Technical Papers
Sep 25, 2024

Evaluating the Performance of ANN, SVR, RF, and XGBoost in the Prediction of Maximum Temperature and Heat Wave Days over Rajasthan, India

Publication: Journal of Hydrologic Engineering
Volume 29, Issue 6

Abstract

This study attempts to predict the maximum temperature, along with the number of heat wave days (HWDs) at lead times of 7 and 15 days over Rajasthan, i.e., a semiarid region, using four machine learning (ML) algorithms, namely, artificial neural networks (ANN), support vector regression (SVR), random forest (RF), and eXtreme gradient boosting (XGBoost). It uses five key atmospheric variables, i.e., air temperature, geopotential height, relative humidity, U-wind, and V-wind, to predict the daily maximum temperatures for the months of April, May, and June, for the period from 1991 to 2020. The ML models are developed by using spatially averaged atmospheric variables and daily maximum temperature. The study demonstrates decent accuracy in forecasting the total annual count of HWDs and daily maximum temperature for Rajasthan for the 7-day lead time. However, as the lead time extends to 15 days, the model performances experience a decline. While comparing the performances of the four models, the SVR outperforms ANN, RF, and XGBoost in prediction. The findings of the current study indicate the potential utility of spatiotemporal dynamics in meteorological variables for long-term heat wave prediction. Moreover, the successful performances of the considered models, i.e., ANN, SVR, RF, and XGBoost, exhibit substantial future potential for reliable application in this context.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abiodun, O. I., A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad. 2018. “State-of-the-art in artificial neural network applications: A survey.” Heliyon 4 (11). https://doi.org/10.1016/j.heliyon.2018.e00938.
Afroz, M., G. Chen, and A. Anandhi. 2023. “Drought-and heatwave-associated compound extremes: A review of hotspots, variables, parameters, drivers, impacts, and analysis frameworks.” Front. Earth Sci. 10 (Feb): 914437. https://doi.org/10.3389/feart.2022.914437.
Asadollah, S. B. H. S., N. Khan, A. Sharafati, S. Shahid, E. S. Chung, and X. J. Wang. 2021. “Prediction of heat waves using meteorological variables in diverse regions of Iran with advanced machine learning models.” Stochastic Environ. Res. Risk Assess. 36: 1–16. https://doi.org/10.1007/s00477-021-02103-z.
Basha, G., P. Kishore, M. V. Ratnam, A. Jayaraman, A. Agha Kouchak, T. B. Ouarda, and I. Velicogna. 2017. “Historical and projected surface temperature over India during the 20th and 21st century.” Sci. Rep. 7 (1): 2987. https://doi.org/10.1038/s41598-017-02130-3.
Bhadram, C. V. V., B. V. S. Amatya, G. B. Pant, and K. K. Kumar. 2005. “Heat waves over Andhra Pradesh: A case study of summer 2003.” Mausam 56 (2): 385–394. https://doi.org/10.54302/mausam.v56i2.941.
Bishop, C. M. 2006. Pattern recognition and machine learning. New York: Springer.
Breiman, L. 2001. “Random forests.” Mach. Learn. 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Byagar, S., A. A. Deshmukh, K. Wanjale, V. S. Wadne, N. Ranjan, and R. Gangarde. 2023. “Heat wave prediction using recurrent neural networks based on deep learning.” Int. J. Intell. Syst. Appl. Eng. 12 (1s): 612–619.
Christidis, N., G. S. Jones, and P. A. Stott. 2015. “Dramatically increasing chance of extremely hot summers since the 2003 European heatwave.” Nat. Clim. Change 5 (1): 46–50. https://doi.org/10.1038/nclimate2468.
Coumou, D., and S. Rahmstorf. 2012. “A decade of weather extremes.” Nat. Clim. Change 2 (7): 491–496. https://doi.org/10.1038/nclimate1452.
Das, J., and U. V. Nanduri. 2018. “Assessment and evaluation of potential climate change impact on monsoon flows using machine learning technique over Wainganga River Basin, India.” Hydrol. Sci. J. 63 (7): 1020–1046. https://doi.org/10.1080/02626667.2018.1469757.
Das, J., and N. V. Umamahesh. 2022. “Heat wave magnitude over India under changing climate: Projections from CMIP5 and CMIP6 experiments.” Int. J. Climatol. 42 (1): 331–351. https://doi.org/10.1002/joc.7246.
Das, P. K., U. Podder, R. Das, C. Kamalakannan, G. S. Rao, S. Bandyopadhyay, and U. Raj. 2020. “Quantification of heat wave occurrences over the Indian region using long-term (1979–2017) daily gridded (0.5° × 0.5°) temperature data—A combined heat wave index approach.” Theor. Appl. Climatol. 142 (1–2): 497–511. https://doi.org/10.1007/s00704-020-03329-7.
De, U. S., and R. K. Mukhopadhyay. 1998. “Severe heat wave over the Indian subcontinent in 1998, in perspective of global climate.” Curr. Sci. 75 (12): 1308–1311.
De Perez, E. C., M. Van Aalst, K. Bischiniotis, S. Mason, H. Nissan, F. Pappenberger, E. Stephens, E. Zsoter, and B. Van Den Hurk. 2018. “Global predictability of temperature extremes.” Environ. Res. Lett. 13 (5): 054017. https://doi.org/10.1088/1748-9326/aab94a.
Dodla, V. B., G. C. Satyanarayana, and S. Desamsetti. 2017. “Analysis and prediction of a catastrophic Indian coastal heat wave of 2015.” Nat. Hazards 87 (1): 395–414. https://doi.org/10.1007/s11069-017-2769-7.
Dogan, A., H. Demirpence, and M. Cobaner. 2008. “Prediction of groundwater levels from lake levels and climate data using ANN approach.” Water Sa 34 (2): 199–208. https://doi.org/10.4314/wsa.v34i2.183640.
Dole, R., M. Hoerling, J. Perlwitz, J. Eischeid, P. Pegion, T. Zhang, X. W. Quan, T. Xu, and D. Murray. 2011. “Was there a basis for anticipating the 2010 Russian heat wave?” Geophys. Res. Lett. 38 (6). https://doi.org/10.1029/2010GL046582.
Gao, M., B. Wang, J. Yang, and W. Dong. 2018. “Are peak summer sultry heat wave days over the Yangtze–Huaihe River Basin predictable?” J. Clim. 31 (6): 2185–2196. https://doi.org/10.1175/JCLI-D-17-0342.1.
Garlapati, A., D. R. Krishna, K. Garlapati, and G. Narayanan. 2020. “Predicting employees under stress for pre-emptive remediation using machine learning algorithm.” In Proc., 2020 Int. Conf. on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 315–319. New York: IEEE.
Guha-Sapir, D., R. Below, and P. Hoyois. 2016. “EM-DAT: The CRED/OFDA international disaster database.” Accessed January 5, 2016. https://wedocs.unep.org/handle/20.500,11822,16183.
Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. “Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration.” J. Hydrol. Eng. 4 (2): 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135).
Haykin, S. 2009. Neural networks and learning machines, 3/E. New York: Pearson Education India.
Jacques-Dumas, V., F. Ragone, P. Borgnat, P. Abry, and F. Bouchet. 2022. “Deep learning-based extreme heatwave forecast.” Front. Climate 4 (Feb): 789641. https://doi.org/10.3389/fclim.2022.789641.
Jahangir, M. S., and S. Moghim. 2019. “Assessment of the urban heat island in the city of Tehran using reliability methods.” Atmos. Res. 225 (Sep): 144–156. https://doi.org/10.1016/j.atmosres.2019.03.038.
Jenamani, R. 2012. “Analysis of ocean-atmospheric features associated with extreme temperature variation over east coast of India-A special emphasis to Orissa heat waves of 1998 and 2005.” Mausam 63 (3): 401–422. https://doi.org/10.54302/mausam.v63i3.1231.
Johnson, R. A., and D. W. Wichern. 2002. Applied multivariate statistical analysis. Upper Saddle River, NJ: Pearson.
Khan, M. I., and R. Maity. 2022. “Hybrid deep learning approach for multi-step-ahead prediction for daily maximum temperature and heatwaves.” Theor. Appl. Climatol. 149 (3–4): 945–963. https://doi.org/10.1007/s00704-022-04103-7.
Khan, N., S. Shahid, T. B. Ismail, and F. Behlil. 2021. “Prediction of heat waves over Pakistan using support vector machine algorithm in the context of climate change.” Stochastic Environ. Res. Risk Assess. 35 (7): 1335–1353. https://doi.org/10.1007/s00477-020-01963-1.
Khan, N., S. Shahid, L. Juneng, K. Ahmed, T. Ismail, and N. Nawaz. 2019. “Prediction of heat waves in Pakistan using quantile regression forests.” Atmos. Res. 221 (Jun): 1–11. https://doi.org/10.1016/j.atmosres.2019.01.024.
Kling, H., M. Fuchs, and M. Paulin. 2012. “Runoff conditions in the Upper Danube Basin under an ensemble of climate change scenarios.” J. Hydrol. 424 (Mar): 264–277. https://doi.org/10.1016/j.jhydrol.2012.01.011.
Lubna, K. F., M. A. K. Mallik, M. S. Alam, A. N. Jimmy, T. Islam, I. Ahmad, K. Fatema, and N. A. Khan. 2020. “Study on heat wave and its thermodynamic features over Bangladesh using numerical weather prediction model (NWPM).” Int. J. Sci. Bus. 4 (6): 44–52. https://doi.org/10.5281/zenodo.3839997.
Ma, J., Z. Yu, Y. Qu, J. Xu, and Y. Cao. 2020. “Application of the XGBoost machine learning method in PM2. 5 prediction: A case study of Shanghai.” Aerosol Air Qual. Res. 20 (1): 128–138. https://doi.org/10.4209/aaqr.2019.08.0408.
Mandal, R., S. Joseph, A. K. Sahai, R. Phani, A. Dey, R. Chattopadhyay, and D. R. Pattanaik. 2019. “Real time extended range prediction of heat waves over India.” Sci. Rep. 9 (1): 9008. https://doi.org/10.1038/s41598-019-45430-6.
McCuen, R. H., Z. Knight, and A. G. Cutter. 2006. “Evaluation of the Nash–Sutcliffe efficiency index.” J. Hydrol. Eng. 11 (6): 597–602. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597).
Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel. 2009. “Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US.” Geophys. Res. Lett. 36 (23). https://doi.org/10.1029/2009GL040736.
Mishra, V., A. R. Ganguly, B. Nijssen, and D. P. Lettenmaier. 2015. “Changes in observed climate extremes in global urban areas.” Environ. Res. Lett. 10 (2): 024005. https://doi.org/10.1088/1748-9326/10/2/024005.
Modaresi, F., S. Araghinejad, and K. Ebrahimi. 2018. “A comparative assessment of artificial neural network, generalized regression neural network, least-square support vector regression, and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions.” Water Resour. Manage. 32 (1): 243–258. https://doi.org/10.1007/s11269-017-1807-2.
Moghim, S., and M. S. Jahangir. 2022. “Reliability framework for characterizing heat wave and cold spell events.” Nat. Hazards 112 (2): 1503–1525. https://doi.org/10.1007/s11069-022-05236-8.
Montgomery, D. C. 2007. Introduction to statistical quality control. Hoboken, NJ: Wiley.
Murphy, K. P. 2012. Machine learning: A probabilistic perspective. Cambridge, MA: MIT Press.
Naveena, N., G. C. Satyanarayana, A. D. Raju, N. Umakanth, D. Srinivas, K. S. Rao, and M. Suman. 2021. “Prediction of heatwave 2013 over Andhra Pradesh and Telangana, India using WRF model.” Asian J. Atmos. Environ. 15 (3): 33–44. https://doi.org/10.5572/ajae.2020.117.
Nourani, V., M. Sayyah-Fard, M. T. Alami, and E. Sharghi. 2020. “Data pre-processing effect on ANN-based prediction intervals construction of the evaporation process at different climate regions in Iran.” J. Hydrol. 588 (Sep): 125078. https://doi.org/10.1016/j.jhydrol.2020.125078.
Pai, D. S., S. Nair, and A. N. Ramanathan. 2013. “Long term climatology and trends of heat waves over India during the recent 50 years (1961-2010).” Mausam 64 (4): 585–604. https://doi.org/10.54302/mausam.v64i4.742.
Pal, M., R. Maity, J. V. Ratnam, M. Nonaka, and S. K. Behera. 2020. “Long-lead prediction of ENSO Modoki index using machine learning algorithms.” Sci. Rep. 10 (1): 365. https://doi.org/10.1038/s41598-019-57183-3.
Pandey, M., M. Jamei, I. Ahmadianfar, M. Karbasi, A. S. Lodhi, and X. Chu. 2022. “Assessment of scouring around spur dike in cohesive sediment mixtures: A comparative study on three rigorous machine learning models.” J. Hydrol. 606 (Mar): 127330. https://doi.org/10.1016/j.jhydrol.2021.127330.
Pandey, M., M. Zakwan, P. K. Sharma, and Z. Ahmad. 2020. “Multiple linear regression and genetic algorithm approaches to predict temporal scour depth near circular pier in non-cohesive sediment.” ISH J. Hydraul. Eng. 26 (1): 96–103. https://doi.org/10.1080/09715010.2018.1457455.
Ratnam, J. V., S. K. Behera, M. Nonaka, P. Martineau, and K. R. Patil. 2023. “Predicting maximum temperatures over India 10-days ahead using machine learning models.” Sci. Rep. 13 (1): 17208. https://doi.org/10.1038/s41598-023-44286-1.
Rohini, P., M. Rajeevan, and A. K. Srivastava. 2016. “On the variability and increasing trends of heat waves over India.” Sci. Rep. 6 (1): 1–9. https://doi.org/10.1038/srep26153.
Srikanth, B., and M. Pal. 2023. “A case study on the prediction of heatwave days using machine learning algorithms over Telangana.” In River, sediment and hydrological extremes: Causes, impacts and management, 73–90. Singapore: Springer.
Van Straaten, C., K. Whan, D. Coumou, B. Van den Hurk, and M. Schmeits. 2022. “Using explainable machine learning forecasts to discover subseasonal drivers of high summer temperatures in Western and Central Europe.” Mon. Weather Rev. 150 (5): 1115–1134. https://doi.org/10.1175/MWR-D-21-0201.1.
Vapnik, V. N. 1998. Statistical learning theory. New York: Wiley.
Wang, W., C. Men, and W. Lu. 2008. “Online prediction model based on support vector machine.” Neurocomputing 71 (4–6): 550–558. https://doi.org/10.1016/j.neucom.2007.07.020.
Weirich-Benet, E., M. Pyrina, B. Jiménez-Esteve, E. Fraenkel, J. Cohen, and D. I. Domeisen. 2023. “Subseasonal prediction of Central European summer heatwaves with linear and random forest machine learning models.” Artif. Intell. Earth Syst. 2 (2): e220038. https://doi.org/10.1175/AIES-D-22-0038.1.
Willmott, C. J. 1981. “On the validation of models.” Phys. Geogr. 2 (2): 184–194. https://doi.org/10.1080/02723646.1981.10642213.
Zhang, Y., C. Yu, J. Bao, and X. Li. 2017. “Impact of temperature on mortality in Hubei, China: A multi-county time series analysis.” Sci. Rep. 7 (1): 45093. https://doi.org/10.1038/srep45093.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 29Issue 6December 2024

History

Received: Jan 3, 2024
Accepted: Jul 17, 2024
Published online: Sep 25, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 25, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Srikanth Bhoopathi [email protected]
Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India. Email: [email protected]
PG Student, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India. Email: [email protected]
Akanksha L. [email protected]
PG Student, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India (corresponding author). ORCID: https://orcid.org/0000-0002-1411-6069. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share