Case Studies
Mar 13, 2024

Potential Soil Erosion Mapping and Priority-Based Adaption Strategies Using RUSLE and Geospatial Techniques

Publication: Journal of Hydrologic Engineering
Volume 29, Issue 3

Abstract

An increase in soil erosion affects the storage capacity of reservoirs, navigation, floodplain inundation, water quality, and quantity in different parts of the world. Therefore, identifying vulnerable soil erosion zones within the watersheds and developing a catchment treatment plan can minimize soil erosion losses and improve reservoir sedimentation management. In this study, we calculated the average annual soil loss using the revised universal soil loss equation (RUSLE) method for the Hirakud catchment of the Mahanadi River Basin, India. The Hirakud dam, located on the river Mahanadi is considered the longest dam in Asia, witnessing major sedimentation problems over the past years. Our results suggest that the average annual soil loss is approximately 29 tons per hectare per year. At the same time, 0.7% of the land area contributes to very high erosion. The average annual soil loss is 0.8  t/ha. Using remote sensing and GIS tools, suitable soil conservation methods are recommended based on the watershed’s Prioritization. Utilizing Saaty’s AHP (Analytic Hierarchy Process) techniques, each erosion hazard parameter (EHP) is designated by weight, and the vulnerable regions are prioritized by overlaying the weights over the study area. Overall, nearly 17% of the area falls under the high priority, and 1% falls under the category of extremely high priority. In the extremely high-priority watershed, it is recommended to construct 38 farm ponds, 14 check dams, nine gully plugs, 27 percolation ponds, and two surface dikes, depending on the ground and stream characteristics.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Aiello, A., M. Adamo, and F. Canora. 2014. “Modelling spatially-distributed soil erosion through remotely-sensed data and GIS.” In Proc., Computational Science and Its Applications–ICCSA 2014: 14th International Conference, Guimarães, Portugal, June 30–July 3, 2014, Proc., Part IV 14 2014, 372–385. Cham, Switzerland: Springer.
Alewell, C., P. Borrelli, K. Meusburger, and P. Panagos. 2019. “Using the USLE: Chances, challenges and limitations of soil erosion modeling.” Int. Soil Water Conserv. Res. 7 (3): 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004.
Allafta, H., and C. Opp. 2022. “Soil erosion assessment using the RUSLE model, remote sensing, and GIS in the Shatt Al-Arab basin (Iraq-Iran).” Appl. Sci. 12 (15): 7776. https://doi.org/10.3390/app12157776.
Alsdorf, D. E., E. Rodríguez, and D. P. Lettenmaier. 2007. “Measuring surface water from space.” Rev. Geophys. 45 (2): 1–24. https://doi.org/10.1029/2006RG000197.
Angima, S. D., D. E. Stott, M. K. O’neill, C. K. Ong, and G. A. Weesies. 2003. “Soil erosion prediction using RUSLE for central Kenyan highland conditions.” Agric. Ecosyst. Environ. 97 (1–3): 295–308. https://doi.org/10.1016/S0167-8809(03)00011-2.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large area hydrologic modeling and assessment part I: Model development 1.” JAWRA J. Am. Water Resour. Assoc. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
Ayele, N. A., H. R. Naqvi, and D. Alemayehu. 2022. “Rainfall induced soil erosion assessment, Prioritization and conservation treatment using RUSLE and SYI models in highland watershed of Ethiopia.” Geocarto Int. 37 (9): 2524–2540. https://doi.org/10.1080/10106049.2020.1822927.
Batjes, N. H. 2014. “Projected changes in soil organic carbon stocks upon adoption of recommended soil and water conservation practices in the Upper Tana River catchment, Kenya.” Land Degrad. Dev. 25 (3): 278–287. https://doi.org/10.1002/ldr.2141.
Beasley, D. B., L. F. Huggins, and A. Monke. 1980. “ANSWERS: A model for watershed planning.” Trans. ASAE 23 (4): 938–0944. https://doi.org/10.13031/2013.34692.
Benzougagh, B., S. G. Meshram, A. Dridri, L. Boudad, B. Baamar, D. Sadkaoui, and K. M. Khedher. 2022. “Identification of critical watershed at risk of soil erosion using morphometric and geographic information system analysis.” Appl. Water Sci. 12 (Jan): 1–20. https://doi.org/10.1007/s13201-021-01532-z.
Bhandari, U., and U. Mukhopadhyay. 2022. “Estimation of soil erosion using revised universal soil loss equation (RUSLE) model in Subarnarekha River Basin, India.” In Applied geomorphology and contemporary issues, 381–396. Cham, Switzerland: Springer.
Biddoccu, M., et al. 2020. “Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management.” Int. Soil Water Conserv. Res. 8 (4): 337–353. https://doi.org/10.1016/j.iswcr.2020.07.003.
Burrough, P. A, and R. A. McDonnell. 1998. Principles of geographic information systems, 356. New York: Oxford University Press.
Camacho-Zorogastúa, K. D. C., J. Cesar Minga, J. W. Gómez-Lora, V. H. Gallo-Ramos, and V. Garcés Díaz. 2023. “Evaluation of soil loss and sediment yield based on GIS and remote sensing techniques in a complex amazon mountain basin of Peru: Case study mayo river Basin, San Martin Region.” Sustainability 15 (11): 9059. https://doi.org/10.3390/su15119059.
Capolongo, D., L. Pennetta, M. Piccarreta, G. Fallacara, and F. Boenzi. 2008. “Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy).” Earth Surf. Processes Landforms 33 (3): 364–379. https://doi.org/10.1002/esp.1560.
Chen, T., R. Q. Niu, P. X. Li, L. P. Zhang, and B. Du. 2011. “Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: A case study in Miyun Watershed, North China.” Environ. Earth Sci. 63 (3): 533–541. https://doi.org/10.1007/s12665-010-0715-z.
Cronshey, R. G., and F. D. Theurer. 1998. “AnnAGNPS-non point pollutant loading model.” In Proc., First Federal Interagency Hydrologic Modeling Conf., 1–9. Las Vegas: Subcommittee on Hydrology of the Interagency Advisory Committee on Water Data.
Das, B., R. Bordoloi, L. T. Thungon, A. Paul, P. K. Pandey, M. Mishra, and O. P. Tripathi. 2020a. “An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed, Arunachal Pradesh.” J. Earth Syst. Sci. 129 (Dec): 1–18. https://doi.org/10.1007/s12040-020-1356-6.
Das, S., P. Deb, P. K. Bora, and P. Katre. 2020b. “Comparison of RUSLE and MMF soil loss models and evaluation of catchment scale best management practices for a mountainous watershed in India.” Sustainability 13 (1): 232. https://doi.org/10.3390/su13010232.
Dash, S. S., J. C. Paul, and B. Panigrahi. 2021. “Assessing soil erosion vulnerability and locating suitable conservation structures for agricultural planning using GIS—A case study of Altuma catchment of Brahmani river Basin, Odisha, India.” Arabian J. Geosci. 14 (21): 1–15. https://doi.org/10.1007/s12517-021-08493-2.
dos Santos, F. M., N. de Souza Pelinson, R. P. de Oliveira, and J. A. di Lollo. 2023. “Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Guaçu River basin in Sao Paulo State, Brazil.” Catena 222 (Mar): 106872. https://doi.org/10.1016/j.catena.2022.106872.
Dutta, S., and D. Sen. 2018. “Application of SWAT model for predicting soil erosion and sediment yield.” Sustainable Water Resour. Manage. 4 (Sep): 447–468. https://doi.org/10.1007/s40899-017-0127-2.
Ebrahimzadeh, S., M. Motagh, V. Mahboub, and F. Mirdar Harijani. 2018. “An improved RUSLE/SDR model for the evaluation of soil erosion.” Environ. Earth Sci. 77 (Jun): 1–17. https://doi.org/10.1007/s12665-018-7635-8.
El Jazouli, A., A. Barakat, R. Khellouk, J. Rais, and M. El Baghdadi. 2019. “Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco).” Remote Sens. Appl.: Soc. Environ. 13 (Jan): 361–374. https://doi.org/10.1016/j.rsase.2018.12.004.
Eniyew, S., M. Teshome, E. Sisay, and T. Bezabih. 2021. “Integrating RUSLE model with remote sensing and GIS for evaluation soil erosion in Telkwonz Watershed, Northwestern Ethiopia.” Remote Sens. Appl.: Soc. Environ. 24 (Nov): 100623. https://doi.org/10.1016/j.rsase.2021.100623.
Fan, J., A. Motamedi, and M. Galoie. 2021. “Impact of C factor of USLE technique on the accuracy of soil erosion modeling in elevated mountainous area (case study: The Tibetan plateau).” Environ. Dev. Sustainability 23 (8): 12615–12630. https://doi.org/10.1007/s10668-020-01133-x.
Fayas, C. M., N. S. Abeysingha, K. G. S. Nirmanee, D. Samaratunga, and A. Mallawatantri. 2019. “Soil loss estimation using Rusle model to prioritize erosion control in KELANI river basin in Sri Lanka.” Int. Soil Water Conserv. Res. 7 (2): 130–137. https://doi.org/10.1016/j.iswcr.2019.01.003.
Ganasri, B. P., and H. Ramesh. 2016. “Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin.” Geosci. Front. 7 (6): 953–961. https://doi.org/10.1016/j.gsf.2015.10.007.
Ganguli, P., Y. R. Nandamuri, and C. Chatterjee. 2023. “Understanding flood regime changes of the Mahanadi River.” ISH J. Hydraul. Eng. 29 (3): 389–402. https://doi.org/10.1080/09715010.2022.2068356.
Gayen, A., S. Saha, and H. R. Pourghasemi. 2020. “Soil erosion assessment using RUSLE model and its validation by FR probability model.” Geocarto Int. 35 (15): 1750–1768. https://doi.org/10.1080/10106049.2019.1581272.
Getu, L. A., A. Nagy, and H. K. Addis. 2022. “Soil loss estimation and severity mapping using the RUSLE model and GIS in Megech watershed, Ethiopia.” Environ. Challenges 8 (Aug): 100560. https://doi.org/10.1016/j.envc.2022.100560.
Ghosh, A., and R. Maiti. 2021. “Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: Study on the Mayurakshi river basin of Eastern India.” Environ. Earth Sci. 80 (Apr): 1–16. https://doi.org/10.1007/s12665-021-09631-5.
Girona-García, A., D. C. Vieira, J. Silva, C. Fernández, P. R. Robichaud, and J. J. Keizer. 2021. “Effectiveness of post-fire soil erosion mitigation treatments: A systematic review and meta-analysis.” Earth Sci. Rev. 217 (Jun): 103611. https://doi.org/10.1016/j.earscirev.2021.103611.
Gitima, G., M. Teshome, M. Kassie, and M. Jakubus. 2023. “Quantifying the impacts of spatiotemporal land use and land cover changes on soil loss across agroecologies and slope categories using GIS and RUSLE model in Zoa watershed, southwest Ethiopia.” Ecol. Processes 12 (1): 24. https://doi.org/10.1186/s13717-023-00436-x.
Grauso, S., V. Verrubbi, A. Zini, A. Peloso, C. Crovato, and M. Sciortino. 2015. Soil erosion estimate in Southern Latium (central Italy) using rusle and geostatistical techniques. Frascati, Italy: Energia Nucleare ed Energie Alternative.
Gupta, H., S. J. Kao, and M. Dai. 2012. “The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers.” J. Hydrol. 464 (Sep): 447–458. https://doi.org/10.1016/j.jhydrol.2012.07.038.
Helmi, A. M. 2023. “Quantifying catchments sediment release in arid regions using GIS-based Universal soil loss equation (USLE).” Ain Shams Eng. J. 14 (8): 102038. https://doi.org/10.1016/j.asej.2022.102038.
Ingle, S. N., M. S. S. Nagaraju, N. Kumar, N. Sahu, P. Tiwary, R. Srivastava, and J. Prasad. 2019. “Remote sensing and GIS-based soil loss assessment using RUSLE model -A case study of Bareli watershed, Seoni district of Madhya Pradesh.” Agropedology 29 (2): e13313. https://doi.org/10.47114/j.agroped.2019.dec1.
Islam, Z. 2022. “Soil loss assessment by RUSLE in the cloud-based platform (GEE) in Nigeria.” Model. Earth Syst. Environ. 8 (4): 4579–4591. https://doi.org/10.1007/s40808-022-01467-7.
Ismail, J., and S. Ravichandran. 2008. “RUSLE2 model application for soil erosion assessment using remote sensing and GIS.” Water Resour. Manage. 22 (1): 83–102. https://doi.org/10.1007/s11269-006-9145-9.
Issaka, S., and M. A. Ashraf. 2017. “Impact of soil erosion and degradation on water quality: A review.” Geol. Ecol. Landscapes 1 (1): 1–11. https://doi.org/10.1080/24749508.2017.1301053.
Jaiswal, R. K., T. Thomas, R. V. Galkate, N. C. Ghosh, and S. Singh. 2013. “Catchment area treatment (CAT) plan and crop area optimization for integrated management in a water resource project.” J. Inst. Eng. India Ser. A 94 (Sep): 199–208. https://doi.org/10.1007/s40030-014-0052-4.
Jemai, S., A. Kallel, B. Agoubi, and H. Abida. 2021. “Soil erosion estimation in arid area by USLE model applying GIS and RS: Case of Oued El Hamma catchment, southeastern Tunisia.” J. Indian Soc. Remote Sens. 49 (Jun): 1293–1305. https://doi.org/10.1007/s12524-021-01320-x.
Jothimani, M., E. Getahun, and A. Abebe. 2022. “Remote sensing, GIS, and RUSLE in soil loss estimation in the Kulfo river catchment, Rift valley, Southern Ethiopia.” J. Degraded Min. Lands Manage. 9 (2): 3307–3315. https://doi.org/10.15243/jdmlm.2022.092.3307.
Kandpal, K. C., and N. Rawat. 2022. “Soil erosion assessment using RUSLE model in the Randigad catchment in northern India.” In Anthropogeomorphology: A geospatial technology based approach, 305–319. Cham, Switzerland: Springer.
Kebede, Y. S., N. T. Endalamaw, B. G. Sinshaw, and H. B. Atinkut. 2021. “Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia.” Environ. Challenges 2 (Jan): 100009. https://doi.org/10.1016/j.envc.2020.100009.
Knisel, W. G. 1980. CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems. Rep. No. 26. Washington, DC: USDA.
Kumar, M., A. P. Sahu, N. Sahoo, S. S. Dash, S. K. Raul, and B. Panigrahi. 2022. “Global-scale application of the RUSLE model: A comprehensive review.” Hydrol. Sci. J. 67 (5): 806–830. https://doi.org/10.1080/02626667.2021.2020277.
Kumar, T., D. C. Jhariya, and H. K. Pandey. 2020. “Comparative study of different models for soil erosion and sediment yield in Pairi watershed, Chhattisgarh, India.” Geocarto Int. 35 (11): 1245–1266. https://doi.org/10.1080/10106049.2019.1576779.
Laflen, J. M., L. J. Lane, and G. R. Foster. 1991. “WEPP: A new generation of erosion prediction technology.” J. Soil Water Conserv. 46 (1): 34–38.
Liu, B. Y., K. L. Zhang, and Y. Xie. 2002. “An empirical soil loss equation.” In Proc., 12th ISCO. Beijing: Tsinghua Press.
Luvai, A., J. Obiero, and C. Omuto. 2022. “Soil loss assessment using the revised universal soil loss equation (RUSLE) model.” Appl. Environ. Soil Sci. 2022 (Feb): 2122554. https://doi.org/10.1155/2022/2122554.
Majhi, A., R. Shaw, K. Mallick, and P. P. Patel. 2021. “Towards improved USLE-based soil erosion modelling in India: A review of prevalent pitfalls and implementation of exemplar methods.” Earth Sci. Rev. 221 (Oct): 103786. https://doi.org/10.1016/j.earscirev.2021.103786.
Maqsoom, A., B. Aslam, U. Hassan, Z. A. Kazmi, M. Sodangi, R. F. Tufail, and D. Farooq. 2020. “Geospatial assessment of soil erosion intensity and sediment yield using the revised universal soil loss equation (RUSLE) model.” ISPRS Int. J. Geo-Inf. 9 (6): 356. https://doi.org/10.3390/ijgi9060356.
Marques, V. S., M. B. Ceddia, M. A. Antunes, D. F. Carvalho, J. A. Anache, D. B. Rodrigues, and P. T. S. Oliveira. 2019. “USLE K-factor method selection for a tropical catchment.” Sustainability 11 (7): 1840. https://doi.org/10.3390/su11071840.
Masroor, M., H. Sajjad, S. Rehman, R. Singh, M. H. Rahaman, M. Sahana, R. Ahmed, and R. Avtar. 2022. “Analyzing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India.” Geosci. Front. 13 (2): 101312. https://doi.org/10.1016/j.gsf.2021.101312.
Mekonen, K., and G. B. Tesfahunegn. 2011. “Impact assessment of soil and water conservation measures at Medego watershed in Tigray, northern Ethiopia.” Maejo Int. J. Sci. Technol. 5 (3): 312. https://doi.org/10.5555/20123047601.
Mohanty, L., P. Istalkar, and B. Biswal. 2023. “Dynamic aspects of suspended-sediment-concentration recession curves.” J. Hydrol. 617 (Feb): 129107. https://doi.org/10.1016/j.jhydrol.2023.129107.
Mohapatra, M., and U. C. Mohanty. 2005. “Some characteristics of very heavy rainfall over Orissa during summer monsoon season.” J. Earth Syst. Sci. 114 (Feb): 17–36. https://doi.org/10.1007/BF02702006.
Moisa, M. B., A. Babu, and K. Getahun. 2023. “Integration of geospatial technologies with RUSLE model for analysis of soil erosion in response to land use/land cover dynamics: A case of Jere watershed, Western Ethiopia.” Sustainable Water Resour. Manage. 9 (1): 13. https://doi.org/10.1007/s40899-022-00805-y.
Moore, I. D., and G. J. Burch. 1986. “Physical basis of the length-slope factor in the universal soil loss equation.” Soil Sci. Soc. Am. J. 50 (5): 1294–1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x.
Nampak, H., B. Pradhan, H. Mojaddadi Rizeei, and H. J. Park. 2018. “Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and Revised Universal Soil Loss Equation model.” Land Degrad. Dev. 29 (10): 3440–3455. https://doi.org/10.1002/ldr.3112.
Narayana, D. V. V., and R. Babu. 1983. “Estimation of soil erosion in India.” J. Irrig. Drain. Eng. 109 (4): 419–434. https://doi.org/10.1061/(ASCE)0733-9437(1983)109:4(419).
Nearing, M. 2004. “Soil erosion and conservation.” In Environmental modelling: Finding simplicity in complexity, edited by J. Wainwright and M. Mulligan, 277–290. Chicester, UK: Wiley.
Pandey, D., A. D. Tiwari, and V. Mishra. 2022. “On the occurrence of the observed worst flood in Mahanadi River basin under the warming climate.” Weather Clim. Extremes 38 (Dec): 100520. https://doi.org/10.1016/j.wace.2022.100520.
Pandey, S., P. Kumar, M. Zlatic, R. Nautiyal, and V. P. Panwar. 2021. “Recent advances in assessment of soil erosion vulnerability in a watershed.” Int. Soil Water Conserv. Res. 9 (3): 305–318. https://doi.org/10.1016/j.iswcr.2021.03.001.
Patil, M., R. Patel, and A. Saha. 2021. “Sediment yield and soil loss estimation using GIS based soil erosion model: A case study in the MAN catchment, Madhya Pradesh, India.” Environ. Sci. Proc. 8 (1): 26. https://doi.org/10.3390/ecas2021-10348.
Paul, A., I. Mallik, J. Sardar, and J. Bandyopadhyay. 2022. “Soil loss risk assessment of lateritic badland surface of Garhbeta Block-I, West Bengal, India using an integrated approach of revised universal soil loss equation (RUSLE) algorithm and geospatial techniques.” Saf. Extreme Environ. 4 (2): 149–170. https://doi.org/10.1007/s42797-022-00060-6.
Petkovsek, G., and M. Roca. 2014. “Impact of reservoir operation on sediment deposition.” Proc. Inst. Civ. Eng. Water Manage. 167 (10): 577–584. https://doi.org/10.1680/wama.13.00028.
Phinzi, K., N. S. Ngetar, O. Ebhuoma, and S. Szabo. 2020. “Comparison of RUSLE and supervised classification algorithms for identifying erosion-prone areas in a mountainous rural landscape.” Carpathian J. Earth Environ. Sci. 15 (2): 405–413. https://doi.org/10.26471/cjees/2020/015/140.
Porto, P., M. Bacchi, G. Preiti, M. Romeo, and M. Monti. 2022. “Combining plot measurements and a calibrated RUSLE model to investigate recent changes in soil erosion in upland areas in Southern Italy.” J. Soils Sediments 22 (Jan): 1010–1022. https://doi.org/10.1007/s11368-021-03119-2.
Prasuhn, V. 2022. “Experience with the assessment of the USLE cover-management factor for arable land compared with long-term measured soil loss in the Swiss Plateau.” Soil Tillage Res. 215 (Jan): 105199. https://doi.org/10.1016/j.still.2021.105199.
Rawat, K. S., A. K. Mishra, and R. Bhattacharyya. 2016. “Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM+, RUSLE, and GIS—A case study.” Arabian J. Geosci. 9 (Apr): 1–22. https://doi.org/10.1007/s12517-015-2157-0.
Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder. 1997. “Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE).” Agric. Handb. 703 (Jul): 400. https://doi.org/10.3/JQUERY-UI.JS.
Renard, K. G., G. R. Foster, G. A. Weesies, and J. P. Porter. 1991. “RUSLE–Revised universal soil loss equation.” J. Soil Water Conserv. 46 (1): 30–33.
Saha, M., S. S. Sauda, H. R. K. Real, and M. Mahmud. 2022. “Estimation of annual rate and spatial distribution of soil erosion in the Jamuna basin using RUSLE model: A geospatial approach.” Environ. Challenges 8 (Aug): 100524. https://doi.org/10.1016/j.envc.2022.100524.
Santra, A., and S. Santra Mitra. 2020. “Space-time drought dynamics and soil erosion in Puruliya district of West Bengal, India: A conceptual design.” J. Indian Soc. Remote Sens. 48 (Aug): 1191–1205. https://doi.org/10.1007/s12524-020-01147-y.
Schmidt, S., S. Tresch, and K. Meusburger. 2019. “Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands.” MethodsX 6 (Jan): 219–229. https://doi.org/10.1016/j.mex.2019.01.004.
Senanayake, S., and B. Pradhan. 2022. “Predicting soil erosion susceptibility associated with climate change scenarios in the Central Highlands of Sri Lanka.” J. Environ. Manage. 308 (Apr): 114589. https://doi.org/10.1016/j.jenvman.2022.114589.
Shanwad, U. K., V. C. Patil, H. H. Gowda, G. S. Dasog, and K. C. Shashidhar. 2011. “Generation of water resources action plan for Medak Nala watershed in India using remote sensing and GIS technologies.” Aust. J. Basic Appl. Sci. 5 (11): 2209–2218.
Sharma, N., A. Kaushal, A. Yousuf, A. Sood, S. Kaur, and R. Sharda. 2023. “Geospatial technology for assessment of soil erosion and Prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India.” Environ. Sci. Pollut. Res. 30 (1): 515–531. https://doi.org/10.1007/s11356-022-22152-3.
Singh, M. C., K. Sur, N. Al-Ansari, P. K. Arya, V. K. Verma, and A. Malik. 2023. “GIS integrated RUSLE model-based soil loss estimation and watershed prioritization for land and water conservation aspects.” Front. Environ. Sci. 11 (Mar): 290. https://doi.org/10.3389/fenvs.2023.1136243.
Tanyaş, H., Ç. Kolat, and M. L. Süzen. 2015. “A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam.” J. Hydrol. 528 (Sep): 584–598. https://doi.org/10.1016/j.jhydrol.2015.06.048.
Tirkey, A. S., A. C. Pandey, and M. S. Nathawat. 2013. “Use of satellite data, GIS and RUSLE for estimation of average annual soil loss in Daltonganj watershed of Jharkhand (India).” J. Remote Sens. Technol. 1 (1): 20–30. https://doi.org/10.18005/JRST0101004.
Udayakumara, E. P. N., R. P. Shrestha, L. Samarakoon, and D. Schmidt-Vogt. 2012. “Mitigating soil erosion through farm-level adoption of soil and water conservation measures in Samanalawewa Watershed, Sri Lanka.” Acta Agric. Scand. Sect. B Soil Plant Sci. 62 (3): 273–285. https://doi.org/10.1080/09064710.2011.608708.
Van Rompaey, A. J. J., G. Verstraeten, K. Van Oost, G. Govers, and J. Poesen. 2001. “Modelling mean annual sediment yield using a distributed approach.” Earth Surf. Processes Landforms 26 (11): 1221–1236. https://doi.org/10.1002/esp.275.
Wagari, M., and H. Tamiru. 2021. “RUSLE model based annual soil loss quantification for soil erosion protection: A case of Fincha catchment, Ethiopia.” Air, Water Soil Res. 14 (Oct): 11786221211046234. https://doi.org/10.1177/11786221211046234.
Walling, D. E. 1974. “Suspended sediment and solid yields from a small catchment prior to urbanization.” In Vol. 6 of Fluvial processes in instrumented watersheds, 169–192. London: Institute of British Geographers.
Wang, M., T. Jiang, Y. Mao, F. Wang, J. Yu, and C. Zhu. 2023. “Current situation of agricultural non-point source pollution and its control.” Water, Air, Soil Pollut. 234 (7): 471. https://doi.org/10.1007/s11270-023-06462-x.
Wischmeier, W. H., and D. D. Smith. 1978. Predicting rainfall erosion losses: A guide to conservation planning. Washington, DC: Dept. of Agriculture, Science and Education Administration.
Yaswanth, K., M. Kona, S. K. Andra, and M. Rathinasamy. 2022. “Understanding the impact of changes in land-use land-cover and rainfall patterns on soil erosion rates using the RUSLE model and GIS techniques: A study on the Nagavali River basin.” J. Water Clim. Change 13 (7): 2648–2670. https://doi.org/10.2166/wcc.2022.016.
Yesuph, A. Y., and A. B. Dagnew. 2019. “Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia.” Environ. Syst. Res. 8 (Dec): 1–21. https://doi.org/10.1186/s40068-019-0145-1.
Yirgu, T. 2022. “Assessment of soil erosion hazard and factors affecting farmers’ adoption of soil and water management measure: A case study from Upper Domba Watershed, Southern Ethiopia.” Heliyon 8 (6): e09536.https://doi.org/10.1016/j.heliyon.2022.e09536.
Young, R. A., C. A. Onstad, D. D. Bosch, and W. P. Anderson. 1989. “AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds.” J. Soil Water Conserv. 44 (2): 168–173.
Yousuf, A., and M. J. Singh. 2016. “Runoff and soil loss estimation using hydrological models, remote sensing and GIS in Shivalik foothills: A review.” J. Soil Water Conserv. 15 (3): 205–210. https://doi.org/10.5958/2455-7145.2016.00003.5.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 29Issue 3June 2024

History

Received: Jun 21, 2023
Accepted: Jan 30, 2024
Published online: Mar 13, 2024
Published in print: Jun 1, 2024
Discussion open until: Aug 13, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India (corresponding author). ORCID: https://orcid.org/0000-0001-5598-9328. Email: [email protected]
Nitish Kumar Sahoo [email protected]
Postgraduate Researcher, Dept. of Civil Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India. Email: [email protected]
Ashok Mishra [email protected]
Professor, Zachry Dept. of Civil and Environmental Engineering, Texas A&M Univ., College Station, TX 77843-3136. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share