Abstract

The Ogallala Aquifer, located in the Central Plains of the United States, is essential for agricultural irrigation and public water supply. Indiscriminate pumping from the aquifer has caused several negative impacts, such as deterioration of water quality and depletion of groundwater levels, which urgently demand better management. This paper applies hierarchical cluster analysis (HCA) and artificial neural networks (ANNs) for predicting annual groundwater levels in 403 wells of the Ogallala Aquifer. First, the methodology employed HCA to cluster homogeneous wells based on the time series of groundwater levels. Then, the study calibrated an ANN model for each cluster (composed of one or more wells) using previous annual values of groundwater levels as input. The HCA results showed a particular pattern in the spatial distribution of the 30 found clusters, revealing that the Ogallala Aquifer holds higher groundwater levels in the western part, which gradually decrease, advancing to the east. The ANN models provided proper predictions even for wells outside of the calibration data set. This investigation concludes that the integration of HCA and ANN enabled single models to accurately forecast annual groundwater levels for sets of wells in the Ogallala Aquifer.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, CAGS, upon reasonable request.

Acknowledgments

This study was also financed in part by the Brazilian Agency for the Improvement of Higher Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–CAPES)–Fund Code 001, the National Council for Scientific and Technological Development, Brazil–CNPq (Grant Nos. 313358/2021-4, 309330/2021-1, and 420031/2021-9), and the Federal University of Paraíba.

References

Abu-Alnaeem, M. F., I. Yusoff, T. F. Ng, Y. Alias, and M. Raksmey. 2018. “Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study.” Sci. Total Environ. 615 (Feb): 972–989. https://doi.org/10.1016/j.scitotenv.2017.09.320.
Adamowski, J., and H. F. Chan. 2011. “A wavelet neural network conjunction model for groundwater level forecasting.” J. Hydrol. 407 (1–4): 28–40. https://doi.org/10.1016/j.jhydrol.2011.06.013.
Adhikari, P., S. Ale, J. P. Bordovsky, K. R. Thorp, N. R. Modala, N. Rajan, and E. M. Barnes. 2016. “Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model.” Agric. Water Manage. 164 (Part 2): 317–330. https://doi.org/10.1016/j.agwat.2015.10.011.
Aghabozorgi, S., A. Seyed Shirkhorshidi, and T. Ying Wah. 2015. “Time-series clustering—A decade review.” Inf. Syst. 53 (Oct–Nov): 16–38. https://doi.org/10.1016/j.is.2015.04.007.
Ahmad, I., I. M. Almanjahie, Hameedullah, Z. Chikr-Elmezouar, and A. Laksaci. 2019. “Artificial neural network modeling for annual peak flows: A case study.” Appl. Ecol. Environ. Res. 17 (3): 6917–6935. https://doi.org/10.15666/aeer/1703_69176935.
Ali, M., A. Alqahtani, M. W. Jones, and X. Xie. 2019. “Clustering and classification for time series data in visual analytics: A survey.” IEEE Access 7: 181314–181338. https://doi.org/10.1109/ACCESS.2019.2958551.
ASCE. 2000. “Artificial neural networks in hydrology I. Preliminary concepts.” J. Hydrol. Eng. 5 (2): 115–123. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).
Barzegar, R., E. Fijani, A. A. Moghaddam, and E. Tziritis. 2017. “Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models.” Sci. Total Environ. 599–600 (Dec): 20–31. https://doi.org/10.1016/j.scitotenv.2017.04.189.
Bermudez-Edo, M., P. Barnaghi, and K. Moessner. 2018. “Analysing real world data streams with spatio-temporal correlations: Entropy vs. Pearson correlation.” Autom. Constr. 88 (Apr): 87–100. https://doi.org/10.1016/j.autcon.2017.12.036.
Bloomfield, J. P., B. P. Marchant, S. H. Bricker, and R. B. Morgan. 2015. “Regional analysis of groundwater droughts using hydrograph classification.” Hydrol. Earth Syst. Sci. 19 (10): 4327–4344. https://doi.org/10.5194/hess-19-4327-2015.
Cano, A., A. Núñez, V. Acosta-Martinez, M. Schipanski, R. Ghimire, C. Rice, and C. West. 2018. “Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region.” Geoderma 328 (Oct): 109–118. https://doi.org/10.1016/j.geoderma.2018.04.027.
Chaudhuri, S., and S. Ale. 2014a. “Long-term (1930-2010) trends in groundwater levels in Texas: Influences of soils, landcover and water use.” Sci. Total Environ. 490 (Aug): 379–390. https://doi.org/10.1016/j.scitotenv.2014.05.013.
Chaudhuri, S., and S. Ale. 2014b. “Long term (1960–2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas.” J. Hydrol. 513 (May): 376–390. https://doi.org/10.1016/j.jhydrol.2014.03.033.
Chen, Y., G. W. Marek, T. H. Marek, J. E. Moorhead, K. R. Heflin, D. K. Brauer, P. H. Gowda, and R. Srinivasan. 2018. “Assessment of alternative agricultural land use options for extending the availability of the Ogallala Aquifer in the Northern High Plains of Texas.” Hydrology 5 (4): 53. https://doi.org/10.3390/hydrology5040053.
Daliakopoulos, I. N., P. Coulibaly, and I. K. Tsanis. 2005. “Groundwater level forecasting using artificial neural networks.” J. Hydrol. 309 (1–4): 229–240. https://doi.org/10.1016/j.jhydrol.2004.12.001.
de Brito Neto, R. T., C. A. Santos, K. Mulligan, and L. Barbato. 2016. “Spatial and temporal water-level variations in the Texas portion of the Ogallala Aquifer.” Nat. Hazard. 80 (1): 351–365. https://doi.org/10.1007/s11069-015-1971-8.
Delnaz, A., G. Rakhshandehroo, and M. R. Nikoo. 2020. “Confined aquifer’s hydraulic parameters estimation by a generalized regression neural network.” Iran. J. Sci. Technol. Trans. Civ. Eng. 44 (1): 259–269. https://doi.org/10.1007/s40996-019-00238-2.
Demuth, H., and M. Beale. 2005. Neural network toolbox: For use with Matlab. Natick, MA: The MathWorks.
Fabbrocino, S., C. Rainieri, P. Paduano, and A. Ricciardi. 2019. “Cluster analysis for groundwater classification in multi-aquifer systems based on a novel correlation index.” J. Geochem. Explor. 204 (Sep): 90–111. https://doi.org/10.1016/j.gexplo.2019.05.006.
Farias, C. A. S., A. Kadota, K. Suzuki, and K. Shigematsu. 2011. “Stochastic generation of daily groundwater levels by artificial neural networks.” Ann. J. Hydraul. Eng. 67 (4): S55–S60. https://doi.org/10.2208/jscejhe.67.I_55.
Ghadampour, Z., and G. Rakhshandehroo. 2010. “Using artificial neural network to forecast groundwater depth in union county well.” World Acad. Sci. Eng. Technol. 62 (2): 964–967.
Gowda, P., R. Bailey, I. Kisekka, X. Lin, and V. Uddameri. 2019. “Featured series introduction: Optimizing Ogallala Aquifer water use to sustain food systems.” J. Am. Water Resour. Assoc. 55 (1): 3–5. https://doi.org/10.1111/1752-1688.12719.
Guimarães Santos, C. A., and G. B. L. da Silva. 2014. “Prévision des débits journaliers utilisant des modèles hybrides de transformées en ondelettes et de réseaux de neurones artificiels.” Hydrol. Sci. J. 59 (2): 312–324. https://doi.org/10.1080/02626667.2013.800944.
Gutentag, E. D., F. J. Heimes, N. C. Krothe, R. R. Luckey, and J. B. Weeks. 1984. Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming (USGS, USA, groundwater). US Geological Survey Professional Paper 1400B. Reston, VA: USGS.
Haykin, S. 2007. Redes neurais: Princípios e prática; tradução Paulo Martins Engel: 2. ed.—Dados eletrônicos. Porto Alegre, Brazil: Editora Bookman.
Jeung, M., S. Baek, J. Beom, K. H. Cho, Y. Her, and K. Yoon. 2019. “Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments.” J. Hydrol. 575 (Aug): 1099–1110. https://doi.org/10.1016/j.jhydrol.2019.05.079.
Konikow, L. F., and E. Kendy. 2005. “Groundwater depletion: A global problem.” Hydrogeol. J. 13 (1): 317–320. https://doi.org/10.1007/s10040-004-0411-8.
Kothari, K., S. Ale, J. P. Bordovsky, K. R. Thorp, D. O. Porter, and C. L. Munster. 2019. “Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes.” Agric. Syst. 170 (Mar): 49–62. https://doi.org/10.1016/j.agsy.2018.12.011.
Kouziokas, G. N., A. Chatzigeorgiou, and K. Perakis. 2018. “Multilayer feed forward models in groundwater level forecasting using meteorological data in public management.” Water Resour. Manage. 32 (15): 5041–5052. https://doi.org/10.1007/s11269-018-2126-y.
Lallahem, S., J. Mania, A. Hani, and Y. Najjar. 2005. “On the use of neural networks to evaluate groundwater levels in fractured media.” J. Hydrol. 307 (1–4): 92–111. https://doi.org/10.1016/j.jhydrol.2004.10.005.
Liu, Z., and M. Barahona. 2020. “Graph-based data clustering via multiscale community detection.” Appl. Network Sci. 5 (1): 1–20. https://doi.org/10.1007/s41109-019-0248-7.
Machiwal, D., V. Cloutier, C. Güler, and N. Kazakis. 2018. “A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection.” Environ. Earth Sci. 77 (19): 1–30. https://doi.org/10.1007/s12665-018-7872-x.
Maheswaran, R., and R. Khosa. 2013. “Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics.” Comput. Geosci. 52 (Mar): 422–436. https://doi.org/10.1016/j.cageo.2012.09.030.
Marek, G. W., Y. Chen, T. H. Marek, K. R. Heflin, S. A. O’Shaughnessy, P. H. Gowda, and D. K. Brauer. 2020. “Assessing planting date effects on seasonal water use of full- and short-season maize using SWAT in the southern Ogallala Aquifer region.” Irrig. Sci. 38 (1): 77–87. https://doi.org/10.1007/s00271-019-00653-3.
McGree, S., S. Schreider, and Y. Kuleshov. 2016. “Trends and variability in droughts in the Pacific Islands and Northeast Australia.” J. Clim. 29 (23): 8377–8397. https://doi.org/10.1175/JCLI-D-16-0332.1.
Melaku, N. D., and J. Wang. 2019. “A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada.” J. Hydrol. 575 (Aug): 420–431. https://doi.org/10.1016/j.jhydrol.2019.05.052.
Mirzavand, M., and R. Ghazavi. 2014. “A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods.” Water Resour. Manage. 29 (4): 1315–1328. https://doi.org/10.1007/s11269-014-0875-9.
Mitchell-McCallister, D., R. B. Williams, J. Bordovsky, J. Mustian, G. Ritchie, and K. Lewis. 2020. “Maximizing profits via irrigation timing for capacity-constrained cotton production.” Agric. Water Manage. 229 (Feb): 105932. https://doi.org/10.1016/j.agwat.2019.105932.
Modala, N. R., S. Ale, D. W. Goldberg, M. Olivares, C. L. Munster, N. Rajan, and R. A. Feagin. 2017. “Climate change projections for the Texas High Plains and Rolling Plains.” Theor. Appl. Climatol. 129 (1–2): 263–280. https://doi.org/10.1007/s00704-016-1773-2.
Moghaddam, H. K., H. K. Moghaddam, Z. R. Kivi, M. Bahreinimotlagh, and M. J. Alizadeh. 2019. “Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels.” Groundwater Sustainable Dev. 9 (Oct): 100237. https://doi.org/10.1016/j.gsd.2019.100237.
Mohanty, S., M. K. Jha, A. Kumar, and D. K. Panda. 2013. “Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi-Surua inter-basin of Odisha, India.” J. Hydrol. 495 (Jul): 38–51. https://doi.org/10.1016/j.jhydrol.2013.04.041.
Mohanty, S., M. K. Jha, A. Kumar, and K. P. Sudheer. 2010. “Artificial neural network modeling for groundwater level forecasting in a river island of eastern India.” Water Resour. Manage. 24 (9): 1845–1865. https://doi.org/10.1007/s11269-009-9527-x.
Mojid, M. A., A. B. M. Z. Hossain, and M. A. Ashraf. 2019. “Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties.” Environ. Pollut. 255 (Part 2): 113355. https://doi.org/10.1016/j.envpol.2019.113355.
Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati. 2015. “Hydrologic and water quality models: Performance measures and evaluation criteria.” Trans. ASABE 58 (6): 1763–1785. https://doi.org/10.13031/trans.58.10715.
Nayak, P. C., Y. R. Satyaji Rao, and K. P. Sudheer. 2006. “Groundwater level forecasting in a shallow aquifer using artificial neural network approach.” Water Resour. Manage. 20 (1): 77–90. https://doi.org/10.1007/s11269-006-4007-z.
Nourani, V., M. T. Alami, and F. D. Vousoughi. 2015. “Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling.” J. Hydrol. 524 (May): 255–269. https://doi.org/10.1016/j.jhydrol.2015.02.048.
Pathak, A. A., and B. M. Dodamani. 2019. “Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha River basin, India.” Nat. Resour. Res. 28 (3): 631–643. https://doi.org/10.1007/s11053-018-9417-0.
Patterson, J., and A. Gibson. 2017. Deep learning: A practitioner’s approach. 1st ed. Sebastopol: O’Reilly Media, Inc.
Rajaee, T., H. Ebrahimi, and V. Nourani. 2019. “A review of the artificial intelligence methods in groundwater level modeling.” J. Hydrol. 572 (May): 336–351. https://doi.org/10.1016/j.jhydrol.2018.12.037.
Santos, C. A. G., R. M. Brasil Neto, R. M. da Silva, and S. G. F. Costa. 2019. “Cluster analysis applied to spatiotemporal variability of monthly precipitation over Paraíba state using tropical rainfall measuring mission (TRMM) data.” Remote Sens. 11 (6): 637. https://doi.org/10.3390/rs11060637.
Steward, D. R., and A. J. Allen. 2016. “Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110.” Agric. Water Manage. 170 (May): 36–48. https://doi.org/10.1016/j.agwat.2015.10.003.
Stout, J. E. 2018. “Seasonal water-level perturbations beneath the high plains of the Llano Estacado.” J. Hydrol.: Reg. Stud. 18 (Aug): 1–14. https://doi.org/10.1016/j.ejrh.2018.04.009.
Subba Rao, N., and M. Chaudhary. 2019. “Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): A case study.” Groundwater Sustainable Dev. 9 (Oct): 100238. https://doi.org/10.1016/j.gsd.2019.100238.
Sun, Y., D. Wendi, D. E. Kim, and S. Y. Liong. 2016. “Application of artificial neural networks in groundwater table forecasting—A case study in a Singapore swamp forest.” Hydrol. Earth Syst. Sci. 20 (4): 1405–1412. https://doi.org/10.5194/hess-20-1405-2016.
Tao, H., M. M. Hameed, H. A. Marhoon, M. Zounemat-Kermani, H. Salim, K. Sungwon, S. O. Sulaiman, M. L. Tan, Z. Sa’adi, and A. D. Mehr. 2022. “Groundwater level prediction using machine learning models: A comprehensive review.” Neurocomputing 489 (Jun): 271–308. https://doi.org/10.1016/j.neucom.2022.03.014.
Torok, S. J. 1996. “The development of a high quality historical temperature database for Australia.” Ph.D. thesis, School of Earth Sciences, Univ. of Melbourne.
TWDB (Texas Water Development Board). 2016. “Texas aquifers study: Groundwater quantity, quality, flow, and contributions to surface water.” Accessed December 31, 2016. http://www.twdb.texas.gov/groundwater/docs/studies/TexasAquifersStudy_2016.pdf#page=125.
Wunsch, A., T. Liesch, and S. Broda. 2018. “Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX).” J. Hydrol. 567 (Dec): 743–758. https://doi.org/10.1016/j.jhydrol.2018.01.045.
Zhang, F., Y. M. F. Mukhtar, B. Liu, and J. Li. 2019. “Application of ANN to predict the apparent viscosity of waxy crude oil.” Fuel 254 (Oct): 115669. https://doi.org/10.1016/j.fuel.2019.115669.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 28Issue 3March 2023

History

Received: May 31, 2022
Accepted: Oct 14, 2022
Published online: Dec 21, 2022
Published in print: Mar 1, 2023
Discussion open until: May 21, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Student, Dept. of Civil and Environmental Engineering, Federal Univ. of Paraíba, João Pessoa, PB 58051-900, Brazil. ORCID: https://orcid.org/0000-0002-1905-6923. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Federal Univ. of Paraíba, João Pessoa, PB 58051-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-7927-9718. Email: [email protected]
Associate Professor, Academic Unit of Environmental Science and Technology, Federal Univ. of Campina Grande, Pombal, PB 58840-000, Brazil. ORCID: https://orcid.org/0000-0002-2425-6815. Email: [email protected]
Richarde Marques da Silva [email protected]
Associate Professor, Dept. of Geosciences, Federal Univ. of Paraíba, João Pessoa, PB 58051-900, Brazil. Email: [email protected]
Professor, Dept. of Biological and Agricultural Engineering and Zachry Dept. of Civil and Environmental Engineering, Texas A&M Univ., 321 Scoates Hall, 2117 TAMU, College Station, TX 77843-2117; Professor, National Water and Energy Center, UAE Univ., P.O. Box 15551, Al Ain, UAE. ORCID: https://orcid.org/0000-0003-1299-1457. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share