Abstract

Extensive use of drainage ditches in European boreal forests and in some parts of North America has resulted in a major change in wetland and soil hydrology and impacted the overall ecosystem functions of these regions. An increasing understanding of the environmental risks associated with forest ditches makes mapping these ditches a priority for sustainable forest and land use management. Here, we present the first rigorous deep learning–based methodology to map forest ditches at regional scale. A deep neural network was trained on airborne laser scanning data (ALS) and 1,607 km of manually digitized ditch channels from 10 regions spread across Sweden. The model correctly mapped 86% of all ditch channels in the test data, with a Matthews correlation coefficient of 0.78. Further, the model proved to be accurate when evaluated on ALS data from other heavily ditched countries in the Baltic Sea Region. This study leads the way in using deep learning and airborne laser scanning for mapping fine-resolution drainage ditches over large areas. This technique requires only one topographical index, which makes it possible to implement on national scales with limited computational resources. It thus provides a significant contribution to the assessment of regional hydrology and ecosystem dynamics in forested landscapes.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies. The code and a reproducible example are available from github (Lidberg et al. 2021). The data are available from Mendely data (Ågren et al. 2022), doi: 10.17632/zxkg43jsx8.1.

Acknowledgments

We thank Liselott Nilsson, Eliza Hasselquist, Gudrun Norstedt, Lars Strand, Anders Hejnebo, Björn Lehto, Magnus Martinsson, Marcus Björsell, Tobias Johansson, Andrew Landström, and Catarina Welin for spending 513 h digitizing the ditches used to train the model in this study. Further, we thank Jerry Lidberg for lending us his gaming graphics card. The study was funded by KEMPE, WASP-HS, SMHI, Vinnova (2014-03319), Formas (2019-00173 and 2021-00115), and the Interreg project: Water Management in Baltic Forests.

References

Ågren, A. M., S. S. Paul, and W. Lidberg. 2022. “Mapped drainage ditches in forested landscapes.” Mendeley Data, V1. Accessed July 15, 2022. https://doi.org/10.17632/zxkg43jsx8.1.
Audet, J., M. B. Wallin, K. Kyllmar, S. Andersson, and K. Bishop. 2017. “Nitrous oxide emissions from streams in a Swedish agricultural catchment.” Agric. Ecosyst. Environ. 236 (Jan): 295–303. https://doi.org/10.1016/j.agee.2016.12.012.
Ayana, E. K., J. R. B. Fisher, P. Hamel, and T. M. Boucher. 2017. “Identification of ditches and furrows using remote sensing: Application to sediment modelling in the Tana watershed, Kenya.” Int. J. Remote Sens. 38 (16): 4611–4630. https://doi.org/10.1080/01431161.2017.1327125.
Bailly, J. S., P. Lagacherie, C. Millier, C. Puech, and P. Kosuth. 2008. “Agrarian landscapes linear features detection from LiDAR: Application to artificial drainage networks.” Int. J. Remote Sens. 29 (12): 3489–3508. https://doi.org/10.1080/01431160701469057.
Bailly, J. S., F. Levavasseur, and P. Lagacherie. 2011. “A spatial stochastic algorithm to reconstruct artificial drainage networks from incomplete network delineations.” Int. J. Appl. Earth Obs. Geoinf. 13 (6): 853–862. https://doi.org/10.1016/j.jag.2011.06.001.
Balado, J., J. Martínez-Sánchez, P. Arias, and A. Novo. 2019. “Road environment semantic segmentation with deep learning from mls point cloud data.” Sensors 19 (16): 3466. https://doi.org/10.3390/s19163466.
Benstead, J. P., and D. S. Leigh. 2012. “An expanded role for river networks.” Nat. Geosci. 5 (10): 678–679. https://doi.org/10.1038/ngeo1593.
Bhattacharjee, J., H. Marttila, A. T. Haghighi, M. Saarimaa, A. Tolvanen, A. Lepistö, M. N. Futter, and B. Kløve. 2021. “Development of aerial photos and LIDAR data approaches to map spatial and temporal evolution of ditch networks in peat-dominated catchments.” J. Irrig. Drain. Eng. 147 (4): 04021006. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001547.
Bishop, K., I. Buffam, M. Erlandsson, J. Fölster, H. Laudon, J. Seibert, and J. Temnerud. 2008. “Aqua Incognita: The unknown headwaters.” Hydrol. Processes 22 (8): 1239. https://doi.org/10.1002/hyp.7049.
Broersen, T., R. Peters, and H. Ledoux. 2017. “Automatic identification of watercourses in flat and engineered landscapes by computing the skeleton of a LiDAR point cloud.” Comput. Geosci. 106 (Sep): 171–180. https://doi.org/10.1016/j.cageo.2017.06.003.
Cazorzi, F., G. D. Fontana, A. D. Luca, G. Sofia, and P. Tarolli. 2013. “Drainage network detection and assessment of network storage capacity in agrarian landscape.” Hydrol. Processes 27 (4): 541–553. https://doi.org/10.1002/hyp.9224.
Chollet, F. 2017. Xception: Deep learning with depthwise separable convolutions. Ithaca, NY: Cornell University Library.
Elmore, A. J., J. P. Julian, S. M. Guinn, and M. C. Fitzpatrick. 2013. “Potential stream density in mid-Atlantic U.S. watersheds.” PLoS One 8 (8): e74819. https://doi.org/10.1371/journal.pone.0074819.
Flykt, J., F. Anderson, N. Lavesson, L. Nilsson, and M. Ågren. 2022. “Detecting ditches using supervised learning on high-resolution digital elevation models.” Expert Syst. Appl. 201 (Sep): 116961. https://doi.org/10.1016/j.eswa.2022.116961.
Garcia-Garcia, A., S. Orts-Escolano, S. O. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez. 2017. “A review on deep learning techniques applied to semantic segmentation.” Preprint, submitted April 22, 2017. https://arxiv.org/abs/1704.06857.
Graves, J., R. Mohapatra, and N. Flatgard. 2020. “Drainage ditch berm delineation using lidar data: A case study of Waseca County, Minnesota.” Sustainability 12 (22): 9600. https://doi.org/10.3390/su12229600.
Hasselquist, E. M., W. Lidberg, R. A. Sponseller, A. Ågren, and H. Laudon. 2018. “Identifying and assessing the potential hydrological function of past artificial forest drainage.” Ambio 47 (5): 546–556. https://doi.org/10.1007/s13280-017-0984-9.
Holden, J., P. J. Chapman, and J. C. Labadz. 2004. “Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration.” Prog. Phys. Geogr. 28 (1): 95–123. https://doi.org/10.1191/0309133304pp403ra.
Jensen, C. K., K. J. McGuire, and P. S. Prince. 2017. “Headwater stream length dynamics across four physiographic provinces of the Appalachian highlands.” Hydrol. Processes 31 (19): 3350–3363. https://doi.org/10.1002/hyp.11259.
Julian, J. P., A. J. Elmore, and S. M. Guinn. 2012. “Channel head locations in forested watersheds across the mid-Atlantic United States: A physiographic analysis.” Geomorphology 177 (Dec): 194–203. https://doi.org/10.1016/j.geomorph.2012.07.029.
Kiss, K., J. Malinen, and T. Tokola. 2015. “Forest road quality control using ALS data.” Can. J. For. Res. 45 (11): 1636–1642. https://doi.org/10.1139/cjfr-2015-0067.
Koschorreck, M., A. S. Downing, J. Hejzlar, R. Marcé, A. Laas, W. G. Arndt, P. S. Keller, A. J. P. Smolders, G. van Dijk, and S. Kosten. 2020. “Hidden treasures: Human-made aquatic ecosystems harbour unexplored opportunities.” Ambio 49 (2): 531–540. https://doi.org/10.1007/s13280-019-01199-6.
Kuglerová, L., J. Jyväsjärvi, C. Ruffing, T. Muotka, A. Jonsson, E. Andersson, and J. S. Richardson. 2020. “Cutting edge: A comparison of contemporary practices of riparian buffer retention around small streams in Canada, Finland, and Sweden.” Water Resour. Res. 56 (9): e2019WR026381. https://doi.org/10.1029/2019WR026381.
Larson, J., and M. Trivedi. 2011. “Lidar based off-road negative obstacle detection and analysis.” In Proc., 14th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC), 192–197. New York: IEEE.
Laurén, A., M. Palviainen, S. Launiainen, K. Leppä, L. Stenberg, I. Urzainki, M. Nieminen, R. Laiho, and H. Hökkä. 2021. “Drainage and stand growth response in peatland forests—description, testing, and application of mechanistic peatland simulator susi.” Forests 12 (3): 1–23. https://doi.org/10.3390/f12030293.
Lepistö, A., A. Räike, T. Sallantaus, and L. Finér. 2021. “Increases in organic carbon and nitrogen concentrations in boreal forested catchments—Changes driven by climate and deposition.” Sci. Total Environ. 780 (Aug): 146627. https://doi.org/10.1016/j.scitotenv.2021.146627.
Lidberg, W., M. Nilsson, T. Lundmark, and A. M. Ågren. 2017. “Evaluating preprocessing methods of digital elevation models for hydrological modeling.” Hydrol. Processes 31 (26): 4660–4668. https://doi.org/10.1002/hyp.11385.
Lidberg, W., F. Westphal, and A. Ågren. 2021. Mapping-drainage-ditches-in-forested-landscapes-using-deep-learning-and-aerial-laser-scanning. San Francisco: GitHub, Inc.
Lidman, F., Å. Boily, H. Laudon, and S. J. Köhler. 2017. “From soil water to surface water—how the riparian zone controls element transport from a boreal forest to a stream.” Biogeosciences 14 (12): 3001–3014. https://doi.org/10.5194/bg-14-3001-2017.
Lindsay, J. B. 2018. WhiteboxTools user manual. Guelph, Canada: Univ. of Guelph.
Lõhmus, A., L. Remm, and R. Rannap. 2015. “Just a ditch in forest? Reconsidering draining in the context of sustainable forest management.” Bioscience 65 (11): 1066–1076. https://doi.org/10.1093/biosci/biv136.
McCabe, M. F., B. Aragon, R. Houborg, and J. Mascaro. 2017. “CubeSats in hydrology: Ultrahigh-resolution insights into vegetation dynamics and terrestrial evaporation.” Water Resour. Res. 53 (12): 10017–10024. https://doi.org/10.1002/2017WR022240.
Nieminen, M., M. Palviainen, S. Sarkkola, A. Laurén, H. Marttila, and L. Finér. 2018. “A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests.” Ambio 47 (5): 523–534. https://doi.org/10.1007/s13280-017-0966-y.
Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou. 2012. “Automatic geomorphic feature extraction from lidar in flat and engineered landscapes.” Water Resour. Res. 48 (3): 1–18. https://doi.org/10.1029/2011WR010958.
Peacock, M., et al. 2019. “The full carbon balance of a rewetted cropland fen and a conservation-managed fen.” Agric. Ecosyst. Environ. 269 (Jan): 1–12. https://doi.org/10.1016/j.agee.2018.09.020.
Peacock, M., et al. 2021. “Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide.” Global Change Biol. 27 (20): 5109–5123. https://doi.org/10.1111/gcb.15762.
Qian, T., D. Shen, C. Xi, J. Chen, and J. Wang. 2018. “Extracting farmland features from LiDAR-derived DEM for improving flood plain delineation.” Water 10 (3): 252. https://doi.org/10.3390/w10030252.
Rapinel, S., L. Hubert-Moy, B. Clément, J. Nabucet, and C. Cudennec. 2015. “Ditch network extraction and hydrogeomorphological characterization using LiDAR-derived DTM in wetlands.” Hydrol. Res. 46 (2): 276–290. https://doi.org/10.2166/nh.2013.121.
Roelens, J., B. Höfle, S. Dondeyne, J. Van Orshoven, and J. Diels. 2018a. “Drainage ditch extraction from airborne LiDAR point clouds.” ISPRS J. Photogramm. Remote Sens. 146 (Dec): 409–420. https://doi.org/10.1016/j.isprsjprs.2018.10.014.
Roelens, J., I. Rosier, S. Dondeyne, J. Van Orshoven, and J. Diels. 2018b. “Extracting drainage networks and their connectivity using LiDAR data.” Hydrol. Processes 32 (8): 1026–1037. https://doi.org/10.1002/hyp.11472.
Roulet, N. T., and T. R. Moore. 1995. “The effect of forestry drainage practices on the emission of methane from northern peatlands.” Can. J. For. Res. 25 (3): 491–499. https://doi.org/10.1139/x95-055.
Russell, P. P., S. M. Gale, B. Muñoz, J. R. Dorney, and M. J. Rubino. 2015. “A spatially explicit model for mapping headwater streams.” J. Am. Water Resour. Assoc. 51 (1): 226–239. https://doi.org/10.1111/jawr.12250.
Shen, C., et al. 2018. “HESS opinions: Incubating deep-learning-powered hydrologic science advances as a community.” Hydrol. Earth Syst. Sci. 22 (11): 5639–5656. https://doi.org/10.5194/hess-22-5639-2018.
Sikström, U., and H. Hökkä. 2016. “Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance.” Silva Fenn. 50 (1): 1416. https://doi.org/10.14214/sf.1416.
Sit, M., B. Z. Demiray, Z. Xiang, G. J. Ewing, Y. Sermet, and I. Demir. 2020. “A comprehensive review of deep learning applications in hydrology and water resources.” Water Sci. Technol. 82 (12): 2635–2670. https://doi.org/10.2166/wst.2020.369.
Ståhl, G., et al. 2011. “National Inventory of Landscapes in Sweden (NILS)—Scope, design, and experiences from establishing a multiscale biodiversity monitoring system.” Environ. Monit. Assess. 173 (1): 579–595. https://doi.org/10.1007/s10661-010-1406-7.
Stanislawski, L., T. Brockmeyer, and E. Shavers. 2018. “Automated road breaching to enhance extraction of natural drainage networks from elevation models through deep learning.” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42 (4): 671–678. https://doi.org/10.5194/isprs-archives-XLII-4-597-2018.
Zheng, S., S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr. 2015. “Conditional random fields as recurrent neural networks.” In Proc., IEEE Int. Conf. on Computer Vision 2015, 1529–1537. New York: IEEE. https://doi.org/10.1109/ICCV.2015.179.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 149Issue 3March 2023

History

Received: Oct 26, 2021
Accepted: Sep 25, 2022
Published online: Dec 20, 2022
Published in print: Mar 1, 2023
Discussion open until: May 20, 2023

Authors

Affiliations

Assistant Professor, Dept. of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå 90183, Sweden (corresponding author). ORCID: https://orcid.org/0000-0001-5780-5596. Email: [email protected]
Siddhartho Shekhar Paul, Ph.D. https://orcid.org/0000-0001-5243-8416
Postdoctoral, Dept. of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå 90183, Sweden. ORCID: https://orcid.org/0000-0001-5243-8416
Assistant Professor, Dept. of Computing, School of Engineering, Jönköping Univ., Gjuterigatan 5, Jönköping 55111, Sweden. ORCID: https://orcid.org/0000-0002-2161-7371
Kai Florian Richter, Ph.D. https://orcid.org/0000-0001-5629-0981
Associate Professor, Dept. of Computing Science, Umeå Univ., Umeå 90187, Sweden. ORCID: https://orcid.org/0000-0001-5629-0981
Niklas Lavesson, Ph.D.
Professor, Dept. of Software Engineering, Blekinge Institute of Technology, Valhallavägen 1, Karlskrona 37142, Sweden.
Ph.D. Candidate, Dept. of Forest Operations and Energy, Latvian State Forest Research Institute ‘Silava,’ 111 Rigas St., Salaspils LV-2169, Latvia. ORCID: https://orcid.org/0000-0002-1690-4915
Ph.D. Candidate, Dept. of Forest Operations and Energy, Latvian State Forest Research Institute ‘Silava,’ 111 Rigas St., Salaspils LV-2169, Latvia. ORCID: https://orcid.org/0000-0002-1700-4433
Mariusz Ciesielski, Ph.D.
Ph.D., Dept. of Geomatics, Forest Research Institute, Sękocin Stary, ul. Braci Leśnej 3, Raszyn 05-090, Poland.
Specialist, Finnish Forest Centre, Kauppakatu 25a, Kajaani FI-87100, Finland. ORCID: https://orcid.org/0000-0002-7074-9020
Associate Professor, Dept. of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå 90183, Sweden. ORCID: https://orcid.org/0000-0002-6758-3971

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share