Abstract

Deicing salts are a major contributor to freshwater salinization in the Northeastern United States, disrupting ecosystem function, aquatic life, and infrastructure integrity. It is often presumed that surface runoff is the dominant mode of chloride transport from impervious surfaces to surface waters despite empirical evidence for soil and groundwater transport. Our project aimed to (1) estimate the hydrologic pathways for chloride transport in a small, urbanized catchment in the Northeastern United States; and (2) provide a critical evaluation of simulation routines commonly used to guide the management of deicing salts. We investigated possible variations in urban chloride pathways by monitoring stormwater discharge and chloride across a winter season with deicing salt spreading and snow accumulation and melt. We analyzed these time series with US EPA SWMM, which presumes chloride transport occurs exclusively via surface runoff into stormwater systems. We develop two parallel models: one using the base empirical temperature-index snow routines, and a second substituting a process-based snowmelt model. Each model was calibrated via the generalized likelihood uncertainty estimation algorithm to both stormwater volumes and chloride mass. Both models adequately simulated water volumes but failed to reproduce observed chloride dynamics, suggesting substantial deicing salt movement through soils and groundwater as a major urban hydrologic pathway. The results of this study will inform the development of urban hydrologic fate and transport models and chloride best management practices.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies. Precipitation, temperature, and wind speed data are available at repositories cited within the literature. The observed discharge and specific conductance data (Snarski and Dietz 2022) used for this study are publicly available at: Roberts Brook Discharge and Specific Conductance Monitoring Data, HydroShare, http://www.hydroshare.org/resource/0dccffd64b2a404cabd32d8ced9e9977.

References

Baraza, T., and E. A. Hasenmueller. 2021. “Road salt retention and transport through vadose zone soils to shallow groundwater.” Sci. Total Environ. 755 (14): 142240. https://doi.org/10.1016/j.scitotenv.2020.142240.
Bastviken, D., P. Sandén, T. Svensson, C. Ståhlberg, M. Magounakis, and G. Öberg. 2006. “Chloride retention and release in a boreal forest soil: Effects of soil water residence time and nitrogen and chloride loads.” Environ. Sci. Technol. 40 (9): 2977–2982. https://doi.org/10.1021/es0523237.
Bengtsson, L. 1981. “Snowmelt-generated runoff in urban areas.” In Stormwater Hydraulics and Hydrology: Proc. of the Second Int. Conf. on Urban Storm Drainage, 15–19. Urbana, IL: Water Resources Publications.
Bonhomme, C., and G. Petrucci. 2017. “Should we trust build-up/wash-off water quality models at the scale of urban catchments?” Water Res. 108 (11): 422–431. https://doi.org/10.1016/j.watres.2016.11.027.
Borris, M., H. Österlund, J. Marsalek, and M. Viklander. 2021. “Snow pollution management in urban areas: An idea whose time has come?” Urban Water J. 18 (10): 840–849. https://doi.org/10.1080/1573062X.2021.1941138.
Brooks, E. S., S. M. Saia, J. Boll, L. Wetzel, Z. M. Easton, and T. S. Steenhuis. 2015. “Assessing BMP effectiveness and guiding BMP planning using process-based modeling.” J. Am. Water Resour. Assoc. 51 (2): 343–358. https://doi.org/10.1111/1752-1688.12296.
Burgis, C. R., G. M. Hayes, D. A. Henderson, W. Zhang, and J. A. Smith. 2020. “Green stormwater infrastructure redirects deicing salt from surface water to groundwater.” Sci. Total Environ. 729 (20): 138736. https://doi.org/10.1016/j.scitotenv.2020.138736.
Buttle, J. M., and C. F. Labadia. 1999. “Deicing salt accumulation and loss in highway snowbanks.” J. Environ. Qual. 28 (Jan): 155–164. https://doi.org/10.2134/jeq1999.00472425002800010018x.
Campbell, G. S., and J. M. Norman. 1998. “Water vapor and other gases.” In An introduction to environmental biophysics, 37–51. New York: Springer.
Chen, C. W., and R. P. Shubinski. 1971. “Computer simulation of urban storm water runoff.” J. Hydraul. Div. 97 (2): 289–301. https://doi.org/10.1061/JYCEAJ.0002871.
Condon, L. E., K. H. Markovich, C. A. Kelleher, J. J. McDonnell, G. Ferguson, and J. C. McIntosh. 2020. “Where is the bottom of a watershed?” Water Resour. Res. 56 (3): e2019WR026010. https://doi.org/10.1029/2019WR026010.
Corsi, S. R., D. J. Graczyk, S. W. Geis, N. L. Booth, and K. D. Richards. 2010. “A fresh look at road salt: Aquatic toxicity and water-quality impacts on local, regional, and national scales.” Environ. Sci. Technol. 44 (19): 7376–7382. https://doi.org/10.1021/es101333u.
Debele, B., R. Srinivasan, and A. K. Gosain. 2010. “Comparison of process-based and temperature-index snowmelt modeling in SWAT.” Water Resour. Manage. 24 (6): 1065–1088. https://doi.org/10.1007/s11269-009-9486-2.
Dietz, M. E. 2020. “Tipping the balance on winter deicing impacts: Education is the key.” J. Ext. 58 (2): 1–12.
Dietz, M. E., D. R. Angel, G. A. Robbins, and L. A. McNaboe. 2017. “Permeable asphalt: A new tool to reduce road salt contamination of groundwater in urban areas.” Ground Water 55 (2): 237–243. https://doi.org/10.1111/gwat.12454.
Dugan, H. A., et al. 2017. “Salting our freshwater lakes.” Proc. Natl. Acad. Sci. 114 (17): 4453–4458. https://doi.org/10.1073/pnas.1620211114.
Farzi, A., S. M. Borghei, and M. Vossoughi. 2017. “The use of halophytic plants for salt phytoremediation in constructed wetlands.” Int. J. Phytorem. 19 (7): 643–650. https://doi.org/10.1080/15226514.2016.1278423.
Findlay, S. E. G., and V. R. Kelly. 2011. “Emerging indirect and long-term road salt effects on ecosystems.” Ann. N. Y. Acad. Sci. 1223 (1): 58–68. https://doi.org/10.1111/j.1749-6632.2010.05942.x.
Fournier, I. B., R. Galvez-Cloutier, and W. F. Vincent. 2020. “Roadside snowmelt: A management target to reduce lake and river contamination.” Inland Waters 2020 (1): 18–30. https://doi.org/10.1080/20442041.2020.1801312.
Giguere, P. R., and G. C. Riek. 1983. “Infiltration/inflow modeling for the East Bay (Oakland-Berkeley Area) I/I study.” In Proc., 1983 Int. Symp. on Urban Hydrology, Hydraulics and Sediment Control, 25–28. Lexington, KY: Univ. of Kentucky.
Gu, C., K. Cockerill, W. P. Anderson, F. Shepherd, P. A. Groothuis, T. M. Mohr, J. C. Whitehead, A. A. Russo, and C. Zhang. 2019. “Modeling effects of low impact development on road salt transport at watershed scale.” J. Hydrol. 574 (May): 1164–1175. https://doi.org/10.1016/j.jhydrol.2019.04.079.
Guesdon, G., A. de Santiago-Martín, and R. Galvez-Cloutier. 2016. “Phytodesalinization potential of Typha angustifolia, Juncus maritimus, and Eleocharis palustris for removal of de-icing salts from runoff water.” Environ. Sci. Pollut. Res. 23 (19): 19634–19644. https://doi.org/10.1007/s11356-016-7176-1.
Hare, D. K., A. M. Helton, Z. C. Johnson, J. W. Lane, and M. A. Briggs. 2021. “Continental-scale analysis of shallow and deep groundwater contributions to streams.” Nat. Commun. 12 (1): 1450. https://doi.org/10.1038/s41467-021-21651-0.
Hargreaves, G. H., and Z. A. Samani. 1985. “Reference crop evapotranspiration from temperature.” Appl. Eng. Agric. 1 (2): 96–99. https://doi.org/10.13031/2013.26773.
Howard, K. W. F., and J. Haynes. 1993. “Groundwater contamination due to road de-icing chemicals—Salt balance implications.” Geosci. Can. 20 (1): 1–8.
Jamshidi, A., A. R. Goodarzi, and P. Razmara. 2020. “Long-term impacts of road salt application on the groundwater contamination in urban environments.” Environ. Sci. Pollut. Res. 27 (24): 30162–30177. https://doi.org/10.1007/s11356-020-09261-7.
Janke, B. D., J. C. Finlay, S. E. Hobbie, L. A. Baker, R. W. Sterner, D. Nidzgorski, and B. N. Wilson. 2014. “Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed.” Biogeochemistry 121 (1): 209–228. https://doi.org/10.1007/s10533-013-9926-1.
Jin, L., P. Whitehead, D. I. Siegel, and S. Findlay. 2011. “Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams.” Environ. Pollut. 159 (5): 1257–1265. https://doi.org/10.1016/j.envpol.2011.01.029.
Kaushal, S. S., and K. T. Belt. 2012. “The urban watershed continuum: Evolving spatial and temporal dimensions.” Urban Ecosyst. 15 (2): 409–435. https://doi.org/10.1007/s11252-012-0226-7.
Kaushal, S. S., G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman, and M. Grese. 2018. “Freshwater salinization syndrome on a continental scale.” Proc. Natl. Acad. Sci. 115 (4): 574–583. https://doi.org/10.1073/pnas.1711234115.
Kelly, V. R., S. E. Findlay, S. K. Hamilton, G. M. Lovett, and K. C. Weathers. 2019. “Seasonal and long-term dynamics in stream water sodium chloride concentrations and the effectiveness of road salt best management practices.” Water Air Soil Pollut. 230 (1): 40–60. https://doi.org/10.1007/s11270-018-4060-2.
Kelly, V. R., G. M. Lovett, K. C. Weathers, S. E. G. Findlay, D. L. Strayer, D. J. Burns, and G. E. Likens. 2008. “Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration.” Environ. Sci. Technol. 42 (2): 410–415. https://doi.org/10.1021/es071391l.
Kincaid, D. W., and S. E. G. Findlay. 2009. “Sources of elevated chloride in local streams: Groundwater and soils as potential reservoirs.” Water Air Soil Pollut. 203 (1–4): 335–342. https://doi.org/10.1007/s11270-009-0016-x.
Knighton, J., E. Lennon, L. Bastidas, and E. White. 2016. “Stormwater detention system parameter sensitivity and uncertainty analysis using SWMM.” J. Hydrol. Eng. 21 (8): 05016014. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001382.
Lazarcik, J., and J. E. Dibb. 2017. “Evidence of road salt in New Hampshire’s snowpack hundreds of meters from roadways.” Geosciences 7 (3): 30–54. https://doi.org/10.3390/GEOSCIENCES7030054.
Ludwikowski, J. J., and E. W. Peterson. 2018. “Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): Assessing the influence of chloride application rates.” Hydrogeol. J. 26 (4): 1123–1135. https://doi.org/10.1007/s10040-018-1732-3.
Mackie, C., R. Lackey, J. Levison, and L. Rodrigues. 2022. “Groundwater as a source and pathway for road salt contamination of surface water in the Lake Ontario Basin: A review.” J. Great Lakes Res. 48 (1): 24–36. https://doi.org/10.1016/j.jglr.2021.11.015.
Menne, M. J., et al. 2012. Global historical climatology network-daily (GHCN-Daily), version 3. Washington, DC: National Oceanic and Atmospheric Administration.
Moghadas, S., A. M. Gustafsson, T. M. Muthanna, J. Marsalek, and M. Viklander. 2016. “Review of models and procedures for modelling urban snowmelt.” Urban Water J. 13 (4): 396–411. https://doi.org/10.1080/1573062X.2014.993996.
Moghadas, S., K. H. Paus, T. M. Muthanna, I. Herrmann, J. Marsalek, and M. Viklander. 2015. “Accumulation of traffic-related trace metals in urban winter-long roadside snowbanks.” Water Air Soil Pollut. 226 (12): 1–15. https://doi.org/10.1007/s11270-015-2660-7.
Moore, J., D. L. Bird, S. K. Dobbis, and G. Woodward. 2017. “Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds.” Environ. Sci. Technol. Lett. 4 (6): 198–204. https://doi.org/10.1021/acs.estlett.7b00096.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. Am. Soc. Agric. Biol. Eng. 50 (3): 885–900.
Niemczynowicz, J. 1999. “Urban hydrology and water management—Present and future challenges.” Urban Water 1 (1): 1–14. https://doi.org/10.1016/S1462-0758(99)00009-6.
NOAA (National Oceanic and Atmospheric Administration). 2022. “NOAA National Centers for Environmental information, Climate at a glance: Statewide time series.” Accessed August 16, 2022. https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/statewide/time-series.
Novotny, E. V., A. R. Sander, O. Mohseni, and H. G. Stefan. 2009. “Chloride ion transport and mass balance in a metropolitan area using road salt.” Water Resour. Res. 45 (12): 1–13. https://doi.org/10.1029/2009WR008141.
Pang, B., S. Shi, G. Zhao, R. Shi, D. Peng, and Z. Zhu. 2020. “Uncertainty assessment of urban hydrological modelling from a multiple objective perspective.” Water (Switzerland) 12 (5): 13–93. https://doi.org/10.3390/W12051393.
Perera, N., B. Gharabaghi, P. Noehammer, and B. Kilgour. 2010. “Road salt application in Highland Creek watershed, Toronto, Ontario–Chloride mass balance.” Water Qual. Res. J. 45 (4): 451–461. https://doi.org/10.2166/wqrj.2010.044.
Rawls, W. J., D. L. Brakensiek, and N. Miller. 1983. “Green-AMPT infiltration parameters from soils data.” J. Hydraul. Eng. 109 (1): 62–70. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62).
Reinosdotter, K., and M. Viklander. 2007. “Road salt influence on pollutant releases from melting urban snow.” Water Qual. Res. J. Can. 42 (3): 153–161. https://doi.org/10.2166/wqrj.2007.019.
Rivett, M. O., M. O. Cuthbert, R. Gamble, L. E. Connon, A. Pearson, M. G. Shepley, and J. Davis. 2016. “Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.” Sci. Total Environ. 565 (Aug): 324–338. https://doi.org/10.1016/j.scitotenv.2016.04.095.
Rose, S. 2007. “The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee River Basin (Georgia, USA).” J. Hydrol. 341 (1–2): 42–54. https://doi.org/10.1016/j.jhydrol.2007.04.019.
Rossman, L. A. 2017. Storm water management model reference manual—Hydraulics. Cincinnati: US EPA.
Rossman, L. A., and W. C. Huber. 2016a. Storm water management model reference manual volume I—Hydrology (revised). Cincinnati: US EPA.
Rossman, L. A., and W. C. Huber. 2016b. Storm water management model reference manual volume 3—Water quality. Cincinnati: US EPA.
Sartor, J. D., and G. B. Boyd. 1972. Water pollution aspects of street surface contaminants. Cincinnati: US EPA.
Scarlett, R. D., S. K. McMillan, C. D. Bell, S. M. Clinton, A. J. Jefferson, and P. S. C. Rao. 2018. “Influence of stormwater control measures on water quality at nested sites in a small suburban watershed.” Urban Water J. 15 (9): 868–879. https://doi.org/10.1080/1573062X.2019.1579347.
Semádeni-Davies, A. F. 2000. “Representation of snow in urban drainage models.” J. Hydrol. Eng. 5 (4): 363–370. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(363).
Shahed Behrouz, M., Z. Zhu, L. S. Matott, and A. J. Rabideau. 2020. “A new tool for automatic calibration of the storm water management model (SWMM).” J. Hydrol. 581 (Feb): 124436. https://doi.org/10.1016/j.jhydrol.2019.124436.
Snarski, J. W., and M. E. Dietz. 2022. “Roberts Brook discharge and specific conductance monitoring data.” Accessed July 12, 2022. http://www.hydroshare.org/resource/0dccffd64b2a404cabd32d8ced9e9977.
Socolofsky, S., E. Adams, D. Entekhabi, and A. Members. 2001. “Disaggregation of daily rainfall for continuous watershed modeling.” J. Hydrol. Eng. 6 (Aug): 300–309. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:4(300).
Soil Survey Staff. 2023. “Official soil series descriptions (OSDs).” In Natural resource conservation service. Washington, DC: USDA.
Sonnen, M. B. 1980. “Urban runoff quality: Information needs.” J. Tech. Councils ASCE 106 (1): 29–40. https://doi.org/10.1061/JTCAD9.0000067.
Sparacino, H., K. F. Stepenuck, R. K. Gould, and S. E. Hurley. 2022. “Review of reduced salt, snow, and ice management practices for commercial businesses.” Transp. Res. Rec. 2676 (3): 507–520. https://doi.org/10.1177/03611981211052538.
Sun, N., M. Hall, B. Hong, and L. J. Zhang. 2014a. “Impact of SWMM catchment discretization: Case study in Syracuse, New York.” J. Hydrol. Eng. 19 (1): 223–234. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000777.
Sun, N., B. Hong, and M. Hall. 2014b. “Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estimation (GLUE) framework for a high-resolution urban sewershed.” Hydrol. Processes 28 (6): 3018–3034. https://doi.org/10.1002/hyp.9869.
Valeo, C., and C. L. I. Ho. 2004. “Modelling urban snowmelt runoff.” J. Hydrol. 299 (3–4): 237–251. https://doi.org/10.1016/S0022-1694(04)00368-3.
Vose, R. S., S. Applequist, M. Squires, I. Durre, C. J. Menne, C. N. Williams, C. Fenimore, K. Gleason, and D. Arndt. 2014. “Improved historical temperature and precipitation time series for US climate divisions.” J. Appl. Meteorol. Climatol. 53 (5): 1232–1251. https://doi.org/10.1175/JAMC-D-13-0248.1.
Walter, M. T., E. S. Brooks, D. K. McCool, L. G. King, M. Molnau, and J. Boll. 2005. “Process-based snowmelt modeling: Does it require more input data than temperature-index modeling?” J. Hydrol. 300 (1–4): 65–75. https://doi.org/10.1016/j.jhydrol.2004.05.002.
Westerström, G. 1984. Snowmelt runoff from Porsön residential area, Luleå, 315–323. Paris: Chalmers tekniska högskola.
Williams, D. D., N. E. Williams, and Y. Cao. 2000. “Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact.” Water Res. 34 (1): 127–138. https://doi.org/10.1016/S0043-1354(99)00129-3.
Wyman, D. A., and C. M. Koretsky. 2018. “Effects of road salt deicers on an urban groundwater-fed kettle lake.” Appl. Geochem. 89 (12): 265–272. https://doi.org/10.1016/j.apgeochem.2017.12.023.
Zhang, J., D. K. Das, and R. Peterson. 2009. “Selection of effective and efficient snow removal and ice control technologies for cold-region bridges.” J. Civ. Environ. Archit. Eng. 3 (1): 1–14.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 28Issue 8August 2023

History

Received: Aug 31, 2022
Accepted: Mar 24, 2023
Published online: May 27, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 27, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Student, Dept. of Natural Resources and the Environment, Univ. of Connecticut, 1376 Storrs Rd., Storrs, CT 06269 (corresponding author). ORCID: https://orcid.org/0009-0003-5153-6809. Email: [email protected]
Michael Dietz [email protected]
Extension Educator, Dept. of Natural Resources and the Environment, Univ. of Connecticut, 1376 Storrs Rd., Storrs, CT 06269. Email: [email protected]
Ashley M. Helton [email protected]
Associate Professor, Dept. of Natural Resources and the Environment, Univ. of Connecticut, 1376 Storrs Rd., Storrs, CT 06269. Email: [email protected]
Assistant Professor, Dept. of Natural Resources and the Environment, Univ. of Connecticut, 1376 Storrs Rd., Storrs, CT 06269. ORCID: https://orcid.org/0000-0002-4162-996X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share