218–227. https://doi.org/10.1680/jgeen.17.00011.
Correia, A. A. S., P. J. Venda Oliveira, J. Teles, M. N. P. C. Pedro, and M. G. António. 2017. “Strength of a stabilized soil reinforced with steel fibres.” Proc. Inst. Civ. Eng. Geotech. Eng. 170 (4): 312–321. https://doi.org/10.1680/jgeen.16.00200.
Dall’Aqua, G. P., G. Ghataora, and U. Ling. 2010. “Behaviour of fibre-reinforced and stabilized clayey soils subjected to cyclic loading.” Studia Geotechnica et Mechanica 32 (5): 3–16.
Duong, N. T., T. Satomi, and H. Takahashi. 2021. “Potential of corn husk fiber for reinforcing cemented soil with high water content.” Constr. Build. Mater. 271 (Feb): 121848. https://doi.org/10.1016/j.conbuildmat.2020.121848.
EuroSoilStab. 2001. “Development of design and construction methods to stabilize soft organic soils.” In Design guide soft soil stabilization. CT97-0351, EC Project No. BE 96-3177. Berkshire, UK: IHS BRE Press.
Falorca, I. M. C. F. G., and M. I. M. Pinto. 2011. “Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils.” Geosynth. Int. 18 (1): 2–11. https://doi.org/10.1680/gein.2011.18.1.2.
Festugato, L., A. Fourie, and N. C. Consoli. 2013. “Cyclic shear response of fibre-reinforced cemented paste backfill.” Géotech. Lett. 3 (1): 5–12. https://doi.org/10.1680/geolett.12.00042.
Güllü, H., and A. Khudir. 2014. “Effect of freeze–thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime.” Cold Reg. Sci. Technol. 106–107 (Aug): 55–65. https://doi.org/10.1016/j.coldregions.2014.06.008.
Hindle, M. J. 1994. A study of the compressibility and residual shear strength of a soft soil from Figueira da Foz. Durham, UK: Univ. of Durham.
Horpibulsuk, S. 2001. “Analysis and assessment of engineering behavior of cement stabilized clays.” Ph.D. thesis, Dept. of Civil Engineering, Saga Univ.
Horpibulsuk, S., N. Miura, and T. S. Nagaraj. 2003. “Assessment of strength development in cement-admixed high water content clays with Abrams’ law as a basis.” Géotechnique 53 (4): 439–444. https://doi.org/10.1680/geot.2003.53.4.439.
Horpibulsuk, S., N. Miura, and T. S. Nagaraj. 2005. “Clay–water/cement ratio identity for cement admixed soft clays.” J. Geotech. Geoenviron. Eng. 131 (2): 187–192. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(187).
Huang, K., Q. Ma, and D. Ma. 2020. “Effect of basalt fiber on static and dynamic mechanical properties of metakaolin-based cement clay.” Adv. Civ. Eng. 2020 (1): 1359163. https://doi.org/10.1155/2020/1359163.
Janz, M., and S.-E. Johansson. 2002. The function of different binding agents in deep stabilization. Linköping, Sweden: Swedish Deep Stabilization Research Centre.
Johnson, D. H., F. Vahedifard, and J. F. Peters. 2021. “Macroscale friction of granular soils under monotonic and cyclic loading based upon micromechanical determination of dissipated energy.” Acta Geotech. 16 (10): 3027–3039. https://doi.org/10.1007/s11440-021-01224-7.
Kafodya, I., and F. Okonta. 2021. “Cyclic and post-cyclic shear behaviours of natural fibre reinforced soil.” Int. J. Geotech. Eng. 15 (9): 1145–1154. https://doi.org/10.1080/19386362.2019.1611720.
Kamruzzaman, A. H., S. H. Chew, and F. H. Lee. 2009. “Structuration and destructuration behavior of cement-treated Singapore marine clay.” J. Geotech. Geoenviron. Eng. 135 (4): 573–589. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(573).
Kaniraj, S. R., and V. G. Havanagi. 2001. “Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures.” J. Geotech. Geoenviron. Eng. 127 (7): 574–584. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(574).
Khattak, M. J., and M. Alrashidi. 2006. “Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures.” Int. J. Pavement Eng. 7 (1): 53–62. https://doi.org/10.1080/10298430500489207.
Kitazume, M., and M. Terashi. 2013. The deep mixing method. London: CRC Press.
Kumar, A., and D. Gupta. 2016. “Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures.” Geotext. Geomembr. 44 (3): 466–474. https://doi.org/10.1016/j.geotexmem.2015.07.010.
Kumar, A., B. S. Walia, and A. Bajaj. 2007. “Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil.” J. Mater. Civ. Eng. 19 (3): 242–248. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242).
Lemos, L. J. L., A. A. S. Correia, and P. J. Venda Oliveira. 2021. “Comportamento de solos estabilizados quimicamente e reforçados com fibras sob ações monotónicas e cíclicas.” [In Portuguese.] Geotecnia J. 152 (Aug): 509–529. https://doi.org/10.14195/2184-8394_152_16.
Lemos, L. J. L., and F. N. S. C. Soares. 1995. “Geotechnical parameters of the soft soils of the alluvial zone of the Mondego River.” In Proc., 5th National Geotechnical Conf., Coimbra, Portugal, 189–204. Lisbon, Portugal: Portuguese Geotecincal Society.
Lenart, S. 2008. “The use of dissipated energy at modeling of cyclic loaded saturated soils.” In Earthquake engineering: New research. New York: Nova Science.
Lorenzo, G. A., and D. T. Bergado. 2004. “Fundamental parameters of cement-admixed clay—New approach.” J. Geotech. Geoenviron. Eng. 130 (10): 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042).
Lorenzo, G. A., and D. T. Bergado. 2006. “Fundamental characteristics of cement-admixed clay in deep mixing.” J. Mater. Civ. Eng. 18 (2): 161–174. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(161).
Maher, M. H., and Y. C. Ho. 1993. “Behavior of fiber-reinforced cemented sand under static and cyclic loads.” Geotech. Test. J. 16 (3): 330–338. https://doi.org/10.1520/GTJ10054J.
Milliken, W. F., L. Milliken, L. Douglas, and M. L. Daniel. 1995. Race car vehicle dynamics. Warrendale, PA: SAE International.
Narani, S. S., M. Abbaspour, S. M. Mir Mohammad Hosseini, and F. M. Nejad. 2020. “Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs).” Transp. Geotech. 24 (6): 100375. https://doi.org/10.1016/j.trgeo.2020.100375.
Narani, S. S., P. Zare, M. Abbaspour, A. Fahimifar, S. Siddiqua, and S. M. Mir Mohammad Hosseini. 2021. “Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading.” Constr. Build. Mater. 296 (12): 123746. https://doi.org/10.1016/j.conbuildmat.2021.123746.
Okur, V., and A. Ansal. 2011. “Evaluation of cyclic behavior of fine-grained soils using the energy method.” J. Earthquake Eng. 15 (4): 601–619. https://doi.org/10.1080/13632469.2010.507298.
Olgun, M. 2013. “Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil.” Geosynth. Int. 20 (4): 263–275. https://doi.org/10.1680/gein.13.00016.
Ostadan, F., N. Deng, and I. Arango. 1996. Energy-based method for liquefaction potential evaluation. Phase 1, Feasibility study. Gaithersburg, MD: National Institute of Standards and Technology.
Park, S.-S. 2011. “Unconfined compressive strength and ductility of fiber-reinforced cemented sand.” Constr. Build. Mater. 25 (2): 1134–1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
Patel, S. K., and B. Singh. 2017. “Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states.” Geotech. Geol. Eng. 35 (4): 1767–1781. https://doi.org/10.1007/s10706-017-0207-y.
Phillipson, M. 1994. Shear strength properties of a fine compressible soil from Coimbra, Portugal. Durham, UK: Univ. of Durham.
Plé, O., and T. N. H. Lê. 2012. “Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay.” Geotext. Geomembr. 32 (Apr): 111–116. https://doi.org/10.1016/j.geotexmem.2011.11.004.
Rios, S., N. Cristelo, A. Viana da Fonseca, and C. Ferreira. 2016. “Structural performance of alkali-activated soil ash versus soil cement.” J. Mater. Civ. Eng. 28 (2): 04015125. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001398.
Sas, W., A. Głuchowski, B. Bursa, and A. Szymański. 2017. “Energy-based analysis of permanent strain behaviour of cohesive soil under cyclic loading.” Acta Geophys. 65 (2): 331–344. https://doi.org/10.1007/s11600-017-0028-7.
Soltani, A., A. Deng, and A. Taheri. 2018. “Swell–compression characteristics of a fiber–reinforced expansive soil.” Geotext. Geomembr. 46 (2): 183–189. https://doi.org/10.1016/j.geotexmem.2017.11.009.
Sukontasukkul, P., and P. Jamsawang. 2012. “Use of steel and polypropylene fibers to improve flexural performance of deep soil–cement column.” Constr. Build. Mater. 29 (Jun): 201–205. https://doi.org/10.1016/j.conbuildmat.2011.10.040.
Tabassum, T., and T. V. Bheemasetti. 2022. “Investigative studies on recycled high-density polyethylene and polypropylene pellets for stabilization of kaolinite rich soils.” J. Mater. Civ. Eng. 34 (8): 04022190. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004318.
Tang, C., B. Shi, W. Gao, F. Chen, and Y. Cai. 2007. “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil.” Geotext. Geomembr. 25 (3): 194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
Tinoco, J., A. A. S. Correia, P. J. Venda Oliveira, A. G. Correia, and L. J. L. Lemos. 2016. “A data-driven approach for QU prediction of laboratory soil-cement mixtures.” Procedia Eng. 143 (Jul): 566–573. https://doi.org/10.1016/j.proeng.2016.06.073.
Venda Oliveira, P. J., G. R. Anunciação, and A. A. S. Correia. 2022. “Effect of cyclic loading frequency on the behavior of a stabilized sand reinforced with polypropylene and sisal fibers.” J. Mater. Civ. Eng. 34 (1): 06021008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004012.
Venda Oliveira, P. J., P. A. L. F. Coelho, and L. J. L. Lemos. 2004. “Numerical modelling of soft soils.” In Proc., 2004 Int. Conf. on Computational & Experimental Engineering & Science. Madeira, Portugal: Tech Science Press.
Venda Oliveira, P. J., A. A. S. Correia, and J. C. A. Cajada. 2018. “Effect of the type of soil on the cyclic behaviour of chemically stabilized soils unreinforced and reinforced with polypropylene fibres.” Soil Dyn. Earthquake Eng. 115 (Sep): 336–343. https://doi.org/10.1016/j.soildyn.2018.09.005.
Venda Oliveira, P. J., A. A. S. Correia, and M. R. Garcia. 2013. “Effect of stress level and binder composition on secondary compression of an artificially stabilized soil.” J. Geotech. Geoenviron. Eng. 139 (5): 810–820. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000762.
Venda Oliveira, P. J., A. A. S. Correia, and T. J. S. Lopes. 2014. “Effect of organic matter content and binder quantity on the uniaxial creep behavior of an artificially stabilized soil.” J. Geotech. Geoenviron. Eng. 140 (9): 04014053. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001158.
Venda Oliveira, P. J., A. A. S. Correia, J. M. N. P. C. Teles, and D. G. Custódio. 2016. “Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilized.” Geosynth. Int. 23 (3): 171–182. https://doi.org/10.1680/jgein.15.00040.
Venda Oliveira, P. J., A. A. S. Correia, J. M. N. P. C. Teles, and A. M. G. Pedro. 2017. “Effect of cyclic loading on the behaviour of a chemically stabilized soft soil reinforced with steel fibres.” Soil Dyn. Earthquake Eng. 92 (Aug): 122–125. https://doi.org/10.1016/j.soildyn.2016.10.006.
Venda Oliveira, P. J., L. J. L. Lemos, and P. A. L. F. Coelho. 2010. “Behavior of an atypical embankment on soft soil: Field observations and numerical simulation.” J. Geotech. Geoenviron. Eng. 136 (1): 35–47. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000183.
Werkmeister, S. 2006. “Shakedown analysis of unbound granular materials using accelerated pavement test results from New Zealand’s CAPTIF facility.” In Proc., Pavement Mechanics and Performance, 220–228. Reston, VA: ASCE.
Xia, P., L. Shao, and W. Deng. 2021. “Mechanism study of the evolution of quasi-elasticity of granular soil during cyclic loading.” Granular Matter 23 (4): 84. https://doi.org/10.1007/s10035-021-01157-8.
Yetimoglu, T., and O. Salbas. 2003. “A study on shear strength of sands reinforced with randomly distributed discrete fibers.” Geotext. Geomembr. 21 (2): 103–110. https://doi.org/10.1016/S0266-1144(03)00003-7.
Yilmaz, Y. 2009. “Experimental investigation of the strength properties of sand–clay mixtures reinforced with randomly distributed discrete polypropylene fibers.” Geosynth. Int. 16 (5): 354–363. https://doi.org/10.1680/gein.2009.16.5.354.
Zaimoglu, A. S., and T. Yetimoglu. 2012. “Strength behavior of fine grained soil reinforced with randomly distributed polypropylene fibers.” Geotech. Geol. Eng. 30 (1): 197–203. https://doi.org/10.1007/s10706-011-9462-5.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 11November 2023

History

Received: Jul 15, 2022
Accepted: Mar 1, 2023
Published online: Aug 24, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 24, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Civil Engineering, Univ. of Coimbra, R. Luís Reis Santos, Coimbra 3030-788, Portugal. ORCID: https://orcid.org/0000-0002-5232-5419. Email: [email protected]
Assistant Professor, Chemical Process Engineering and Forest Products Research Centre, Dept. of Civil Engineering, Univ. of Coimbra, R. Luís Reis Santos, Coimbra 3030-788, Portugal (corresponding author). ORCID: https://orcid.org/0000-0002-3260-8729. Email: [email protected]
Associated Professor with Aggregation, Institute for Sustainability and Innovation in Structural Engineering, Dept. of Civil Engineering, Univ. of Coimbra, R. Luís Reis Santos, Coimbra 3030-788, Portugal. ORCID: https://orcid.org/0000-0001-8515-8664. Email: [email protected]
Luís J. L. Lemos [email protected]
Full Professor, CGeo, Dept. of Civil Engineering, Univ. of Coimbra, R. Luís Reis Santos, Coimbra 3030-788, Portugal. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share