Abstract

Bioretention systems are one of the most common low-impact development (LID) facilities. In this paper, we develop a modeling framework that combines the one-dimensional Green and Ampt model with the outlet modeling of weirs, underdrains, bottom, and lateral exfiltration. This framework is specially designed to be applied in poorly gauged watersheds or where continuous simulations are intractable due to a lack of data. First, we calibrate and validate the model using field data. The Nash–Sutcliffe efficiency (NSE) indicator comparing observations with simulations varies from 0.58 to 0.83, while Pearson’s correlation coefficients (r2) vary from 0.91 to 0.98, indicating good agreement. Following, we assess various hydrologic performance indicators using the model by carrying out different analyses such as (1) defining critical rainfall duration for design storms, (2) assessing the flood performance of bioretention designed with predesign methods, and (3) assessing the optimal drainage areas that a bioretention could receive inflows from. Subsequently, we used the model to (4) perform a one-at-time sensitivity analysis identifying the single most sensitive parameters in bioretention hydrologic performance; and (5) assess the combined influence of parameters by performing Monte-Carlo simulations. The results indicate that the optimal impervious area to the drainage area is approximately 6% for the climate of São Carlos - SP. Furthermore, the critical rainfall duration for lot-scale bioretention with a subtropical climate is between 60 and 120 minutes. The bioretention surface area, the depth of the surface layer, and the saturated hydraulic conductivity of the medium were the parameters most sensitive to hydrologic performance. The results of the model comparison with the SWMM software show that both models are similar in infiltration modeling but fundamentally different in percolation conceptualization, causing a difference in the hydrographs between the developed model and the SWMM model. Finally, the results of the design optimization modeling show a simple mathematical procedure to optimally design bioretention by minimizing construction, maintenance, use of land, and other associated costs while guaranteeing expected design hydrological performance.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies. All software, models, and code can be freely downloaded from Gomes Jr. (2023).

Acknowledgments

This work was financially supported by the São Paulo Research Foundation (FAPESP) Grants (# 2018/20865-0) and (# 2017/21940-2). The authors gratefully acknowledge the support given by the University of São Paulo - São Carlos School of Engineering for allowing the implementation and monitoring of the laboratory and field-scale bioretention systems. The authors also gratefully acknowledge the support given by the National Institute of Science and Technology for Climate Change, Water Security Subcomponent, FAPESP Grant 2014/50848-9.

References

Abreu, F. G. 2019. “Quantificaç ão dos prejuízos econômicos à atividade comercial derivados de inundaç ões urbanas.” Ph.D. thesis, Dept. of Hydraulic and Sanitation Engineering, Universidade de São Paulo.
Akan, A. O. 2013. “Preliminary design aid for bioretention filters.” J. Hydrol. Eng. 18 (3): 318–323. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000554.
Asleson, B. C., R. S. Nestingen, J. S. Gulliver, R. M. Hozalski, and J. L. Nieber. 2009. “Performance assessment of rain gardens 1.” JAWRA J. Am. Water Resour. Assoc. 45 (4): 1019–1031. https://doi.org/10.1111/j.1752-1688.2009.00344.x.
Batalini de Macedo, M., M. N. Gomes Júnior, V. Jochelavicius, T. R. P. de Oliveira, and E. M. Mendiondo. 2022. “Modular design of bioretention systems for sustainable stormwater management under drivers of urbanization and climate change.” Sustainability 14 (11): 6799. https://doi.org/10.3390/su14116799.
Batalini de Macedo, M., M. Nobrega Gomes Junior, T. R. Pereira de Oliveira, H. Giacomoni, M. Imani, K. Zhang, C. Ambrogi Ferreira do Lago, and E. M. Mendiondo. 2021. “Low impact development practices in the context of united nations sustainable development goals: A new concept, lessons learned and challenges.” Crit. Rev. Environ. Sci. Technol. 52 (14): 2538–2581. https://doi.org/10.1080/10643389.2021.1886889.
Benesty, J., J. Chen, Y. Huang, and I. Cohen. 2009. “Pearson correlation coefficient.” In Noise reduction in speech processing, 1–4. Berlin: Springer.
Boancă, P., A. Dumitraş, L. Luca, S. Bors-Oprişa, and E. Laczi. 2018. “Analysing bioretention hydraulics and runoff retention through numerical modelling using RECARGA: A case study in a Romanian urban area.” Pol. J. Environ. Stud. 27 (5): 1965–1973. https://doi.org/10.15244/pjoes/79271.
Bond, J., E. Batchabani, M. Fuamba, D. Courchesne, and G. Trudel. 2021. “Modeling a bioretention basin and vegetated swale with a trapezoidal cross section using SWMM LID controls.” J. Water Manage. Model. 29: C474. https://doi.org/10.14796/JWMM.C474.
Brasil, J. A. T., M. B. de Macedo, T. R. P. de Oliveira, F. G. Ghiglieno, V. C. B. de Souza, G. Marinho e Silva, M. N. Gomes Júnior, F. A. A. de Souza, and E. M. Mendiondo. 2022. “Can we scale digital twins of nature-based solutions for stormwater and transboundary water security projects?” J. Hydroinf. 24 (4): 749–764.
Brown, R., R. Skaggs, and W. Hunt Iii. 2013. “Calibration and validation of DRAINMOD to model bioretention hydrology.” J. Hydrol. 486 (Apr): 430–442. https://doi.org/10.1016/j.jhydrol.2013.02.017.
Brunetti, G., J. Šimnek, and P. Piro. 2016. “A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement.” J. Hydrol. 540 (Sep): 1146–1161. https://doi.org/10.1016/j.jhydrol.2016.07.030.
Chapuis, R. P. 2012. “Predicting the saturated hydraulic conductivity of soils: A review.” Bull. Eng. Geol. Environ. 71 (3): 401–434. https://doi.org/10.1007/s10064-012-0418-7.
Coello, C. A. C., and G. B. Lamont. 2004. Vol. 1 of Applications of multi-objective evolutionary algorithms. Singapore: World Scientific.
Davis, A. P., W. F. Hunt, R. G. Traver, and M. Clar. 2009. “Bioretention technology: Overview of current practice and future needs.” J. Environ. Eng. 135 (3): 109–117. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:3(109).
de Macedo, M. B., T. R. Pereira de Oliveira, T. Halmenschlager Oliveira, M. Nóbrega Gomes Junior, J. A. Teixeira Brasil, C. Ambrogi Ferreira do Lago, and E. M. Mendiondo. 2021. “Evaluating low impact development practices potentials for increasing flood resilience and stormwater reuse through lab-controlled bioretention systems.” Water Sci. Technol. 84 (5): 1103–1124. https://doi.org/10.2166/wst.2021.292.
de Oliveira, T. R. P., M. B. de Macedo, T. H. Oliveira, C. A. F. do Lago, M. N. Gomes Jr., J. A. T. Brasil, and E. M. Mendiondo. 2021. “Different configurations of a bioretention system focused on stormwater harvesting in Brazil.” J. Environ. Eng. 147 (12): 04021058. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001938.
Diab, G., J. Hathaway, W. Lisenbee, R. Brown, and W. Hunt. 2022. “Fine scale hydrologic modelling of bioretention using DRAINMOD-urban: Verifying performance across multiple systems.” J. Hydrol. 614 (Nov): 128571. https://doi.org/10.1016/j.jhydrol.2022.128571.
Dietz, M. E. 2007. “Low impact development practices: A review of current research and recommendations for future directions.” Water Air Soil Pollut. 186 (1): 351–363. https://doi.org/10.1007/s11270-007-9484-z.
Dussaillant, A. R., C. H. Wu, and K. W. Potter. 2004. “Richards equation model of a rain garden.” J. Hydrol. Eng. 9 (3): 219–225. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:3(219).
Farthing, M. W., and F. L. Ogden. 2017. “Numerical solution of Richards’ equation: A review of advances and challenges.” Soil Sci. Soc. Am. J. 81 (6): 1257–1269. https://doi.org/10.2136/sssaj2017.02.0058.
Fava, M. C., M. B. Macedo, A. C. S. Buarque, A. M. Saraiva, A. C. B. Delbem, and E. M. Mendiondo. 2022. “Linking urban floods to citizen science and low impact development in poorly gauged basins under climate changes for dynamic resilience evaluation.” Water 14 (9): 1467. https://doi.org/10.3390/w14091467.
Fletcher, T. D., et al. 2015. “SUDS, LID, BMPS, WSUD and more–the evolution and application of terminology surrounding urban drainage.” Urban Water J. 12 (7): 525–542. https://doi.org/10.1080/1573062X.2014.916314.
Fletcher, T. D., H. Andrieu, and P. Hamel. 2013. “Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art.” Adv. Water Resour. 51 (Jan): 261–279. https://doi.org/10.1016/j.advwatres.2012.09.001.
Gomes, Jr., M. 2023. “Tc-hydro model v.0.0.1.” GitHub Repository. San Francisco: GitHub.
Gomes, Jr., M., P. Braga, E. Mendiondo, and L. Reis. 2020. “Análises estatísticas, visuais e não paramétricas para a otimizaç ão do ajuste de curvas idf e construç ão de ábacos de projeto de obras hidráulicas: Estudo de caso em São Carlos–SP.” Rev. DAE 69 (228): 171–189. https://doi.org/10.36659/dae.2021.013.
Gomes, Jr., M. N., M. H. Giacomoni, and E. M. Mendiondo. 2022. “Dimensionamento de biorretenç ões via simulaç ão baseada em processos: Modelo generalizável (TC-Hydro) aplicado em condições tpicas de projeto.” In XIV ENAU - Encontro Nacional de Águas Urbanas e IV SRRU - Simpósio de Revitalização de Rios Urbanos. Agronomia, Brazil: Brazilian Association of Water Resources: ABRHidro.
Green, W. H., and G. Ampt. 1911. “Studies on soil physics.” J. Agric. Sci. 4 (1): 1–24. https://doi.org/10.1017/S0021859600001441.
Gülbaz, S., and C. M. Kazezılmaz-Alhan. 2017a. “An evaluation of hydrologic modeling performance of EPA SWMM for bioretention.” Water Sci. Technol. 76 (11): 3035–3043. https://doi.org/10.2166/wst.2017.464.
Gülbaz, S., and C. M. Kazezılmaz-Alhan. 2017b. “Hydrological model of LID with rainfall-watershed-bioretention system.” Water Resour. Manage. 31 (6): 1931–1946. https://doi.org/10.1007/s11269-017-1622-9.
Hamby, D. M. 1994. “A review of techniques for parameter sensitivity analysis of environmental models.” Environ. Monit. Assess. 32 (2): 135–154. https://doi.org/10.1007/BF00547132.
He, Z., and A. P. Davis. 2011. “Process modeling of storm-water flow in a bioretention cell.” J. Irrig. Drain. Eng. 137 (3): 121–131. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000166.
Horton, R. E. 1939. “Analysis of runoff-plat experiments with varying infiltration-capacity.” EOS Trans. Am. Geophys. Union 20 (4): 693–711. https://doi.org/10.1029/TR020i004p00693.
Huff, F. A. 1967. “Time distribution of rainfall in heavy storms.” Water Resour. Res. 3 (4): 1007–1019. https://doi.org/10.1029/WR003i004p01007.
Kacimov, A., and Y. Obnosov. 2013. “Pseudo-hysteretic double-front hiatus-stage soil water parcels supplying a plant–root continuum: The Green-Ampt-Youngs model revisited.” Hydrol. Sci. J. 58 (1): 237–248. https://doi.org/10.1080/02626667.2012.743028.
Kavetski, D., P. Binning, and S. W. Sloan. 2002. “Noniterative time stepping schemes with adaptive truncation error control for the solution of Richards equation.” Water Resour. Res. 38 (10): 29. https://doi.org/10.1029/2001WR000720.
Keifer, C. J., and H. H. Chu. 1957. “Synthetic storm pattern for drainage design.” J. Hydraul. Div. 83 (4): 1332. https://doi.org/10.1061/JYCEAJ.0000104.
Lee, J. G., M. Borst, R. A. Brown, L. Rossman, and M. A. Simon. 2015. “Modeling the hydrologic processes of a permeable pavement system.” J. Hydrol. Eng. 20 (5): 04014070. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001088.
Lisenbee, W., J. Hathaway, L. Negm, M. Youssef, and R. Winston. 2020. “Enhanced bioretention cell modeling with DRAINMOD-urban: Moving from water balances to hydrograph production.” J. Hydrol. 582 (Mar): 124491. https://doi.org/10.1016/j.jhydrol.2019.124491.
Lisenbee, W. A., J. M. Hathaway, M. J. Burns, and T. D. Fletcher. 2021. “Modeling bioretention stormwater systems: Current models and future research needs.” Environ. Modell. Software 144 (Oct): 105146. https://doi.org/10.1016/j.envsoft.2021.105146.
Lucas, W. C. 2010. “Design of integrated bioinfiltration-detention urban retrofits with design storm and continuous simulation methods.” J. Hydrol. Eng. 15 (6): 486–498. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000137.
Macedo, M. B., C. A. F. Lago, E. M. Mendiondo, and V. C. B. Souza. 2018. “Performance of bioretention experimental devices: Contrasting laboratory and field scales through controlled experiments.” Rev. Bras. de Recur. Hidr. 23 (Dec): 111173. https://doi.org/10.1590/2318-0331.0318170038.
Marriott, M. 2009. Civil engineering hydraulics. Oxford, UK: Wiley.
McClymont, K., et al. 2020. “Towards urban resilience through sustainable drainage systems: A multi-objective optimisation problem.” J. Environ. Manage. 275 (Dec): 111173. https://doi.org/10.1016/j.jenvman.2020.111173.
McCuen, R. H., Z. Knight, and A. G. Cutter. 2006. “Evaluation of the Nash–Sutcliffe efficiency index.” J. Hydrol. Eng. 11 (6): 597–602. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597).
Meyer, J. L., M. J. Paul, and W. K. Taulbee. 2005. “Stream ecosystem function in urbanizing landscapes.” J. North Am. Benthological Soc. 24 (3): 602–612. https://doi.org/10.1899/04-021.1.
Miguez, M., O. Rezende, and A. Veról. 2015. Drenagem urbana: Do projeto tradicional à sustentabilidade. Amsterdam, Netherlands: Elsevier.
Mirjalili, S. 2019. “Genetic algorithm.” In Evolutionary algorithms and neural networks, 43–55. Cham, Switzerland: Springer.
Mooney, C. Z. 1997. Monte Carlo simulation. Thousand Oaks, CA: SAGE.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Ogden, F. L., and B. Saghafian. 1997. “Green and Ampt infiltration with redistribution.” J. Irrig. Drain. Eng. 123 (5): 386–393. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:5(386).
Paulo, S. 2012. Manual de drenagem e manejo de águas pluviais: Aspectos tecnológicos, diretrizes para projetos, 128. São Paulo, Brazil: SMdDU (SMDU).
PG County. 2007. Bioretention manual. Landover, MD: Prince George’s County, Maryland, Dept. of Environmental Resources, Environmental Services Division.
Porto, R. D. M. 2006. Hidráulica básica. São Carlos, Brazil: Escola de Engenharia de São Carlos - Universidade de São Paulo.
Richards, L. A. 1931. “Capillary conduction of liquids through porous mediums.” Physics 1 (5): 318–333. https://doi.org/10.1063/1.1745010.
Rossman, L. A. 2010. Storm water management model user’s manual, version 5.0. Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, USEPA.
Rossman, L. A., and W. C. Huber. 2016. Storm water management model reference manual volume iii-water quality. Cincinnati: USEPA National Risk Management Research Laboratory.
Santos, D. M., J. A. Goldenfum, and F. Dornelles. 2021. “Outflow adjustment coefficient for the design of storage facilities using the rain envelope method applied to Brazilian state capitals.” Rev. Ambiente Água 16 (Dec): 157–168. https://doi.org/10.4136/ambi-agua.2707.
Schueler, T. R., and R. A. Claytor. 2000. Maryland stormwater design manual. Baltimore: Maryland Dept. of the Environment.
SCS (Soil Conservation Service). 1986. Urban hydrology for small watersheds, technical release no. 55 (tr-55). Washington, DC: US Dept. of Agriculture, US Government Printing Office.
Silveira, A. D., and J. A. Goldenfum. 2007. “Metodologia generalizada para pré-dimensionamento de dispositivos de controle pluvial na fonte.” Rev. Bras. Recursos Hdricos 12 (2): 157–168. https://doi.org/10.21168/rbrh.v12n2.p157-168.
Šimnek, J., M. Šejna, and M. T. Van Genuchten. 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Version 2.0. Golden, CO: Colorado School of Mines US Salinity Lab.
Skaggs, R. W., M. Youssef, and G. Chescheir. 2012. “Drainmod: Model use, calibration, and validation.” Trans. ASABE 55 (4): 1509–1522. https://doi.org/10.13031/2013.42259.
Skibniewski, M. J., and L.-C. Chao. 1992. “Evaluation of advanced construction technology with AHP method.” J. Constr. Eng. Manage. 118 (3): 577–593. https://doi.org/10.1061/(ASCE)0733-9364(1992)118:3(577).
Spraakman, S., T. F. Rodgers, H. Monri-Fung, A. Nowicki, M. L. Diamond, E. Passeport, M. Thuna, and J. Drake. 2020. “A need for standardized reporting: A scoping review of bioretention research 2000–2019.” Water 12 (11): 3122. https://doi.org/10.3390/w12113122.
Stubchaer, J. M. 1975. “The Santa Barbara urban hydrograph method.” In Proc., National Symp. on Urban Hydrology and Sediment Control, 131–141. Lexington, KY: Univ. of Kentucky.
Student. 1908. “The probable error of a mean.” Biometrika 6 (1): 1–25. https://doi.org/10.1093/biomet/6.1.1.
Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan. 2005. “The urban stream syndrome: Current knowledge and the search for a cure.” J. North Am. Benthological Soc. 24 (3): 706–723. https://doi.org/10.1899/04-028.1.
Wang, M., D. Zhang, Y. Cheng, and S. K. Tan. 2019. “Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes.” J. Environ. Manage. 243 (Aug): 157–167. https://doi.org/10.1016/j.jenvman.2019.05.012.
Warrick, A., A. Islas, and D. Lomen. 1991. “An analytical solution to Richards’ equation for time-varying infiltration.” Water Resour. Res. 27 (5): 763–766. https://doi.org/10.1029/91WR00310.
Wurbs, R. A. 1996. Modeling and analysis of reservoir system operations. Upper Saddle River, NJ: Prentice Hall.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 28Issue 9September 2023

History

Received: Jan 5, 2022
Accepted: Apr 5, 2023
Published online: Jul 4, 2023
Published in print: Sep 1, 2023
Discussion open until: Dec 4, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil and Environmental Engineering, The Univ. of Texas at San Antonio, One UTSA Circle, BSE 1.310, TX 78249; Ph.D. Candidate, Dept. of Hydraulic Engineering and Sanitation, Univ. of São Paulo, São Carlos School of Engineering, Av. Trab. São Carlense, 400 - Centro, São Carlos, SP 13566-590 (corresponding author). ORCID: https://orcid.org/0000-0002-8250-8195. Email: [email protected]
Marcio Hofheinz Giacomoni, S.M.ASCE https://orcid.org/0000-0001-7027-4128 [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, The Univ. of Texas at San Antonio, One UTSA Circle, BSE 1.346, TX 78249. ORCID: https://orcid.org/0000-0001-7027-4128. Email: [email protected]
Marina Batalini de Macedo [email protected]
Assistant Professor, Institute of Natural Resources, Federal Univ. of Itajubá, Itajubá, Minas Gerais 37500-903, Brazil. Email: [email protected]
César Ambrogi Ferreira do Lago [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, The Univ. of Texas at San Antonio, One UTSA Circle, BSE 1.310, TX 78249. Email: [email protected]
José Artur Teixeira Brasil [email protected]
Ph.D. Student, Dept. of Civil and Environmental Engineering, The Univ. of Texas at San Antonio, One UTSA Circle, BSE 1.310, TX 78249. Email: [email protected]
São Carlos School of Engineering, Univ. of São Paulo, Av. Trab. São Carlense, 400 - Centro, São Carlos, SP 13566-590. ORCID: https://orcid.org/0000-0002-7841-046X. Email: [email protected]
Associate Professor, Dept. of Hydraulic Engineering and Sanitation, Univ. of São Paulo, São Carlos School of Engineering, Av. Trab. São Carlense, 400 - Centro, São Carlos, SP 13566-590. ORCID: https://orcid.org/0000-0003-2319-2773. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share