Technical Papers
Aug 8, 2023

The Appropriate Context for the Analysis of the Explosive Mode in Reactive Systems

Publication: Journal of Energy Engineering
Volume 149, Issue 5

Abstract

The explosive mode that arises in the dynamics of the chemical kinetics term attracts particular attention because it is a mode that tends to drive a reacting system away from equilibrium. This is a slow mode that coexists with (1) a number of fast dissipative modes that tend to drive rapidly the system to equilibrium; and (2) a number of other slow dissipative modes, which compete with the explosive mode for the control of the system evolution after the fast modes become exhausted. Here, the proper context is established for the analysis of the explosive mode by accounting for the influence of all other modes present, both exhausted and active. It is shown that the analysis of an explosive mode is meaningful only when the fast dissipative modes become exhausted and this mode is among the slow modes that drive the system. The conclusions are highlighted through the analysis of a simple model.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request.

References

Alamo, G. D., F. A. Williams, and A. L. Sanchez. 2004. “Hydrogen–oxygen induction times above crossover temperatures.” Combust. Sci. Technol. 176 (10): 1599–1626. https://doi.org/10.1080/00102200490487175.
AlRamadan, A. S., R. M. Galassi, P. P. Ciottoli, M. Valorani, and S. M. Sarathy. 2020. “Multi-stage heat release in lean combustion: Insights from coupled tangential stretching rate (TSR) and computational singular perturbation (CSP) analysis.” Combust. Flame 219 (Sep): 242–257. https://doi.org/10.1016/j.combustflame.2020.05.026.
Brambilla, A., C. E. Frouzakis, J. Mantzaras, R. Bombach, and K. Boulouchos. 2014. “Flame dynamics in lean premixed CO/H2/air combustion in a mesoscale channel.” Combust. Flame 161 (5): 1268–1281. https://doi.org/10.1016/j.combustflame.2013.11.003.
Chen, J. H. 2011. “Petascale direct numerical simulation of turbulent combustion—Fundamental insights towards predictive models.” Proc. Combust. Inst. 33 (1): 99–123. https://doi.org/10.1016/j.proci.2010.09.012.
Chen, Z., X. Qin, Y. Ju, Z. Zhao, M. Chaos, and F. L. Dryer. 2007. “High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures.” Proc. Combust. Inst. 31 (1): 1215–1222. https://doi.org/10.1016/j.proci.2006.07.177.
Chiavazzo, E., A. N. Gorban, and I. V. Karlin. 2007. “Comparison of invariant manifolds for model reduction in chemical kinetics.” Commun. Comput. Phys. 2 (5): 964–992.
Davis, M. J., and R. T. Skodje. 1999. “Geometric investigation of low-dimensional manifolds in systems approaching equilibrium.” J. Chem. Phys. 111 (3): 859–874. https://doi.org/10.1063/1.479372.
Diamantis, D. J., E. Mastorakos, and D. A. Goussis. 2015. “H2/air autoignition: The nature and interaction of the developing explosive modes.” Combust. Theor. Model. 19 (3): 382–433. https://doi.org/10.1080/13647830.2015.1027273.
Fotache, C. G., T. G. Kreutz, and C. K. Law. 1997. “Ignition of counterflowing methane versus heated air under reduced and elevated pressures.” Combust. Flame 108 (4): 442–470. https://doi.org/10.1016/S0010-2180(97)81404-6.
Fureby, C., K. Nordin-Bates, K. Petterson, A. Bresson, and V. Sabelnikov. 2015. “A computational study of supersonic combustion in strut injector and hypermixer flow fields.” Proc. Combust. Inst. 35 (2): 2127–2135. https://doi.org/10.1016/j.proci.2014.06.113.
Gómez-Gardenes, J., L. Lotero, S. N. Taraskin, and F. J. Pérez-Reche. 2016. “Explosive contagion in networks.” Sci. Rep. 6 (1): 19767. https://doi.org/10.1038/srep19767.
Goussis, D. A. 2013. “The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: The case of vdP relaxation–oscillations.” Physica D 248 (Apr): 16–32. https://doi.org/10.1016/j.physd.2012.12.013.
Goussis, D. A., H. G. Im, H. N. Najm, S. Paolucci, and M. Valorani. 2021. “The origin of CEMA and its relation to CSP.” Combust. Flame 227 (May): 396–401. https://doi.org/10.1016/j.combustflame.2021.01.020.
Goussis, D. A., and S. H. Lam. 1992. “A study of homogeneous methanol oxidation kinetics using CSP.” Symp. (Int.) Combust. 24 (1): 113–120. https://doi.org/10.1016/S0082-0784(06)80018-4.
Goussis, D. A., and H. N. Najm. 2006. “Model reduction and physical understanding of slowly oscillating processes: The circadian cycle.” Multiscale Model. Simul. 5 (4): 1297–1332. https://doi.org/10.1137/060649768.
Goussis, D. A., and M. Valorani. 2006. “An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems.” J. Comput. Phys. 214 (1): 316–346. https://doi.org/10.1016/j.jcp.2005.09.019.
Hadjinicolaou, M., and D. A. Goussis. 1998. “Asymptotic solution of stiff PDEs with the CSP method: The reaction diffusion equation.” SIAM J. Sci. Comput. 20 (3): 781–810. https://doi.org/10.1137/S1064827596303995.
Jella, S., G. Bourque, P. Gauthier, P. Versailles, J. Bergthorson, J.-W. Park, T. Lu, S. Panigrahy, and H. Curran. 2021a. “Analysis of auto-ignition chemistry in aeroderivative premixers at engine conditions.” J. Eng. Gas Turbines Power 143 (11): 111024. https://doi.org/10.1115/1.4051460.
Jella, S. E., W. Y. Kwong, A. M. Steinberg, J. W. Park, T. Lu, J. M. Bergthorson, and G. Bourque. 2021b. “Attached and lifted flame stabilization in a linear array of swirl injectors.” Proc. Combust. Inst. 38 (4): 6279–6287. https://doi.org/10.1016/j.proci.2020.06.009.
Kaper, H. G., T. J. Kaper, and A. Zagaris. 2015. “Geometry of the computational singular perturbation method.” Math. Modell. Nat. Phenom. 10 (3): 16–30. https://doi.org/10.1051/mmnp/201510303.
Kazakov, A., M. Chaos, Z. Zhao, and F. L. Dryer. 2006. “Computational singular perturbation analysis of two-stage ignition of large hydrocarbons.” J. Phys. Chem. A 110 (21): 7003–7009. https://doi.org/10.1021/jp057224u.
Khalil, A. T., D. M. Manias, D. C. Kyritsis, and D. A. Goussis. 2020. “NO formation and autoignition dynamics during combustion of H2O-diluted NH3/H2O2 mixtures with air.” Energies 14 (1): 84. https://doi.org/10.3390/en14010084.
Kuehn, C. 2015. Vol. 191 of Multiple time scale dynamics. Berlin: Springer.
Kuehn, C., and C. Bick. 2021. “A universal route to explosive phenomena.” Sci. Adv. 7 (16): eabe3824. https://doi.org/10.1126/sciadv.abe3824.
Lam, S. H., and D. A. Goussis. 1989. “Understanding complex chemical kinetics with computational singular perturbation.” Symp. (Int.) Combust. 22 (1): 931–941. https://doi.org/10.1016/S0082-0784(89)80102-X.
Lam, S. H., and D. A. Goussis. 1994. “CSP method for simplifying kinetics.” Int. J. Chem. Kinet. 26 (4): 461–486. https://doi.org/10.1002/kin.550260408.
Lecoustre, V. R., P. G. Arias, S. P. Roy, Z. Luo, D. C. Haworth, H. G. Im, T. F. Lu, and A. Trouvé. 2014. “Direct numerical simulations of non-premixed ethylene–air flames: Local flame extinction criterion.” Combust. Flame 161 (11): 2933–2950. https://doi.org/10.1016/j.combustflame.2014.05.016.
Lee, J. C., H. N. Najm, S. Lefantzi, J. Ray, M. Frenklach, M. Valorani, and D. A. Goussis. 2005. “On chain branching and its role in homogeneous ignition and premixed flame propagation.” In Computational fluid and solid mechanics, 717–720. Amsterdam, Netherlands: Elsevier.
Li, Z., R. M. Galassi, P. P. Ciottoli, A. Parente, and M. Valorani. 2019. “Characterization of jet-in-hot-coflow flames using tangential stretching rate.” Combust. Flame 208 (Oct): 281–298. https://doi.org/10.1016/j.combustflame.2019.06.023.
Liu, W., A. P. Kelley, and C. K. Law. 2010. “Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene.” Combust. Flame 157 (5): 1027–1036. https://doi.org/10.1016/j.combustflame.2009.11.002.
Lizarraga, I., and M. Wechselberger. 2020. “Computational singular perturbation method for nonstandard slow-fast systems.” SIAM J. Appl. Dyn. Syst. 19 (2): 994–1028. https://doi.org/10.1137/19M1242677.
Lu, T., C. Yoo, J. H. Chen, and C. K. Law. 2008. “Analysis of a turbulent lifted hydrogen/air jet flame from direct numerical simulation with computational singular perturbation.” In Proc., 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA: American Institute of Aeronautics and Astronautics.
Lu, T. F., C. S. Yoo, J. H. Chen, and C. K. Law. 2010. “Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis.” J. Fluid Mech. 652 (Jun): 45–64. https://doi.org/10.1017/S002211201000039X.
Luo, Z., C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. Lu. 2012. “Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow.” Combust. Flame 159 (1): 265–274. https://doi.org/10.1016/j.combustflame.2011.05.023.
Luong, M. B., Z. Luo, T. Lu, S. H. Chung, and C. S. Yoo. 2013. “Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities.” Combust. Flame 160 (10): 2038–2047. https://doi.org/10.1016/j.combustflame.2013.04.012.
Maas, U., and S. B. Pope. 1992. “Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds.” Symp. (Int.) Combust. 24 (1): 103–112. https://doi.org/10.1016/S0082-0784(06)80017-2.
Manias, D. M., S. Rabbani, D. C. Kyritsis, and D. A. Goussis. 2022. “The effect of fuel additives on the autoignition dynamics of rich methanol/air mixtures.” Fuel 323 (Sep): 124275. https://doi.org/10.1016/j.fuel.2022.124275.
Manias, D. M., E.-A. Tingas, F. E. Hernández Pérez, R. Malpica Galassi, P. Paolo Ciottoli, M. Valorani, and H. G. Im. 2019a. “Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index.” Combust. Flame 200 (Feb): 155–167. https://doi.org/10.1016/j.combustflame.2018.11.023.
Manias, D. M., E.-A. Tingas, Y. Minamoto, and H. G. Im. 2019b. “Topological and chemical characteristics of turbulent flames at mild conditions.” Combust. Flame 208 (Oct): 86–98. https://doi.org/10.1016/j.combustflame.2019.06.031.
Maris, D. T., and D. A. Goussis. 2015. “The ‘hidden’ dynamics of the Rössler attractor.” Physica D 295 (Mar): 66–90. https://doi.org/10.1016/j.physd.2014.12.010.
Martínez-García, E., and V. Grossman. 2020. “Explosive dynamics in house prices? An exploration of financial market spillovers in housing markets around the world.” J. Int. Money Finance 101 (Mar): 102103. https://doi.org/10.1016/j.jimonfin.2019.102103.
Mittal, G., M. Chaos, C.-J. Sung, and F. L. Dryer. 2008. “Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling.” Fuel Process. Technol. 89 (12): 1244–1254. https://doi.org/10.1016/j.fuproc.2008.05.021.
Najm, H. N., M. Valorani, D. A. Goussis, and J. Prager. 2010. “Analysis of methane–air edge flame structure.” Combust. Theor. Model. 14 (2): 257–294. https://doi.org/10.1080/13647830.2010.483021.
Pérez-García, V. M., et al. 2020. “Universal scaling laws rule explosive growth in human cancers.” Nat. Phys. 16 (12): 1232–1237. https://doi.org/10.1038/s41567-020-0978-6.
Peters, N. 1985. “Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames.” In Vol. 241 of Numerical simulation of combustion phenomena. Lecture notes in physics, edited by B. L. R. Glowinski and R. Temam, 90–109. Berlin: Springer.
Peters, N., and F. A. Williams. 1987. “The asymptotic structure of stoichiometric methane–air flames.” Combust. Flame 68 (2): 185–207. https://doi.org/10.1016/0010-2180(87)90057-5.
Prager, J., H. N. Najm, M. Valorani, and D. A. Goussis. 2011. “Structure of n-heptane/air triple flames in partially-premixed mixing layers.” Combust. Flame 158 (11): 2128–2144. https://doi.org/10.1016/j.combustflame.2011.03.017.
Rabbani, S., D. M. Manias, D. C. Kyritsis, and D. A. Goussis. 2022a. “Chemical dynamics of the autoignition of near-stoichiometric and rich methanol/air mixtures.” Combust. Theor. Model. 26 (2): 289–319. https://doi.org/10.1080/13647830.2021.2012260.
Rabbani, S., D. M. Manias, D. C. Kyritsis, and D. A. Goussis. 2022b. “Dominant dynamics of n-butanol/air autoignition and the influence of additives.” Combust. Flame 242 (Aug): 112173. https://doi.org/10.1016/j.combustflame.2022.112173.
Rakopoulos, D. C., C. D. Rakopoulos, E. G. Giakoumis, and R. G. Papagiannakis. 2018. “Evaluating oxygenated fuel’s influence on combustion and emissions in diesel engines using a two-zone combustion model.” J. Energy Eng. 144 (4): 04018046. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000556.
Rakopoulos, D. C., C. D. Rakopoulos, G. M. Kosmadakis, and E. G. Giakoumis. 2020. “Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling.” Energy 202 (Jul): 117685. https://doi.org/10.1016/j.energy.2020.117685.
Shan, R., and T. Lu. 2014. “A bifurcation analysis for limit flame phenomena of DME/air in perfectly stirred reactors.” Combust. Flame 161 (7): 1716–1723. https://doi.org/10.1016/j.combustflame.2013.12.025.
Shan, R., C. S. Yoo, J. H. Chen, and T. Lu. 2012. “Computational diagnostics for n-heptane flames with chemical explosive mode analysis.” Combust. Flame 159 (10): 3119–3127. https://doi.org/10.1016/j.combustflame.2012.05.012.
Shchepakina, E., V. Sobolev, and M. P. Mortell. 2014. Singular perturbations: Introduction to system order reduction methods with applications. Berlin: Springer.
Tingas, E. A., D. C. Kyritsis, and D. A. Goussis. 2015. “Autoignition dynamics of DME/air and EtOH/air homogeneous mixtures.” Combust. Flame 162 (9): 3263–3276. https://doi.org/10.1016/j.combustflame.2015.05.016.
Tingas, E.-A., D. C. Kyritsis, and D. A. Goussis. 2017. “Comparative investigation of homogeneous autoignition of DME/air and EtOH/air mixtures at low initial temperatures.” Combust. Theor. Model. 21 (1): 93–119. https://doi.org/10.1080/13647830.2016.1238513.
Tingas, E.-A., D. C. Kyritsis, and D. A. Goussis. 2019. “H2/air autoignition dynamics around the third explosion limit.” J. Energy Eng. 145 (1): 04018074. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000588.
Tingas, E.-A., Z. Wang, S. M. Sarathy, H. G. Im, and D. A. Goussis. 2018. “Chemical kinetic insights into the ignition dynamics of n-hexane.” Combust. Flame 188 (Feb): 28–40. https://doi.org/10.1016/j.combustflame.2017.09.024.
Trevino, C., and F. Solorio. 1991. “Asymptotic analysis of the high-temperature ignition of CO/H2/O2 mixtures.” Combust. Flame 86 (3): 285–295. https://doi.org/10.1016/0010-2180(91)90108-N.
Valorani, M., P. P. Ciottoli, and R. M. Galassi. 2017. “Tangential stretching rate (TSR) analysis of non premixed reactive flows.” Proc. Combust. Inst. 36 (1): 1357–1367. https://doi.org/10.1016/j.proci.2016.09.008.
Valorani, M., and D. A. Goussis. 2001. “Explicit time-scale splitting algorithm for stiff problems: Auto-ignition of gaseous mixtures behind a steady shock.” J. Comput. Phys. 169 (1): 44–79. https://doi.org/10.1006/jcph.2001.6709.
Valorani, M., D. A. Goussis, F. Creta, and H. N. Najm. 2005. “Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method.” J. Comput. Phys. 209 (2): 754–786. https://doi.org/10.1016/j.jcp.2005.03.033.
Valorani, M., H. N. Najm, and D. A. Goussis. 2003. “CSP analysis of a transient flame-vortex interaction: Time scales and manifolds.” Combust. Flame 134 (1–2): 35–53. https://doi.org/10.1016/S0010-2180(03)00067-1.
Valorani, M., S. Paolucci, E. Martelli, T. Grenga, and P. P. Ciottoli. 2015. “Dynamical system analysis of ignition phenomena using the tangential stretching rate concept.” Combust. Flame 162 (8): 2963–2990. https://doi.org/10.1016/j.combustflame.2015.05.015.
Wan, K., S. Hartl, L. Vervisch, P. Domingo, R. S. Barlow, and C. Hasse. 2020. “Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements.” Combust. Flame 219 (Sep): 268–274. https://doi.org/10.1016/j.combustflame.2020.05.024.
Wu, Y., and R. D. Reitz. 2015. “Effects of exhaust gas recirculation and boost pressure on reactivity controlled compression ignition engine at high load operating conditions.” J. Energy Resour. Technol. 137 (3): 032210. https://doi.org/10.1115/1.4029866.
Xu, C., M. M. Ameen, S. Som, J. H. Chen, Z. Ren, and T. Lu. 2018. “Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis.” Combust. Flame 195 (Sep): 30–39. https://doi.org/10.1016/j.combustflame.2018.05.019.
Yoo, C. S., T. Lu, J. H. Chen, and C. K. Law. 2011. “Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study.” Combust. Flame 158 (9): 1727–1741. https://doi.org/10.1016/j.combustflame.2011.01.025.
Zagaris, A., H. G. Kaper, and T. J. Kaper. 2004a. “Analysis of the computational singular perturbation reduction method for chemical kinetics.” J. Nonlinear Sci. 14 (Jan): 59–91. https://doi.org/10.1007/s00332-003-0582-9.
Zagaris, A., H. G. Kaper, and T. J. Kaper. 2004b. “Fast and slow dynamics for the computational singular perturbation method.” Multiscale Model. Simul. 2 (4): 613–638. https://doi.org/10.1137/040603577.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 149Issue 5October 2023

History

Received: Apr 9, 2023
Accepted: Jun 25, 2023
Published online: Aug 8, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 8, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Dept. of Mechanical Engineering, Khalifa Univ. of Science and Technology, Abu Dhabi 127788, United Arab Emirates (corresponding author). ORCID: https://orcid.org/0000-0002-9674-9491. Email: [email protected]
Mauro Valorani
Professor, Dept. of Mechanical and Aerospace Engineering, Sapienza Univ., Rome 00184, Italy.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share