Technical Papers
Mar 16, 2023

Coupled Effect of Cementation Solution, Curing Period, Molding Water Content, and Compactive Effort on Strength Performance of Biotreated Lateritic Soil for Municipal Solid Waste Containment Application

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27, Issue 3

Abstract

Microbial-induced calcite precipitation (MICP) is a soil improvement technique that has shown great potential in several geotechnical applications in the previous decade. Some factors that led to the improved strength included cementation concentration. The combined influence of these factors with the cementation reagent was paramount to the calcite precipitation level within soil grain contact of a biotreated compacted fine-grained soil. In this study, the influence of the concentration of the cementation solution [(CCS) 0.25, 0.5, 0.75 and 1.00 M], curing time [(CT) 24 h, 3, 7, 14, and 28 days], and molding water content [MWC (9.8%–19.6%)] of biomediated lateritic soil or lateritic soil that was bioinfused with ureolytic microbes at different suspension densities (cells/mL) and compacted with Reduced British Standard Light (RBSL), British Standard Light (BSL), West African Standard (WAS), and British Standard Heavy (BSH) energy, respectively, were evaluated. In addition, this study focused on unconfined compressive strength (UCS). The results showed an increased UCS with the corresponding average calcite content up to peak values at 0.5 M cementation concentration for the five considered bacterial cells/mL. In addition, the results showed a linear relationship between UCS and average calcite content for the CCS that were considered. The effect of the curing period on UCS was marginal within individual cementation concentrations regardless of bacterial cells/mL. The UCS of the specimen that contained the optimal 0.5 M cementation concentration increased with higher bacterial cells/mL but decreased with the MWC. The qualitative microanalysis that used scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses that evaluated the untreated and biotreated specimens showed the formation of calcite, which increased the soil strength by blocking the soil pores through grain–grain contacts.

Practical Applications

Microbial-induced calcite precipitation (MICP) techniques have been carried out successfully in numerous studies under laboratory conditions for civil engineering infrastructures. However, data on its application in engineered municipal solid waste (MSW) containment that uses lateritic soil remains limited. Upscaled MICPs have been used in geotechnical applications. In addition, the increased attention, expectations or both of other application areas has established how the previous laboratory scale studies corroborated the field expectations and applications. This study showed the applicability of a ureolytic MICP process (i.e., through ex situ biostimulation). This was used to improve the shear strength performance of lateritic soil under several selective coupled factors when the overburden stress in a barrier waste containment application was contained. The requirements of materials for use in satisfactory waste containment include a number of factors; however, this study was limited to shear strength performance. This is one of the significant criteria that are used when delineating a suitable acceptable zone or limit when materials for engineered barrier systems are selected. This laboratory scale study could provide practical applications for biotreated lateritic soils, which satisfy the strength requirement (i.e., ≥200 kN/m2) for MSW containment applications.

Get full access to this article

View all available purchase options and get full access to this article.

References

Achal, V., and X. Pan. 2011. “Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation.” Curr. Microbiol. 62 (3): 894–902. https://doi.org/10.1007/s00284-010-9801-4.
Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al-Thawadi, S., and R. Cord-Ruwisch. 2012. “Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge.” J. Adv. Sci. Eng. Res. 2: 12–26.
Amrhein, C., M. F. Zahow, and D. L. Suarez. 1993. “Calcite supersaturation in soil suspensions.” Soil Sci. 156 (3): 163–170. https://doi.org/10.1097/00010694-199309000-00005.
Andrew, R. M. 2019. “Global CO2 emissions from cement production, 1928–2018.” Earth Syst. Sci. Data 11 (4): 1675–1710. https://doi.org/10.5194/essd-11-1675-2019.
Arya, I. W., I. W. Wiraga, and I. G. A. G. Suryanegara. 2018. “Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency.” J. Phys. Conf. Ser. 953: 012103. https://doi.org/10.1088/1742-6596/953/1/012103.
ASTM E2809-13. 2013. Standard guide for using scanning electron microscopy/X-ray spectrometry in forensic paint examinations. West Conshohocken, PA: ASTM.
Ayeldeen, M., Y. Hara, M. Kitazume, and A. Negm. 2016. “Unconfined compressive strength of compacted disturbed cement-stabilized soft clay.” Int. J. Geosynth. Ground Eng. 2 (4): 1–10. https://doi.org/10.1007/s40891-016-0064-4.
Baldovino, J. A., E. B. Moreira, W. Teixeira, R. L. Izzo, and J. L. Rose. 2018. “Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil.” J. Rock Mech. Geotech. Eng. 10 (1): 188–194. https://doi.org/10.1016/j.jrmge.2017.10.001.
Bell, F. G. 1993. Engineering geology. London: Blackwell.
Berner, A. R., J. T. Westrich, R. Graber, J. Smith, and C. S. Martens. 1978. “Inhibition of organic precipitation from supersaturation seawater: A laboratory and field study.” Am. J. Sci. 278 (6): 816–837. https://doi.org/10.2475/ajs.278.6.816.
BSI (British Standard Institute). 1990. Method of testing soils for civil engineering purpose. BS 1377-3. London: BSI.
Burbank, M., T. Weaver, T. Green, B. Williams, and R. Crawford. 2011. “Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soil.” Geomicrobiol. J. 28 (4): 301–312. https://doi.org/10.1080/01490451.2010.499929.
Burton, E. A., and L. M. Walter. 1990. “The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater.” Geochim. Cosmochim. Acta 54 (3): 797–808. https://doi.org/10.1016/0016-7037(90)90374-T.
Canakci, H., W. Sidik, and I. H. Kilicc. 2015. “Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil.” Soils Found. 55 (5): 1211–1221. https://doi.org/10.1016/j.sandf.2015.09.020.
Cardoso, R., R. Pedreira, S. O. D. Duarte, and G. A. Monteiro. 2020. “About calcium carbonate precipitation on sand biocementation.” Eng. Geol. 271: 105612. https://doi.org/10.1016/j.enggeo.2020.105612.
Cardoso, R., I. Pires, S. O. D. Duarte, and G. A. Monteiro. 2018. “Effects of clay’s chemical interactions on biocementation.” Appl. Clay Sci. 156: 96–103. https://doi.org/10.1016/j.clay.2018.01.035.
Chapin, K. C., and T. Lauderdale. 2003. “Reagents, stains, and media: Bacteriology.” In Manual of clinical microbiology, 8th ed., edited by P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. P. Faller, and R. H. Yolken. Washington, DC: ASM Press.
Chen, H., C. Qian, and H. Huang. 2016. “Self-healing cementitious materials based on bacteria and nutrients immobilized respectively.” Constr. Build. Mater. 126: 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Chiet, K. T. P., K. A. Kassim, K. B. Chen, U. Martula, C. S. Yah, and A. Arefnia. 2016. “Effect of reagents concentration on bio-cementation of tropical residual soil.” IOP Conf. Ser. Mater. Sci. Eng. 136: 012030. https://doi.org/10.1088/1757-899X/136/1/012030.
Chipera, S. J., and D. L. Bish. 2013. “Fitting full X-ray diffraction patterns for quantitative analysis: A method for readily quantifying crystalline and disordered phases.” Adv. Mater. Phys. Chem. 3 (1): 47–53. https://doi.org/10.4236/ampc.2013.31A007.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H.-L. Liu. 2014. “Optimization of calcium-based bioclogging and biocementation of sand.” Acta Geotech. 9 (2): 277–285. https://doi.org/10.1007/s11440-013-0278-8.
Daniel, D. E., and Y. K. Wu. 1993. “Compacted clay liners and covers for arid sites.” J. Geotech. Eng. 119 (2): 223–237. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(223).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
De Muynck, W., N. De Belie, and W. Verstraete. 2010. “Microbial carbonate precipitation in construction materials: A review.” Ecol. Eng. 36 (2): 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006.
Devrani, R., A. A. Dubey, K. Ravi, and L. Sahoo. 2021. “Applications of bio-cementation and bio-polymerization for aeolian erosion control.” J. Arid. Environ. 187 (7): 104433. https://doi.org/10.1016/j.jaridenv.2020.104433.
Dhami, N. K., W. R. Alsubhi, E. Watkin, and A. Mukherjee. 2017. “Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation.” Front. Microbiol. 8: 1267. https://doi.org/10.3389/fmicb.2017.01267.
Dhami, N. K., M. S. Reddy, and A. Mukherjee. 2013a. “Biomineralization of calcium carbonates and their engineered applications: A review.” Front. Microbiol. 4: 1–13. https://doi.org/10.3389/fmicb.2013.00314.
Dhami, N. K., M. S. Reddy, and A. Mukherjee. 2013b. “Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.” J. Microbiol. Biotechnol. 23 (5): 707–714. https://doi.org/10.4014/jmb.1212.11087.
Doner, H. E., and P. F. Pratt. 1968. “Solubility of calcium carbonate precipitated in montmorillonite suspensions.” Soil Sci. Soc. Am. J. 32 (5): 743–744. https://doi.org/10.2136/sssaj1968.03615995003200050046x.
Dubey, A. A., R. Devrani, K. Ravi, N. Kaur, A. Mukherjee, and L. Sahoo. 2021. “Experimental investigation to mitigate aeolian erosion via bio-cementation employed with a novel ureolytic soil isolate.” Aeolian Res. 52: 100727. https://doi.org/10.1016/j.aeolia.2021.100727.
Dubey, A. A., R. Murugan, K. Ravi, A. Mukherjee, and N. K. Dhami. 2022. “Investigation on the impact of cementation media concentration on properties of bio-cement under stimulation and augmentation approaches.” J. Hazard. Toxic Radioact. Waste 26 (1): 04021050. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000662.
Etim, R. K., I. C. Attah, D. U. Ekpo, and I. N. Usanga. 2022a. “Evaluation on stabilization role of lime and cement in expansive black clay – oyster shell ash composite.” Transp. Infrastruct. Geotechnol. 9: 729–763. https://doi.org/10.1007/s40515-021-00196-1.
Etim, R. K., D. U. Ekpo, I. C. Attah, and K. C. Onyelowe. 2021. “Effect of micro sized quarry dust particle on the compaction and strength properties of cement stabilized lateritic soil.” Cleaner Mater. 2: 100023. https://doi.org/10.1016/j.clema.2021.100023.
Etim, R. K., D. U. Ekpo, U. B. Ebong, and I. N. Usanga. 2022b. “Influence of periwinkle shell ash on the strength properties of cement-stabilized lateritic soil.” Int. J. Pavement Res. 15: 1062–1078 https://doi.org/10.1007/s42947-021-00072-8.
Etim, R. K., D. U. Ekpo, G. U. Etim, and I. C. Attah. 2022c. “Evaluation of lateritic soil stabilized with lime and periwinkle shell ash (PSA) admixture bound for sustainable road materials.” Innovative Infrastruct. Solutions 7: 62. https://doi.org/10.1007/s41062-021-00665-z.
Etim, R. K., T. S. Ijimdiya, A. O. Eberemu, and K. J. Osinubi. 2022d. “Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium using MICP technique: Criterion for barrier material in waste containment.” Cleaner Mater. 5: 100110. https://doi.org/10.1016/j.clema.2022.100110.
Ghobadi, M. H., Y. Abdilor, and R. Babazadeh. 2013. “Stabilization of clay soils using lime and effect of pH variations on shear strength parameters.” Bull. Eng. Geol. Environ. 73 (2): 611–619. https://doi.org/10.1007/s10064-013-0563-7.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms.” Sci. Rep. 9: 11517. https://doi.org/10.1038/641598-019-47973-0.
Gowthaman, S., T. Iki, K. Nakashima, K. Ebina, and S. Kawasaki. 2019. “Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region.” SN Appl. Sci. 1 (11): 1480. https://doi.org/10.1007/s42452-019-1508-y.
Gowthaman, S., K. Nakashima, and S. Kawasaki. 2020. “Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation.” Soils Found. 60 (4): 840–855. https://doi.org/10.1016/j.sandf.2020.05.012.
Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano. 2003. “Strain-specific ureolytic microbial calcium carbonate precipitation.” Appl. Environ. Microbiol. 69 (8): 4901–4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003.
Heveran, C. M., L. Liang, A. Nagarajan, M. H. Hubler, R. Gill, J. C. Cameron, S. M. Cook, and W. V. Srubar. 2019. “Engineered ureolytic microorganisms Can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate.” Sci. Rep. 9 (1): 1–13. https://doi.org/10.1038/s41598-019-51133-9.
Inagaki, Y., M. Tsukamoto, H. Mori, T. Sasaki, K. Soga, A. Qabany, and T. Taha. 2011. “The influence of injection conditions and soil types on soil improvement by microbial functions.” In Geo-Frontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication 211, edited by J. Han and D. E. Alzamora, 4021–4030. Reston, VA: ASCE.
Inskeep, W. P., and P. R. Bloom. 1986a. “Kinetics of calcite precipitation in the presence of water soluble organic ligands.” Soil Sci. Soc. Am. J. 50 (5): 1167–1172. https://doi.org/10.2136/sssaj1986.03615995005000050015x.
Inskeep, W. P., and P. R. Bloom. 1986b. “Calcium carbonate supersaturation in soil solutions of calciaquolls.” Soil Sci. Soc. Am. J. 50 (6): 1431–1437. https://doi.org/10.2136/sssaj1986.03615995005000060011x.
Jeremiah, J. J., S. J. Abbey, C. A. Booth, and A. Kashyap. 2021. “Geopolymers as alternative sustainable binders for stabilisation of clays-A review.” Geotechnics 1: 439–459. https://doi.org/10.3390/geotechnics1020021.
Kalantary, F., and M. Kahani. 2015. “Evaluation of the ability to control biological precipitation to improve sandy soils.” Procedia Earth Planet. Sci. 15: 278–284. https://doi.org/10.1016/j.proeps.2015.08.067.
Konstantinou, C., Y. Wang, G. Biscontin, and K. Soga. 2021. “The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens.” Sci. Rep. 11 (1): 1–17. https://doi.org/10.1038/s41598-021-85712-6.
Lebron, I., and D. L. Suarez. 1996. “Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25°C and pH > 7.5.” Geochim. Cosmochim. Acta 60 (15): 2765–2776. https://doi.org/10.1016/0016-7037(96)00137-8.
Lebron, I., and D. L. Suarez. 1998. “Kinetics and mechanisms of precipitation of calcite as affected by PCO2 and organic ligands at 25°C.” Geochim. Cosmochim. Acta 62 (3): 405–416. https://doi.org/10.1016/S0016-7037(97)00364-5.
Levy, R. 1981. “Effect of dissolution of aluminosilicates and carbonates on ionic activity products of calcium carbonate in soil extracts.” Soil Sci. Soc. Am. J. 45 (2): 250–255. https://doi.org/10.2136/sssaj1981.03615995004500020005x.
Li, W., W. S. Chen, P. P. Zhou, and L. J. Yu. 2013. “Influence of enzyme concentration on bio-sequestration of CO2 in carbonate form using bacterial carbonic anhydrase.” Chem. Eng. J. 232: 149–156. https://doi.org/10.1016/j.cej.2013.07.069.
Lin, H., M. T. Suleiman, J. Helm, and D. G. Brown. 2014. “Measurement of bonding strength between glass beads treated by microbial induced calcite precipitation (MICP).” In GeoCongress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Geotechnical Special Publication 234, edited by M. Abu-Farsakh, X. Yu, and L. R. Hoyos, 1625–1634. Reston, VA: ASCE.
Mahawish, A., A. Bouazza, and W. P. Gates. 2019. “Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different bio-cementation levels.” J. Geotech. Geoenviron. Eng. 145 (8): 04019033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066.
Mishra, A. K., and V. Ravindra. 2015. “On the utilization of fly ash and cement mixtures as a landfill liner material.” Int. J. Geosynth. Ground Eng. 1: 17. https://doi.org/10.1007/s40891-015-0019-1.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131: 1222–1233. https://doi.org/10.1061/(asce)1090-0241(2005)131:10(1222).
Moyo, C. C., D. E. Kissel, and M. L. Cabrera. 1989. “Temperature effects on soil urease activity.” Soil Biol. Biochem. 21: 935–938. https://doi.org/10.1016/0038-0717(89)90083-7.
Muhammed, A. S., K. A. Kassim, and M. U. Zango. 2018. “Review on biological process of soil improvement in the mitigation of liquefaction in sandy soil.” MATEC Web Conf. 250: 01017. https://doi.org/10.1051/matecconf/201825001017.
Muhammed, A. S., A. K. Kassim, M. U. Zango, K. Ahmad, and J. Makinda. 2021. “Enhancing the strength of sandy soil through enzyme‐induced calcite precipitation.” Int. J. Geosynth. Ground Eng. 7: 45. https://doi.org/10.1007/s40891-021-00289-4.
Mujah, D., L. Cheng, and M. A. Shahin. 2019. “Microstructural and geo-mechanical study on biocemented sand for optimization of MICP process.” J. Mater. Civ. Eng. 31 (4): 04019025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660.
Nafisi, A., Q. Liu, and B. M. Montoya. 2021. “Effect of stress path on the shear response of bio-cemented sands.” Acta Geotech. 16: 3239–3251. https://doi.org/10.1007/s11440-021-01286-7.
Nemati, M., E. A. Greene, and G. Voordouw. 2005. “Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option.” Process Biochem. 40: 925–933. https://doi.org/10.1016/j.procbio.2004.02.019.
Ng, W. S., M. I. Lee, and S. L. Hii. 2012. “An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement.” Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 6 (2): 188–194.
NGS. 1997. Nigerian general specification, roads and bridges works. Abuja, Nigeria: Federal Ministry of Works and Housing.
O’Donnell, S. T., E. Kavazanjian, and B. E. Rittmann. 2017a. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP.” J. Geotech. Geoenviron. Eng. 143 (12): 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806.
O’Donnell, S. T., B. E. Rittmann, and E. Kavazanjian. 2017b. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation.” J. Geotech. Geoenviron. Eng. 143 (12): 04017094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818.
Oliveira, P. J. V., and J. P. G. Neves. 2019. “Effect of organic matter content on enzymatic bio-cementation process applied to coarse-grained soils.” J. Mater. Civ. Eng. 31 (7): 04019121. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002774.
Omoregie, A. I., G. Khoshdelnezamiha, N. Senian, D. E. L. Ong, and P. M. Nissom. 2017. “Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials.” Ecol. Eng. 109: 65–75. https://doi.org/10.1016/j.ecoleng.2017.09.012.
Osinubi, K. J., and A. O. Eberemu. 2013. “Hydraulic conductivity of compacted lateritic soil treated with bagasse ash.” Int. J. Environ. Waste Manage. 11 (1): 38–58. https://doi.org/10.1504/IJEWM.2013.050522.
Osinubi, K. J., A. O. Eberemu, E. W. Gadzama, and T. S. Ijimdiya. 2019a. “Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial‐induced calcite precipitation application.” Appl. Sci. 1: 829. https://doi.org/10.1007/s42452-019-0868-7.
Osinubi, K. J., A. O. Eberemu, T. S. Ijimdiya, and R. K. Etim. 2021. “Microbial-induced calcite precipitation study on the plasticity and compaction characteristics of lateritic soil treated with Bacillus megaterium in urea-CaCl2 culture medium.” IOP Conf. Ser. Mater. Sci. Eng. 1036: 012031. https://doi.org/10.1088/1757-899X/1036/1/01230331.
Osinubi, K. J., A. O. Eberemu, T. S. Ijimdiya, and P. Yohanna. 2020. “Interaction of landfill leachate with compacted lateritic soil treated with bacillus coagulans using microbial-induced calcite precipitation approach.” J. Hazard. Toxic Radioact. Waste 24 (1): 040190249. https://doi.org/10.1061/(asce)hz.21535515.0000465.
Osinubi, K. J., E. W. Gadzama, A. O. Eberemu, T. S. Ijimdiya, and S. E. Yakubu. 2019b. “Evaluation of the strength of compacted lateritic soil treated with Sporosarcina pasteurii.” In Vol. 3 of Proc., 8th Int. Congress on Environmental Geotechnics, edited by L. Zhan, Y. Chen, and A. Bouazza, 419–428. Hangzhou, China: Springer.
Osinubi, K. J., J. E. Sani, A. O. Eberemu, T. S. Ijimdiya, and S. E. Yakubu. 2019c. “Unconfined compressive strength of Bacillus Pumilus treated lateritic soil.” In Vol. 3 of Proc., 8th Int. Congress on Environmental Geotechnics, edited by L. Zhan, Y. Chen, and A. Bouazza, 410–418. Hangzhou, China: Springer.
Osinubi, K. J., P. Yohanna, A. O. Eberemu, and T. S. Ijimdiya. 2019d. “Compressive strength of lateritic soil treated with Bacillus coagulans for use as liner and cover material in waste containment system.” IOP Conf. Ser. Mater. Sci. Eng. 640: 012081. https://doi.org/10.1088/1757-899X/640/1/012081.
Pan, Y., et al. 2021. “The role of Mg2+ in inhibiting CaCO3 precipitation from seawater.” Mar. Chem. 237: 104036. https://doi.org/10.1016/j.marchem.2021.104036.
Pongsivasathit, S., S. Horpibulsuk, and S. Piyaphipat. 2019. “Assessment of mechanical properties of cement stabilized soils.” Case Stud. Constr. Mater. 11 (3): e00301. https://doi.org/10.1016/j.cscm.2019.e00301.
Proto, C. J., J. T. DeJong, and D. C. Nelson. 2016. “Biomediated permeability reduction of saturated sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001558.
Ramachandran, A. L., A. A. Dubey, N. K. Dhami, and A. Mukherjee. 2021. “Multiscale study of soil stabilization using bacterial biopolymers.” J. Geotech. Geoenviron. Eng. 147 (8): 04021074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002575.
Rao, S. M., R. Sukumar, R. E. Joshua, and N. V. Mogili. 2020. “Biocementation of soft soil by carbonate precipitate and polymeric saccharide secretion.” Bioinspired Biomimetic Nanobiomater. 9 (4): 241–251. https://doi.org/10.1680/jbibn.20.00032.
Rodrigues, J. D., and A. P. F. Pinto. 2019. “Stone consolidation by biomineralisation. Contribution for a new conceptual and practical approach to consolidate soft decayed limestones.” J. Cult. Heritage 39: 82–92. https://doi.org/10.1016/j.culher.2019.04.022.
Rowshanbakhta, K., M. Khamehchiyana, R. H. Sajedib, and M. R. Nikudela. 2016. “Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment.” Ecol. Eng. 89: 49–55. https://doi.org/10.1016/j.ecoleng.2016.01.010.
Sani, J. E., R. K. Etim, and A. Joseph. 2019. “Compaction behaviour of lateritic soil–calcium chloride mixtures.” Geotech. Geol. Eng. 37: 2343–2362. https://doi.org/10.1007/s10706-018-00760-6.
Saracho, A. C., S. K. Haigh, T. Hata, K. Soga, S. Farsang, S. A. T. Redfern, and E. Marek. 2020. “Characterisation of CaCO3 phases during strain-specific ureolytic precipitation.” Sci. Rep. 10: 10168. https://doi.org/110.1038/s41598-020-66831-y.
Shahin, M. A., K. Jamieson, and L. Cheng. 2020. “Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes.” Géotech. Lett. 10 (2): 1–5. https://doi.org/10.1680/jgele.19.00093.
Sharma, M., N. Satyam, and K. R. Reddy. 2020. “Strength enhancement and lead immobilization of sand using consortia of bacteria and blue–green algae.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020049. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000548.
Sharma, M., N. Satyam, and K. R. Reddy. 2021. “State of the art review of emerging and biogeotechnical methods for liquefaction mitigation in sands.” J. Hazard. Toxic Radioact. Waste 25 (1): 03120002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000557.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2014. “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 140: 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Suarez, D. L. 1977. “Ion activity products of calcium carbonate in waters below the root zone.” Soil Sci. Soc. Am. J. 41 (2): 310–315. https://doi.org/10.2136/sssaj1977.03615995004100020027x.
Sun, X., L. Miao, L. Wu, and R. Chen. 2019. “Improvement of bio-cementation at low temperature based on Bacillus megaterium.” Appl. Microbiol. Biotechnol. 103: 7191–7202. https://doi.org/10.1007/s00253-019-09986-7.
Sura, N. K., and L. Hiremath. 2019. “Isolation of Bacillus megaterium and its commercial importance.” Int. J. ChemTech Res. 12 (4): 30–36. https://doi.org/http://dx.doi.org/10.20902/IJCTR.2019.120405.
Tamayo-Figueroa, D. P., E. Castillo, and P. F. B. Brandão. 2019. “Metal and metalloid immobilization by microbiologically induced carbonates precipitation.” World J. Microbiol. Biotechnol. 35 (4): 58. https://doi.org/10.1007/s11274-019-2626-9.
Torres-Aravena, ÁE, C. Duarte-Nass, L. Azócar, R. Mella-Herrera, M. Rivas, and D. Jeison. 2018. “Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?” Crystals 8: 438. https://doi.org/10.3390/cryst8110438.
Umar, M., K. A. Kassim, K. Tiong, and P. Chiet. 2016. “Biological process of soil improvement in civil engineering: A review.” J. Rock Mech. Geotech. Eng. 8 (5): 767–774. https://doi.org/10.1016/j.jrmge.2016.02.004.
USEPA. 2014. Cleaning up the nation’s hazardous waste sites. Washington, DC: USEPA.
USEPA. 2019. Cleaning up the nation’s hazardous waste sites. Washington, DC: USEPA.
Van Paassen, L. A. 2009. “Biogrout: ground improvement by microbially induced carbonate precipitation.” Ph.D. thesis, Faculty of Applied Sciences, Dept. of Biotechnology, Delft Univ. of Technology.
Wang, X., J. Tao, R. Bao, T. Tran, and S. Tucker-Kulesza. 2018. “Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation.” J. Mater. Civ. Eng. 30 (10): 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490.
Wang, Y., X. Han, and N. Jiang. 2019. “Enriching indigenous ureolytic bacteria in coastal beach sand.” In Vol 3 of Proc., 8th Int. Congress on Environmental Geotechnics, edited by L. Zhan, Y. Chen, and A. Bouazza, 340–346. Hangzhou, China: Springer.
Wani, K. M. N. S., and B. A. Mir. 2021. “A laboratory-scale study on the Bio-cementation potential of distinct river sediments infused with microbes.” Transp. Infrastruct. Geotechnol. 8: 162–185. https://doi.org/10.1007/s40515-020-00131-w.
Wen, K., L. Yang, F. Amini, and L. Lin. 2019. “Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate.” Acta Geotech. 15: 17–27. https://doi.org/10.1007/s11440-019-00899-3.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences and Biotechnology, Murdoch Univ.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Yohanna, P., A. O. Eberemu, T. S. Ijimdiya, and K. J. Osinubi. 2022. “The effect of Bacillus coagulans and moulding water content on the unconfined compressive strength of lateritic soil.” Eng. Sci. Technol. 3 (1): 69–83. https://doi.org/10.37256/est.3120221286.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27Issue 3July 2023

History

Received: Sep 20, 2022
Accepted: Jan 12, 2023
Published online: Mar 16, 2023
Published in print: Jul 1, 2023
Discussion open until: Aug 16, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Lecturer I, Dept. of Civil Engineering, Akwa Ibom State Univ., Ikot Akpaden, Nigeria (corresponding author). ORCID: https://orcid.org/0000-0003-3790-9288. Email: [email protected]
Adrian Oshioname Eberemu, M.ASCE [email protected]
Professor, Dept. of Civil Engineering and Africa Centre of Excellence on New Pedagogies in Engineering Education, Ahmadu Bello Univ., Zaria 81000, Nigeria. Email: [email protected]
Thomas Stephen Ijimdiya, M.ASCE [email protected]
Professor, Dept. of Civil Engineering, Ahmadu Bello Univ., Zaria 81000, Nigeria. Email: [email protected]
Professor, Dept. of Civil Engineering, Ahmadu Bello Univ., Zaria 81000, Nigeria. ORCID: https://orcid.org/0000-0001-9046-7410. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share