Technical Papers
Jul 21, 2023

A Review of Literature on the Scour Process under Different Jets Conditions

Publication: Journal of Irrigation and Drainage Engineering
Volume 149, Issue 10

Abstract

Scour is a natural phenomenon in alluvial streams around hydraulic structures due to the removal of bed material and often leads to their failure. Scour due to jets are the most prevalent form of scour seen downstream of hydraulic structures. This paper presents a detailed review of scour processes with respect to the effect of various parameters on scour under different jet conditions. Different aspects of the scour hole characteristics under various applications of jets have been reviewed, which include (1) scour process; (2) the effect of parameters such as impinging height, jet impact angle, aeration, size of sediment particle, and sediment gradation; (3) flow characteristics within the scour hole; and (4) temporal variation and time taken to reach an asymptotic state of scour depth. Moreover, the experimental findings of various researchers on the development of the scour profile geometry and their applicability to large-scale conditions have been summarized.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

We would like to express our sincere gratitude to S. A. Ansari and N. Rajaratnam for granting us permission to utilize the figures, thus fulfilling the requirements of this manuscript.

References

Aamir, M., and Z. Ahmad. 2016. “Review of literature on local scour under plane turbulent wall jets.” Phys. Fluids 28 (10): 105102. https://doi.org/10.1063/1.4964659.
Aamir, M., Z. Ahmad, M. Pandey, M. A. Khan, A. Aldrees, and A. Mohamed. 2022. “The effect of rough rigid apron on scour downstream of sluice gates.” Water 14 (14): 2223. https://doi.org/10.3390/w14142223.
Abt, S. R., R. L. Kloberdanz, and C. Mendoza. 1984. “Unified culvert scour determination.” J. Hydraul. Eng. 110 (10): 1475–1479. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1475).
Adduce, C., and P. Mele. 2004. “Local scour by submerged turbulent jets.” In Proc., 6th Int. Conf. on Hydro-Science and Engineering, IAHR, Brisbane, Australia. Beijing: International Association for Hydro-Environment Engineering and Research.
Aderibigbe, O. O., and N. Rajaratnam. 1996. “Erosion of loose beds by submerged circular impinging vertical turbulent jets.” J. Hydraul. Res./De Recherches Hydrauliques 35 (4): 567–574. https://doi.org/10.1080/00221689709498412.
Afzal, M. S., L. E. Holmedal, and D. Myrhaug. 2021. “Sediment transport in combined wave–current seabed boundary layers due to streaming.” J. Hydraul. Eng. 147 (4): 4021007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001862.
Amin, M. R., D. Z. Zhu, and N. Rajaratnam. 2021. “Scouring of sand beds by short impinging turbulent jets.” Proc. Inst. Civ. Eng. Water Manage. 174 (6): 309–320. https://doi.org/10.1680/jwama.20.00109.
Annandale, G. W. 1995. “Erodibility.” J. Hydraul. Res. 33 (4): 471–494. https://doi.org/10.1080/00221689509498656.
Annandale, G. W. 2006. Review of scour technology, 430. New York: McGraw-Hill.
Ansari, S. A. 1999. “Influence of cohesion on local scour.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Roorkee.
Ansari, S. A., U. C. Kothyari, and K. G. R. Raju. 2003. “Influence of cohesion on scour under submerged circular vertical jets.” J. Hydraul. Eng. 129 (12): 1014–1019. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:12(1014).
Azamathulla, H. M. 2012. “Gene expression programming for prediction of scour depth downstream of sills.” J. Hydrol. 460 (Aug): 156–159. https://doi.org/10.1016/j.jhydrol.2012.06.034.
Beltaos, S., and N. Rajaratnam. 1977. “Impingement of axisymmetric developing jets.” J. Hydraul. Res. 15 (4): 311–326. https://doi.org/10.1080/00221687709499637.
Ben Meftah, M., and M. Mossa. 2020. “New approach to predicting local scour downstream of grade-control structure.” J. Hydraul. Eng. 146 (2): 1–13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001649.
Bollaert, E., and A. Schleiss. 2003. “Affouillement du rocher par impact de jets plongeants à haute vitesse Partie I: Un résumé de l’état des connaissances.” J. Hydraul. Res. 41 (5): 451–464. https://doi.org/10.1080/00221680309499991.
Bollaert, E. F. R. 2010. “A prototype scaled rock scour prediction model.” In Proc., USSD Conf., Sacramento, 11–15. Aurora, CO: United States Society on Dams.
Bombardelli, F. A., and G. Gioia. 2005. “Towards a theoretical model for scour phenomena.” In Vol. 2 of Proc., RCEM 2005, 4th IAHR Symp. on River, Coastal and Estuarine Morphodynamics, 931–936. Boca Raton, FL: CRC Press.
Bombardelli, F. A., and G. Gioia. 2006. “Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons.” Phys. Fluids 18 (8): 088101. https://doi.org/10.1063/1.2335887.
Bombardelli, F. A., M. Palermo, and S. Pagliara. 2018. “Temporal evolution of jet induced scour depth in cohesionless granular beds and the phenomenological theory of turbulence.” Phys. Fluids 30 (8): 085109. https://doi.org/10.1063/1.5041800.
Bormann, N. E., and P. Y. Julien. 1991. “Scour downstream of grade-control structures.” J. Hydraul. Eng. 117 (5): 579–594. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(579).
Carrillo, J. M., L. G. Castillo, F. Marco, and J. T. García. 2020. “Experimental and numerical analysis of two-phase flows in plunge pools.” J. Hydraul. Eng. 146 (6): 4020044. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001763.
Castillo, L. 2006. “Aerated jets and pressure fluctuation in plunge pools.” In Proc., 7th Int. Conf. on Hydroscience and Engineering. Reston, VA: ASCE.
Castillo, L. G. 2007. “Pressure characterization of undeveloped and developed jets in shallow and deep pool.” Proc. Congr.-Int. Assoc. Hydraul. Res. 32 (2): 645.
Castillo, L. G., and J. M. Carrillo. 2016. “Scour, velocities and pressures evaluations produced by spillway and outlets of dam.” Water 8 (3): 1–21. https://doi.org/10.3390/w8030068.
Castillo, L. G., J. M. Carrillo, and A. Blázquez. 2015. “Plunge pool dynamic pressures: A temporal analysis in the nappe flow case.” J. Hydraul. Res. 53 (1): 101–118. https://doi.org/10.1080/00221686.2014.968226.
Castillo, L. G., J. M. Carrillo, and F. A. Bombardelli. 2017. “Distribution of mean flow and turbulence statistics in plunge pools.” J. Hydroinf. 19 (2): 173–190. https://doi.org/10.2166/hydro.2016.044.
Chakravarti, A., R. K. Jain, and U. C. Kothyari. 2014. “Scour under submerged circular vertical jets in cohesionless sediments.” ISH J. Hydraul. Eng. 20 (1): 32–37. https://doi.org/10.1080/09715010.2013.835101.
Chen, J., G. Zhang, J. H. Si, H. Shi, and X. Wang. 2022. “Experimental investigation of scour of sand beds by submerged circular vertical turbulent jets.” Ocean Eng. 257 (May): 111625. https://doi.org/10.1016/j.oceaneng.2022.111625.
Dey, S. 1999. “Time-variation of scour in the vicinity of circular piers.” Proc. Inst. Civ. Eng. Water Marit. Energy 136 (2): 67–75. https://doi.org/10.1680/iwtme.1999.31422.
Dey, S., and A. Sarkar. 2007. “Effect of upward seepage on scour and flow downstream of an apron due to submerged jets.” J. Hydraul. Eng. 133 (1): 59–69. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(59).
Di Nardi, J., M. Palermo, F. A. Bombardelli, and S. Pagliara. 2021. “The phenomenological theory of turbulence and the scour evolution downstream of grade-control structures under steady discharges.” Water 13 (17): 2359. https://doi.org/10.3390/w13172359.
Duarte, R., E. Bollaert, A. Schleiss, and A. Pinheiro. 2012. “Dynamic pressures around a confined block impacted by plunging aerated high-velocity jets.” In Proc., 2nd European IAHR Congress. Beijing: International Association for Hydro-Environment Engineering and Research.
Duarte, R., A. Pinheiro, and A. J. Schleiss. 2016. “An enhanced physically based scour model for considering jet air entrainment.” Engineering 2 (3): 294–301. https://doi.org/10.1016/J.ENG.2016.03.003.
Emiroglu, M. 2010. “Estimating flow characteristics of different weir types and optimum dimensions of downstream receiving pool.” J. Hydrol. Hydromech. 58 (4): 245. https://doi.org/10.2478/v10098-010-0023-z.
Epely-Chauvin, G., G. De Cesare, and S. Schwindt. 2014. “Numerical modelling of plunge pool scour evolution in non-cohesive sediments.” Eng. Appl. Comput. Fluid Mech. 8 (4): 477–487. https://doi.org/10.1080/19942060.2014.11083301.
Ervine, D. A., and H. T. Falvey. 1987. “Behaviour of turbulent water jets in the atmosphere and in plunge pools.” Proc. Inst. Civ. Eng. 83 (1): 295–314. https://doi.org/10.1680/iicep.1987.353.
Ervine, D. A., H. T. Falvey, and W. Withers. 1997. “Pressure fluctuations on plunge pool floors.” J. Hydraul. Res. 35 (2): 257–279. https://doi.org/10.1080/00221689709498430.
Ervine, D. A., E. McKeogh, and E. M. Elsawy. 1980. “Effect of turbulence intensity on the rate of air entrainment by plunging water jets.” Proc. Inst. Civ. Eng. 69 (2): 425–445. https://doi.org/10.1680/iicep.1980.2545.
Gautam, S., D. Dutta, H. Bihs, and M. S. Afzal. 2021. “Three-dimensional computational fluid dynamics modelling of scour around a single pile due to combined action of the waves and current using level-set method.” Coastal Eng. 170 (Dec): 104002. https://doi.org/10.1016/j.coastaleng.2021.104002.
Gazi, A. H., S. Purkayastha, and M. S. Afzal. 2020. “The equilibrium scour depth around a pier under the action of collinear waves and current.” J. Mar. Sci. Eng. 8 (1): 36. https://doi.org/10.3390/jmse8010036.
Ghassemi, A., M. Nasrabadi, M. H. Omid, and A. Raeesi Estabragh. 2022. “Effect of geonet on scour downstream of horizontal jets.” J. Irrig. Drain. Eng. 148 (10): 1–12. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001707.
Guguloth, S., and M. Pandey. 2023. “Accuracy evaluation of scour depth equations under the submerged vertical jet.” AQUA-Water Infrastruct. Ecosyst. Soc. 72 (4): 557–575. https://doi.org/10.2166/aqua.2023.015.
Guo, Y. 2014. “Numerical simulation of the spreading of aerated and nonaerated turbulent water jet in a tank with finite water depth.” J. Hydraul. Eng. 140 (8): 04014034. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000903.
Hallmark, D. E. 1955. “Influence of particle size gradation on scour at base of free overfall.” M.S. thesis, Dept. of Civil Engineering, Colorado State Univ.
Hoffmans, G. J. C. M. 1998. “Jet scour in equilibrium phase.” J. Hydraul. Eng. 124 (4): 430–437. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:4(430).
Horeni, P. 1956. Disintegration of a free jet of water in air, 93. Prague, Czech Republic. Byzkumny Ustav Vodohospodarsky Prace a Studie.
Huai, W., Z. Wang, Z. Qian, and Y. Han. 2011. “Numerical simulation of sandy bed erosion by 2D vertical jet.” Sci. China Technol. Sci. 54 (12): 3265–3274. https://doi.org/10.1007/s11431-011-4574-y.
Iqbal, S. 2010. “Flood and erosion induced population displacements: A socio-economic case study in the Gangetic riverine tract at Malda District, West Bengal, India.” J. Hum. Ecol. 30 (3): 201–211. https://doi.org/10.1080/09709274.2010.11906290.
Karbasi, M., and H. M. Azamathulla. 2017. “Prediction of scour caused by 2D horizontal jets using soft computing techniques.” Ain Shams Eng. J. 8 (4): 559–570. https://doi.org/10.1016/j.asej.2016.04.001.
Kartal, V., and M. E. Emiroglu. 2021. “Local scour due to water jet from a nozzle with plates.” Acta Geophys. 69 (1): 95–112. https://doi.org/10.1007/s11600-020-00521-1.
Kartal, V., and M. E. Emiroglu. 2022. “Experimental study of scour morphology from plunging water jets.” Water Supply 22 (5): 5410–5433. https://doi.org/10.2166/ws.2022.143.
Kashtiban, Y. J., A. Saeidi, M. I. Farinas, and M. Quirion. 2021. “A review on existing methods to assess hydraulic erodibility downstream of dam spillways.” Water 13 (22): 3205. https://doi.org/10.3390/w13223205.
Kells, J. A., R. Balachandar, and K. P. Hagel. 2001. “Effect of grain size on local channel scour below a sluice gate.” Can. J. Civ. Eng. 28 (3): 440–451. https://doi.org/10.1139/l01-012.
Kiraga, M., and Z. Popek. 2020. “On local scouring downstream small water structures.” PeerJ 8 (Oct): e10282. https://doi.org/10.7717/peerj.10282.
Kuroiwa, J. M. 1999. “Scour caused by rectangular impinging jets in cohesionless beds.” Ph.D. thesis, Dept. of Civil Engineering, Colorado State Univ.
Lashkar-ara, B. L. A., and M. Fathi-moghadam. 2016. “Experimental study of aerated vertical jets on scour hole development.” J. Ferdowsi Civ. Eng. 27 (1): 2–3.
Machado, L. I. 1980. “Formulas to calculate the scour limit on granular or rock beds.” In Proc., 13th National Workshop on Large Dams, 35–52. Paris: International Commission on Large Dams.
Mason, P. J. 1989. “Effects of air entrainment on plunge pool scour.” J. Hydraul. Eng. 115 (3): 385–399. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:3(385).
Mazurek, K. A., N. Rajaratnam, and D. C. Sego. 2003. “Affouillement d’un sol cohésif par des jets de paroi turbulents plans immerges.” J. Hydraul. Res. 41 (2): 195–206. https://doi.org/10.1080/00221680309499961.
Murzyn, F. 2010. “Assessment of different experimental techniques to investigate the hydraulic jump: Do they lead to the same results.” In Hydraulic structures: Useful water harvesting systems or relics, 3–6. Brisbane, QLD, Australia: The Univ. of Queensland.
Oliveto, G., and W. H. Hager. 2014. “Morphological evolution of dune-like bed forms generated by bridge scour.” J. Hydraul. Eng. 140 (5): 6014009. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000853.
Pagliara, S., W. H. Hager, and H.-E. Minor. 2006. “Hydraulics of plane plunge pool scour.” J. Hydraul. Eng. 132 (5): 450–461. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(450).
Pagliara, S., and M. Palermo. 2008. “Plane plunge pool scour with protection structures.” J. Hydro-environ. Res. 2 (3): 182–191. https://doi.org/10.1016/j.jher.2008.06.002.
Palermo, M., F. A. Bombardelli, and S. Pagliara. 2018. “From developing to developed phase in the scour evolution due to vertical and sub-vertical plunging jets: New experiments and theory.” In Proc., 7th Int. Symp. on Hydraulic Structures, ISHS 2018, 300–307. Logan, UT: Utah State Univ. https://doi.org/10.15142/T3ZH2Z.
Palermo, M., F. A. Bombardelli, S. Pagliara, and J. Kuroiwa. 2021. “Time-dependent scour processes on granular beds at large scale.” Environ. Fluid Mech. 21 (4): 791–816. https://doi.org/10.1007/s10652-021-09798-2.
Palermo, M., S. Pagliara, and F. A. Bombardelli. 2020. “Theoretical approach for shear-stress estimation at 2D equilibrium scour holes in granular material due to subvertical plunging jets.” J. Hydraul. Eng. 146 (4): 04020009. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001703.
Pandey, M., S.-C. Chen, P. K. Sharma, C. S. P. Ojha, and V. Kumar. 2019. “Local scour of armor layer processes around the circular pier in non-uniform gravel bed.” Water 11 (7): 1421. https://doi.org/10.3390/w11071421.
Pandey, M., G. Oliveto, J. H. Pu, P. K. Sharma, and C. S. P. Ojha. 2020. “Pier scour prediction in non-uniform gravel beds.” Water 12 (6): 1696. https://doi.org/10.3390/w12061696.
Pandey, M., J. H. Pu, H. Pourshahbaz, and M. A. Khan. 2022. “Reduction of scour around circular piers using collars.” J. Flood Risk Manage. 15 (3): e12812. https://doi.org/10.1111/jfr3.12812.
Pandey, M., P. K. Sharma, Z. Ahmad, and U. K. Singh. 2017. “Evaluation of existing equations for temporal scour depth around circular bridge piers.” Environ. Fluid Mech. 17 (5): 981–995. https://doi.org/10.1007/s10652-017-9529-9.
Rajaratnam, N. 1981. “Erosion by plane turbulent jets.” J. Hydraul. Res. 19 (4): 339–358. https://doi.org/10.1080/00221688109499508.
Rajaratnam, N. 1982. “Erosion by submerged circular jets.” J. Hydraul. Div. 108 (2): 262–267. https://doi.org/10.1061/JYCEAJ.0005821.
Rajaratnam, N., and S. Beltaos. 1977. “Erosion by impinging circular turbulent jets.” J. Hydraul. Div. 103 (10): 1191–1205. https://doi.org/10.1061/JYCEAJ.0004852.
Rouse, H. 1940. “Criteria for similarity in the transportation of sediment.” Univ. Iowa Stud. Eng. 20: 33–49.
Saikumar, G., M. Pandey, and P. K. S. Dikshit. 2022. “Natural river hazards: Their impacts and mitigation techniques.” In River dynamics and flood hazards: Studies on risk and mitigation, 3–16. Singapore: Springer.
Sarkar, A., and S. Dey. 2004. “Review on local scour due to jets.” Int. J. Sediment Res. 19 (3): 210–238.
Sarkar, A., and S. Dey. 2005. “Scour downstream of aprons caused by sluices.” Proc. Inst. Civ. Eng. Water Manage. 158 (2): 55–64. https://doi.org/10.1680/wama.2005.158.2.55.
Shakya, R., M. Singh, V. K. Sarda, and N. Kumar. 2022. “Scour depth forecast modeling caused by submerged vertical impinging circular jet: A comparative study between ANN and MNLR.” Sustainable Water Resour. Manage. 8 (2): 43. https://doi.org/10.1007/s40899-022-00634-z.
Si, J.-H., S.-Y. Lim, and X.-K. Wang. 2019. “Jet-flipping in scour hole downstream of unsubmerged weir with apron.” J. Hydraul. Eng. 145 (10): 4019035. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001634.
Taştan, K., P. P. Koçak, and N. Yildirim. 2016. “Effect of the bed-sediment layer on the scour caused by a jet.” Arab. J. Sci. Eng. 41 (10): 4029–4037. https://doi.org/10.1007/s13369-016-2093-7.
Thomas, R. K. 1953. “Scour in a gravel bed at the base of a free overfall.” M.S. thesis, Dept. of Civil Engineering, Colorado State Univ.
Verma, D. V. S., and A. Goel. 2005. “Scour downstream of a sluice gate.” ISH J. Hydraul. Eng. 11 (3): 57–65. https://doi.org/10.1080/09715010.2005.10514801.
Westrich, B., and H. Kobus. 1973. “Erosion of a uniform sand bed by continuous and pulsating jets.” In Vol. 1 of Proc., IAHR Congress. Stuttgart, Germany: Univ. of Stuttgart.
Yeh, P. H., K. A. Chang, J. Henriksen, B. Edge, P. Chang, A. Silver, and A. Vargas. 2009. “Large-scale laboratory experiment on erosion of sand beds by moving circular vertical jets.” Ocean Eng. 36 (3–4): 248–255. https://doi.org/10.1016/j.oceaneng.2008.11.006.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 149Issue 10October 2023

History

Received: Dec 8, 2022
Accepted: May 26, 2023
Published online: Jul 21, 2023
Published in print: Oct 1, 2023
Discussion open until: Dec 21, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Sai Guguloth [email protected]
Research Scholar, Dept. of Civil Engineering, National Institute of Technology Warangal, Warangal, Telangana 506004, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology Warangal, Warangal, Telangana 506004, India (corresponding author). ORCID: https://orcid.org/0000-0002-4215-5671. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Application of Hybrid AI Models for Accurate Prediction of Scour Depths under Submerged Circular Vertical Jet, Journal of Hydrologic Engineering, 10.1061/JHYEFF.HEENG-6149, 29, 3, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share