Technical Papers
Jun 6, 2023

Efficient Removal of Perfluorooctanoic Acid by UV-Based Peroxide and Persulfate Advanced Oxidation Processes

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27, Issue 4

Abstract

Perfluorooctanoic acid (PFOA) challenges traditional methods of aquatic treatment and recycling from recalcitrant organic compounds, which ubiquitously persist in the environment, mainly water bodies, and cause various adverse effects on humans and the environment. Conventional water treatment technologies are proven inefficient and must focus on advanced oxidation processes. This study conducted treatability studies for removing PFOA by direct photolysis, UV/peroxide, and UV/persulfate oxidation using a lab-scale reactor. The experiment was performed with an initial concentration of 20 mg/L for 120 min for a 500 mL of sample. The oxidant dosage and pH were optimized based on the mineralization efficiency. An efficient method for PFOA degradation is based on its percentage reduction in concentration, mineralization efficiency, and reaction kinetics study. It was found that all three processes were adequate for mineralizing PFOA. Among them, UV/persulfate was more effective in mineralizing PFOA. The total organic carbon removal percentages using direct photolysis, UV/persulfate, and UV/peroxide treatments were 49%, 80%, and 66%, respectively. The pseudofirst-order kinetics for these three were 0.160, 0.489, and 0.349 h−1, respectively.

Get full access to this article

View all available purchase options and get full access to this article.

References

Alalm, M. G., and D. C. Boffito. 2022. “Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review.” J. Chem. Eng. 450 (4): 138352. https://doi.org/10.1016/j.cej.2022.138352.
Andrews, D. Q., and O. V. Naidenko. 2020. “Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States.” Environ. Sci. Technol. Lett. 7: 931–936. https://doi.org/10.1021/acs.estlett.0c00713.
Bao, Y., S. Deng, X. Jiang, Y. Qu, Y. He, L. Liu, and G. Yu. 2018. “Degradation of PFOA substitute: GenX (HFPO–DA ammonium salt): Oxidation with UV/persulfate or reduction with UV/sulfite.” Environ. Sci. Technol. 52: 11728–11734.
Botlaguduru, V. S. 2016. “UV-sulfite based advanced reduction treatment of disinfection byproducts and perfluorooctanoic acid.” Doctoral dissertation, Texas A&M Univ.
Buck, R. C., J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. De Voogt, S. P. van Leeuwen, K. Kannan, S. A. Mabury, and S. P. van Leeuwen. 2011. “Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins.” Integr. Environ. Assess. Manage. 7: 513–541. https://doi.org/10.1002/ieam.258.
Cao, M. H., B. B. Wang, H. S. Yu, L. L. Wang, S. H. Yuan, and J. Chen. 2010. “Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation.” J. Hazard. Mater. 179: 1143–1146. https://doi.org/10.1016/j.jhazmat.2010.02.030.
Chen, X., and S. S. Mao. 2007. “Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications.” Chem. Rev. 107: 2891–2959. https://doi.org/10.1021/cr0500535.
Cummings, L., A. Matarazzo, N. Nelson, F. Sickels, and C. Storms. 2015. Recommendation on perfluorinated compound treatment options for drinking water. New Jersey Drinking Water Quality Institute Treatment Subcommittee Report. Hamilton: NJ: New Jersey Drinking Water Quality Institute.
Ding, W., X. Tan, G. Chen, J. Xu, K. Yu, and Y. Huang. 2021. “Molecular-level insights on the facet-dependent degradation of perfluorooctanoic acid.” ACS Appl. Mater. Interfaces 13: 41584–41592. https://doi.org/10.1021/acsami.1c10136.
Dombrowski, P. M., P. Kakarla, W. Caldicott, Y. Chin, V. Sadeghi, D. Bogdan, F. Barajas-Rodriguez, and S.-Y. D. Chiang. 2018. “Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS.” Rem. J. 28: 135–150. https://doi.org/10.1002/rem.21555.
Gomez-Ruiz, B., P. Ribao, N. Diban, M. J. Rivero, I. Ortiz, and A. Urtiaga. 2018. “Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2−rGO catalyst.” J. Hazard. Mater. 344: 950–957. https://doi.org/10.1016/j.jhazmat.2017.11.048.
Hou, C., W. Chen, L. Fu, S. Zhang, C. Liang, and Y. Wang. 2021. “Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation.” Int. J. Biol. Macromol. 174: 319–329. https://doi.org/10.1016/j.ijbiomac.2021.01.184.
Kadiyala, C. S. R., S. E. Tomechko, and M. Miyagi. 2010. “Perfluorooctanoic acid for shotgun proteomics.” PLoS One 5: e15332. https://doi.org/10.1371/journal.pone.0015332.
Khorramdel, H., M. Omidvar, M. Tajaddini, Y. Huang, M. R. Saeb, F. Seidi, and H. Xiao. 2022. “Surface engineering of graphene oxide membranes for selective separation of perfluorooctanoic acids.” J. Membr. Sci. 664: 121047. https://doi.org/10.1016/j.memsci.2022.121047.
Kim, T.-H., S.-H. Lee, H. Y. Kim, K. Doudrick, S. Yu, and S. D. Kim. 2019. “Decomposition of perfluorooctane sulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants.” Chem. Eng. J. 361: 1363–1370. https://doi.org/10.1016/j.cej.2018.10.195.
Larsen, B. S., P. Stchur, B. Szostek, S. F. Bachmura, R. C. Rowand, K. B. Prickett, and R. C. Buck. 2006. “Method development for the determination of residual fluorotelomer raw materials and perflurooctanoate in fluorotelomer-based products by gas chromatography and liquid chromatography mass spectrometry.” J. Chromatogr. A 1110: 117–124. https://doi.org/10.1016/j.chroma.2006.01.086.
Lee, Y.-C., S.-L. Lo, J. Kuo, and Y.-L. Lin. 2012. “Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40°C.” Chem. Eng. J. 198–199: 27–32. https://doi.org/10.1016/j.cej.2012.05.073.
Leung, S. C. E., P. Shukla, D. Chen, E. Eftekhari, H. An, F. Zare, and Q. Li. 2022. “Emerging technologies for PFOS/PFOA degradation: A review.” Sci. Total Environ. 827: 153669. https://doi.org/10.1016/j.scitotenv.2022.153669.
Li, F., Z. Wei, K. He, L. Blaney, X. Cheng, T. Xu, and D. Zhao. 2020a. “A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst.” Water Res. 185: 116219. https://doi.org/10.1016/j.watres.2020.116219.
Li, Z., S. Li, Y. Tang, X. Li, J. Wang, and L. Li. 2020b. “Highly efficient degradation of perfluorooctanoic acid: An integrated photo-electrocatalytic ozonation and mechanism study.” Chem. Eng. J. 391: 123533. https://doi.org/10.1016/j.cej.2019.123533.
Li, Y. F., W. Y. Chien, Y. J. Liu, Y. C. Lee, S.L. Lo, and C.Y. Hu. 2021. “Perfluorooctanoic acid (PFOA) removal by flotation with cationic surfactants.” Chemosphere 266: 128949.
Lin, J.-C., S.-L. Lo, C.-Y. Hu, Y.-C. Lee, and J. Kuo. 2015. “Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions.” Ultrason. Sonochem. 22: 542–547. https://doi.org/10.1016/j.ultsonch.2014.06.006.
Li, Y. F., W. Y. Chien, Y. J. Liu, Y. C. Lee, S.L. Lo, and C.Y. Hu. 2021. “Perfluorooctanoic acid (PFOA) removal by flotation with cationic surfactants.” Chemosphere 266: 128949.
Liou, J. S.-C., B. Szostek, C. M. DeRito, and E. L. Madsen. 2010. “Investigating the biodegradability of perfluorooctanoic acid.” Chemosphere 80: 176–183. https://doi.org/10.1016/j.chemosphere.2010.03.009.
Liu, C. S., C. P. Higgins, F. Wang, and K. Shih. 2012. “Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water.” Sep. Purif. Technol. 91: 46–51. https://doi.org/10.1016/j.seppur.2011.09.047.
Liu, G., C. Li, B. A. Stewart, L. Liu, M. Zhang, M. Yang, and K. Lin. 2020. “Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid.” Chem. Eng. J. 399: 125722. https://doi.org/10.1016/j.cej.2020.125722.
Lopes da Silva, F., T. Laitinen, M. Pirilä, R. L. Keiski, and S. Ojala. 2017. “Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3 and Ga2O3 catalysts.” Top. Catal. 60: 1345–1358. https://doi.org/10.1007/s11244-017-0819-8.
Meng, P., X. Fang, A. Maimaiti, G. Yu, and S. Deng. 2019. “Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon.” Chemosphere 224: 187–194. https://doi.org/10.1016/j.chemosphere.2019.02.132.
Metz, J. M. N. 2022. “Discerning the role of superoxide and chlorine radicals in perfluorooctanoic acid (PFOA) degradation by advanced oxidation processes.” Ph.D. thesis, Rice Univ.
Moody, C. A., G. N. Hebert, S. H. Strauss, and J. A. Field. 2003. “Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA.” J. Environ. Monit. 5: 341–345. https://doi.org/10.1039/b212497a.
Norzaee, S., M. Taghavi, B. Djahed, and F. Kord Mostafapour. 2018. “Degradation of Penicillin G by heat activated persulfate in aqueous solution.” J. Environ. Manage. 215: 316–323. https://doi.org/10.1016/j.jenvman.2018.03.038.
O’Hagan, D. 2008. “Understanding organofluorine chemistry. An introduction to the C–F bond.” Chem. Soc. Rev. 37: 308–319. https://doi.org/10.1039/B711844A.
Olsen, G. W., J. M. Burris, J. H. Mandel, and L. R. Zobel. 1999. “Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees.” J. Occup. Environ. Med. 41 (9): 799–806. https://doi.org/10.1097/00043764-199909000-00012.
Pan, D., S. Xiao, X. Chen, R. Li, Y. Cao, D. Zhang, S. Pu, Z. Li, G. Li, and H. Li. 2019. “Efficient photocatalytic fuel cell via simultaneous visible-photoelectrocatalytic degradation and electricity generation on a porous coral-like WO3/W photoelectrode.” Environ. Sci. Technol. 53: 3697–3706. https://doi.org/10.1021/acs.est.8b05685.
Park, S., L. S. Lee, V. F. Medina, A. Zull, and S. Waisner. 2016. “Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation.” Chemosphere 145: 376–383. https://doi.org/10.1016/j.chemosphere.2015.11.097.
Qian, L., F.-D. Kopinke, T. Scherzer, J. Griebel, and A. Georgi. 2022. “Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites.” Chem. Eng. J. 429: 132500. https://doi.org/10.1016/j.cej.2021.132500.
Santos, A., S. Rodríguez, F. Pardo, and A. Romero. 2016. “Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water.” Sci. Total Environ. 563–564: 657–663. https://doi.org/10.1016/j.scitotenv.2015.09.044.
Schlesinger, D. R., C. McDermott, N. Q. Le, J. S. Ko, J. K. Johnson, P. A. Demirev, and Z. Xia. 2022. “Destruction of per/poly-fluorinated alkyl substances by magnetite nanoparticle-catalyzed UV-Fenton reaction.” Environ. Sci. Water Res. Technol. 8: 2732–2743. https://doi.org/10.1039/D2EW00058J.
Silveira, J. E., W. S. Paz, P. Garcia-Munoz, J. A. Zazo, and J. A. Casas. 2017. “UV-LED/ilmenite/persulfate for azo dye mineralization: The role of sulfate in the catalyst deactivation.” Appl. Catal., B 219: 314–321. https://doi.org/10.1016/j.apcatb.2017.07.072.
Suja, F., B. K. Pramanik, and S. M. Zain. 2009. “Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: A review paper.” Water Sci. Technol. 60: 1533–1544. https://doi.org/10.2166/wst.2009.504.
Sun, M., H. Zhou, B. Xu, and J. Bao. 2018. “Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO32− process.” Environ. Sci. Pollut. Res. 25: 7443–7453. https://doi.org/10.1007/s11356-017-1024-9.
Tang, H., Q. Xiang, M. Lei, J. Yan, L. Zhu, and J. Zou. 2012. “Efficient degradation of perfluorooctanoic acid by UV–Fenton process.” Chem. Eng. J. 184: 156–162. https://doi.org/10.1016/j.cej.2012.01.020.
Trojanowicz, M., A. Bojanowska-Czajka, I. Bartosiewicz, and K. Kulisa. 2018. “Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)—A review of recent advances.” Chem. Eng. J. 336: 170–199. https://doi.org/10.1016/j.cej.2017.10.153.
Wang, D., A. L. Junker, M. Sillanpää, Y. Jiang, and Z. Wei. 2022. “Photo-based advanced oxidation processes for zero pollution: Where Are We Now?” Engineering. 23: 19–23. https://doi.org/10.1016/j.eng.2022.08.005.
Wang, L., B. Batchelor, S. D. Pillai, and V. S. V. Botlaguduru. 2016. “Electron beam treatment for potable water reuse: Removal of bromate and perfluorooctanoic acid.” Chem. Eng. J. 302: 58–68. https://doi.org/10.1016/j.cej.2016.05.034.
Wang, S., Q. Yang, F. Chen, J. Sun, K. Luo, F. Yao, X. Wang, D. Wang, X. Li, and G. Zeng. 2017. “Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review.” Chem. Eng. J. 328: 927–942. https://doi.org/10.1016/j.cej.2017.07.076.
Wang, J., and R. Zhuan. 2020. “Degradation of antibiotics by advanced oxidation processes: An overview.” Sci. Total Environ. 701: 135023. https://doi.org/10.1016/j.scitotenv.2019.135023.
Wei, Z., T. Xu, and D. Zhao. 2019. “Treatment of per-and polyfluoroalkyl substances in landfill leachate: Status, chemistry and prospects.” Environ. Sci. Water Res. Technol. 5: 1814–1835. https://doi.org/10.1039/C9EW00645A.
Wu, L. L., H. W. Gao, N. Y. Gao, F. F. Chen, and L. Chen. 2009. “Interaction of perfluorooctanoic acid with human serum albumin.” BMC Struct. Biol. 9: 1–7. https://doi.org/10.1186/1472-6807-9-1.
Xiao, R., Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, and D. D. Dionysiou. 2018. “Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies.” Curr. Opin. Chem. Eng. 19: 51–58. https://doi.org/10.1016/j.coche.2017.12.005.
Xu, Y., H. Lin, Y. Li, and H. Zhang. 2017. “The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis.” Sci. Total Environ. 609: 644–654. https://doi.org/10.1016/j.scitotenv.2017.07.151.
Yan, W., T. Qian, L. Zhang, L. Wang, and Y. Zhou. 2021. “Interaction of perfluorooctanoic acid with extracellular polymeric substances—Role of protein.” J. Hazard. Mater. 401: 123381. https://doi.org/10.1016/j.jhazmat.2020.123381.
Yang, L., L. He, J. Xue, Y. Ma, Z. Xie, L. Wu, and Z. Zhang. 2020a. “Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective.” J. Hazard. Mater. 393: 122405. https://doi.org/10.1016/j.jhazmat.2020.122405.
Yang, Y., Z. Zheng, W. Ji, J. Xu, and X. Zhang. 2020b. “Insights to perfluorooctanoic acid adsorption micro-mechanism over Fe-based metal organic frameworks: Combining computational calculation with response surface methodology.” J. Hazard. Mater. 395: 122686. https://doi.org/10.1016/j.jhazmat.2020.122686.
Yates, B. J., R. Darlington, R. Zboril, and V. K. Sharma. 2014. “High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water.” Environ. Chem. Lett. 12: 413–417. https://doi.org/10.1007/s10311-014-0463-5.
Yin, P., Z. Hu, X. Song, J. Liu, and N. Lin. 2016. “Activated persulfate oxidation of perfluorooctanoic acid (PFOA) in groundwater under acidic conditions.” Int. J. Environ. Res. Public Health 13: 602. https://doi.org/10.3390/ijerph13060602.
Yuan, Y., L. Feng, N. Xie, L. Zhang, and J. Gong. 2020. “Rapid photochemical decomposition of perfluorooctanoic acid mediated by a comprehensive effect of nitrogen dioxide radicals and Fe3+/Fe2+ redox cycle.” J. Hazard. Mater. 388: 121730. https://doi.org/10.1016/j.jhazmat.2019.121730.
Zhang, D., Q. Luo, B. Gao, S.-Y. D. Chiang, D. Woodward, and Q. Huang. 2016. “Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.” Chemosphere 144: 2336–2342. https://doi.org/10.1016/j.chemosphere.2015.10.124.
Zhang, M., Y. Zhang, L. Tang, G. Zeng, J. Wang, Y. Zhu, C. Feng, Y. Deng, and W. He. 2019. “Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation.” J. Colloid Interface Sci. 539: 654–664. https://doi.org/10.1016/j.jcis.2018.12.112.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27Issue 4October 2023

History

Received: Nov 18, 2022
Accepted: Apr 4, 2023
Published online: Jun 6, 2023
Published in print: Oct 1, 2023
Discussion open until: Nov 6, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Kanmani Sellappa [email protected]
Centre for Environmental Studies, College of Engineering Guindy, Anna Univ., Chennai 600 025, Tamil Nadu, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share