State-of-the-Art Reviews
Feb 22, 2023

A Critical Appraisal of Leachate Recirculation Systems in Bioreactor Landfills

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27, Issue 3

Abstract

Leachate supplementation through liquid injection is applied widely in bioreactor landfills to increase moisture content within municipal solid waste (MSW) to facilitate waste decomposition and achieve early waste stabilization. This study provided a comprehensive picture of leachate supplementation systems with a critical evaluation of their advantages, applications, design aspects, and influence on the performance of bioreactor landfills. In this study, a critical review of the design characteristics of different leachate supplementation systems and their combinations was carried out, and the comparative performance of leachate supplementation systems by focusing on individual and combined systems to distribute a certain amount of injected liquid was made. In addition, this study considered the effects of MSW characteristics, the mode of leachate injection, the rate of leachate injection, the configuration of the leachate recirculation system (LRS), and the saturated and unsaturated hydraulic parameters to assess the performance of bioreactor landfills. The study identified the significant influence of LRS on moisture distribution, wetted area, pore pressures, landfill settlement, and slope stability. The majority of the literature reported that the unsaturated hydraulic properties and heterogeneous anisotropic waste (HTAW) conditions significantly resulted in an increase in lateral leachate migration and a decrease in pore pressures compared with homogeneous isotropic (HI) conditions. The field applications of these systems and their specifications in full-scale landfills were assessed. This study could help in the better planning of suitable leachate supplementation systems.

Practical Applications

The management of leachate that is generated through MSW decomposition is one of the most critical problems in landfills, because it contains a high concentration of toxic compounds and could easily contaminate the surrounding water bodies. The availability of low moisture content in conventional landfills results in a slow rate of degradation of the MSW. Based on the literature, it was proposed that the moisture content should be approximately 50% to provide optimal conditions for biodegradation. In this scenario, landfill leachate recirculation was a suitable method for leachate management, and there were several benefits associated with it, such as accelerated degradation of waste, the effective utilization of landfill space, a reduction in the volume of leachate for treatment, enhanced landfill gas generation, and minimized postclosure monitoring. This study could help with choosing and designing appropriate LRSs for uniform moisture distribution in real conditions. The observations and operational suggestions from this study could help to update the knowledge for waste management researchers on the implementation of leachate recirculation techniques to improve the performance of bioreactors.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Ministry of Human Resource Development and the Government of India for funding the Doctoral Fellowship of research scholars. This research work was supported by and carried out at the Indian Institute of Technology in Roorkee, India.

Notation

The following symbols are used in this paper:
A
anisotropic coefficient;
ATotal
total cross-sectional area;
c
cohesion;
D
depth of DB from LCRS;
D50
average particle diameter;
DHT
depth of HT from LCRS;
d
screen height;
dw
diameter of VW;
G
shear modulus;
H
landfill height;
Hw
well height;
h
thickness of blanket;
K
bulk modulus;
k
saturated hydraulic conductivity;
kb
saturated hydraulic conductivity of DB;
kv
vertical saturated hydraulic conductivity;
L
length of DB;
l
van Genuchten parameter;
m
van Genuchten parameter;
mv
waste compressibility;
n
van Genuchten parameter;
P
leachate injection pressure;
Pi
leachate injection pressure head;
Q
leachate injection rate;
Qs
leachate flux;
Sh
horizontal spacing;
Sv
vertical spacing;
W
width of DB;
WAmax
maximum wetted area;
WHT
width of HT;
WWmax
maximum wetted width;
Y
location of leachate injection;
α
van Genuchten parameter (m of water column);
αm
waste compressibility;
α1
inverse of air entry pressure of van Genuchten (kPa);
γ
waste unit weight;
ϕ
angle of internal friction;
θi
initial moisture content;
θr
residual moisture content; and
θs
saturated moisture content.

References

Abbas, A. A., G. Jingsong, L. Z. Ping, P. Y. Ya, and W. S. Al-Rekabi. 2009. “Review on landfill leachate treatments.” J. Appl. Sci. Res. 5 (5): 534–545.
Abdallah, M., K. Kennedy, R. Narbaitz, M. Warith, and M. Sartaj. 2014. “Influence of supplemental heat addition on performance of pilot-scale bioreactor landfills.” Bioprocess. Biosyst. Eng. 37 (2): 301–310. https://doi.org/10.1007/s00449-013-0997-0.
Abichou, T., M. A. Barlaz, R. Green, and G. Hater. 2013. “The outer loop bioreactor: A case study of settlement monitoring and solids decomposition.” Waste Manage. 33 (10): 2035–2047.https://doi.org/10.1016/j.wasman.2013.02.005.
Alkaabi, S., P. J. Van Geel, and M. A. Warith. 2009. “Effect of saline water and sludge addition on biodegradation of municipal solid waste in bioreactor landfills.” Waste Manage. Res. 27 (1): 59–69. https://doi.org/10.1177/0734242X07082107.
Aydilek, A. H., E. T. Madden, and M. M. Demirkan. 2006. “Field evaluation of a leachate collection system constructed with scrap tires.” J. Geotech. Geoenviron. Eng. 132 (8): 990–1000. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(990).
Bae, J. H., K. W. Cho, S. J. Lee, B. S. Bum, and B. H. Yoon. 1998. “Effects of leachate recycle and anaerobic digester sludge recycle on the methane production from solid wastes.” Water Sci. Technol. 38 (2): 159–168. https://doi.org/10.2166/wst.1998.0129.
Bagchi, A. 2004. Design of landfills and integrated solid waste management. Hoboken, NJ: Wiley.
Barber, C., and P. J. Maris. 1984. “Recirculation of leachate as a landfill management option: Benefits and operational problems.” Q. J. Eng. Geol. 17 (1): 19–29. https://doi.org/10.1144/GSL.QJEG.1984.017.01.05.
Bareither, C. A., C. H. Benson, M. A. Barlaz, T. B. Edil, and T. M. Tolaymat. 2010. “Performance of North American bioreactor landfills. I: Leachate hydrology and waste settlement.” J. Environ. Eng. 136 (8): 824–838. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000219.
Bareither, C. A., C. H. Benson, T. B. Edil, and M. A. Barlaz. 2012. “Abiotic and biotic compression of municipal solid waste.” J. Geotech. Geoenviron. Eng. 138 (8): 877–888. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000660.
Barlaz, M. A., D. M. Schaefer, and R. K. Ham. 1989. “Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill.” Appl. Environ. Microbiol. 55 (1): 55–65. https://doi.org/10.1128/aem.55.1.55-65.1989.
Benson, C. H., M. A. Barlaz, D. T. Lane, and J. M. Rawe. 2007. “Practice review of five bioreactor/recirculation landfills.” Waste Manage. 27 (1): 13–29. https://doi.org/10.1016/j.wasman.2006.04.005.
Benson, C. H., M. A. Barlaz, D. T. Lane, J. M. Rawe, and D. Carson. 2003. State-of-the-practice review of bioreactor landfills. Geo Engineering Rep. 03-05. Madison, WI: Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison.
Benson, C. H., and X. Wang. 1998. Soil water characteristic curves for solid waste. Environmental Geotechnics Rep. 98-13. Madison, WI: Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison.
Berge, N. D., D. R. Reinhart, and T. G. Townsend. 2005. “The fate of nitrogen in bioreactor landfills.” Crit. Rev. Environ. Sci. Technol. 35 (4): 365–399. https://doi.org/10.1080/10643380590945003.
Bilgili, M. S., A. Demir, and B. Özkaya. 2007. “Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes.” J. Hazard. Mater. 143 (1–2): 177–183. https://doi.org/10.1016/j.jhazmat.2006.09.012.
Blight, G. 2008. “Slope failures in municipal solid waste dumps and landfills: A review.” Waste Manage. Res. 26 (5): 448–463. https://doi.org/10.1177/0734242X07087975.
Breitmeyer, R. J., and C. H. Benson. 2011. “Measurement of unsaturated hydraulic properties of municipal solid waste.” In Geo-Frontiers 2011, Geotechnical Special Publication 211, edited by J. Han and D. E. Alzamora, 1433–1442. Reston, VA: ASCE.
Budihardjo, M. A., B. S. Ramadan, E. Yohana, Syafrudin, F. Rahmawati, R. Ardiana, D. B. Susilo, N. Ikhlas, and A. Karmilia. 2021. “A review of anaerobic landfill bioreactor using leachate recirculation to increase methane gas recovery.” IOP Conf. Ser.: Earth Environ. Sci. 894 (1): 012013. https://doi.org/10.1088/1755-1315/894/1/012013.
Byun, B., I. Kim, G. Kim, J. Eun, and J. Lee. 2019. “Stability of bioreactor landfills with leachate injection configuration and landfill material condition.” Comput. Geotech. 108: 234–243. https://doi.org/10.1016/j.compgeo.2019.01.006.
Chembukavu, A. A., A. Mohammad, and D. N. Singh. 2019. “Bioreactor landfills in developing countries: A critical review.” J. Solid Waste Technol. Manage. 45 (1): 21–38. https://doi.org/10.5276/JSWTM.2019.21.
Chung, J., S. Kim, S. Baek, N.-H. Lee, S. Park, J. Lee, H. Lee, and W. Bae. 2015. “Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study.” J. Hazard. Mater. 285: 436–444. https://doi.org/10.1016/j.jhazmat.2014.12.013.
David Suits, L., T. C. Sheahan, M. M. Haydar, and M. V. Khire. 2006. “Geotechnical sensor system to monitor injected liquids in landfills.” Geotech. Test. J. 29 (1): 12747. https://doi.org/10.1520/GTJ12747.
DeAbreu. 2003. Facultative bioreactor landfill: An environmental and geotechnical study. New Orleans: Univ. of New Orleans.
Doran, F. 1999. “Lay leachate lay.” Waste Age 30 (4): 74–79.
Edil, T. B., V. J. Ranguette, and W. W. Wuellner. 1990. “Settlement of municipal refuse.” In Geotechnics of waste fills. Theory and practice, edited by A. Landva and D. Knowles, 225–239. Philadelphia: ASTM.
Eid, H. T., T. D. Stark, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. I: Waste and foundation soil properties.” J. Geotech. Geoenviron. Eng. 126 (5): 397–407. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(397).
Elagroudy, S. A., M. H. Abdel-Razik, M. A. Warith, and F. H. Ghobrial. 2008. “Waste settlement in bioreactor landfill models.” Waste Manage. 28 (11): 2366–2374. https://doi.org/10.1016/j.wasman.2007.11.007.
El-Fadel, M. 1999. “Leachate recirculation effects on settlement and biodegradation rates in MSW landfills.” Environ. Technol. 20 (2): 121–133. https://doi.org/10.1080/09593332008616802.
Feng, S.-J., B.-Y. Cao, and H.-J. Xie. 2017a. “Modeling of leachate recirculation using spraying–vertical well systems in bioreactor landfills.” Int. J. Geomech. 17 (7): 04017012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000887.
Feng, S.-J., B.-Y. Cao, and H.-J. Xie. 2017b. “Modeling of leachate recirculation using combined drainage blanket–horizontal trench systems in bioreactor landfills.” Waste Manage. Res. 35 (10): 1072–1083. https://doi.org/10.1177/0734242X17722208.
Feng, S.-J., B.-Y. Cao, X. Zhang, and Y. Jiao. 2015a. “Leachate recirculation in bioreactor landfills considering the stratification of MSW permeability.” Environ. Earth Sci. 73 (7): 3349–3359. https://doi.org/10.1007/s12665-014-3623-9.
Feng, S.-J., B.-Y. Cao, X. Zhang, and H.-J. Xie. 2015b. “Modeling of leachate recirculation using vertical wells in bioreactor landfills.” Environ. Sci. Pollut. Res. 22 (12): 9067–9079. https://doi.org/10.1007/s11356-014-4045-7.
Feng, S.-J., J.-Y. Chang, X.-L. Zhang, H. Shi, and S.-J. Wu. 2021a. “Stability analysis and control measures of a sanitary landfill with high leachate level.” J. Geotech. Geoenviron. Eng. 147 (10): 05021009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002635.
Feng, S.-J., Z.-W. Chen, and B.-Y. Cao. 2016. “Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.” Waste Manage. Res. 34 (12): 1307–1315. https://doi.org/10.1177/0734242X16675684.
Feng, S.-J., Z.-W. Chen, H.-X. Chen, Q.-T. Zheng, and R. Liu. 2018. “Slope stability of landfills considering leachate recirculation using vertical wells.” Eng. Geol. 241: 76–85. https://doi.org/10.1016/j.enggeo.2018.05.013.
Feng, S.-J., Z.-W. Chen, and Q.-T. Zheng. 2020. “Effect of LCRS clogging on leachate recirculation and landfill slope stability.” Environ. Sci. Pollut. Res. 27 (6): 6649–6658. https://doi.org/10.1007/s11356-019-07383-1.
Feng, S.-J., S.-J. Wu, W.-D. Fu, Q.-T. Zheng, and X.-L. Zhang. 2021b. “Slope stability analysis of a landfill subjected to leachate recirculation and aeration considering bio-hydro coupled processes.” Geoenviron. Disasters 8 (1): 29. https://doi.org/10.1186/s40677-021-00201-2.
Feng, S.-J., X. Zhang, and B.-Y. Cao. 2014. “Leachate recirculation in bioreactor landfills considering the effect of MSW settlement on hydraulic properties.” Environ. Earth Sci. 72 (7): 2315–2323. https://doi.org/10.1007/s12665-014-3140-x.
Fleming, I. R., and R. K. Rowe. 2011. “Laboratory studies of clogging of landfill leachate collection and drainage systems.” Can. Geotech. J. 41 (1): 134–153. https://doi.org/10.1139/T03-070.
Gharabaghi, B., M. K. Singh, C. Inkratas, I. R. Fleming, and E. McBean. 2008. “Comparison of slope stability in two Brazilian municipal landfills.” Waste Manage. 28 (9): 1509–1517. https://doi.org/10.1016/j.wasman.2007.07.006.
Giri, R. K., and K. R. Reddy. 2014a. “Slope stability of bioreactor landfills during leachate injection: Effects of heterogeneous and anisotropic municipal solid waste conditions.” Waste Manage. Res. 32 (3): 186–197. https://doi.org/10.1177/0734242X14522492.
Giri, R. K., and K. R. Reddy. 2014b. “Slope stability of bioreactor landfills during leachate injection: Effects of unsaturated hydraulic properties of municipal solid waste.” Int. J. Geotech. Eng. 8 (2): 144–156. https://doi.org/10.1179/1939787913Y.0000000013.
Giri, R. K., and K. R. Reddy. 2014c. “Design charts for selecting minimum setback distance from side slope to horizontal trench system in bioreactor landfills.” Geotech. Geol. Eng. 32 (4): 1017–1027. https://doi.org/10.1007/s10706-014-9777-0.
Giri, R. K., and K. R. Reddy. 2015. “Slope stability of bioreactor landfills during leachate injection: Effects of geometric configurations of horizontal trench systems.” Geomech. Geoeng. 10 (2): 126–138. https://doi.org/10.1080/17486025.2014.921335.
Gordon, A. M., R. A. McBride, A. Fisken, and R. Voroney. 1988. “Effect of landfill leachate spraying on soil respiration and microbial biomass in a northern hardwood forest ecosystem.” Waste Manage. Res. 6 (2): 141–148. https://doi.org/10.1016/0734-242X(88)90058-4.
Gray, D., S. J. T. Pollard, L. Spence, R. Smith, and J. R. Gronow. 2005. “Spray irrigation of landfill leachate: Estimating potential exposures to workers and bystanders using a modified air box model and generalised source term.” Environ. Pollut. 133 (3): 587–599. https://doi.org/10.1016/j.envpol.2004.06.010.
Grellier, S., K. Reddy, J. Gangathulasi, R. Adib, and C. Peters. 2006. “Electrical resistivity tomography imaging of leachate recirculation in orchard hills landfill.” In Proc., SWANA Conf., 1–7. Silver Spring, MD: Solid Waste Association of North America.
Guérin, R., M. L. Munoz, C. Aran, C. Laperrelle, M. Hidra, E. Drouart, and S. Grellier. 2004. “Leachate recirculation: Moisture content assessment by means of a geophysical technique.” Waste Manage. 24 (8): 785–794. https://doi.org/10.1016/j.wasman.2004.03.010.
Haydar, M. M., and M. V. Khire. 2005. “Leachate recirculation using horizontal trenches in bioreactor landfills.” J. Geotech. Geoenviron. Eng. 131 (7): 837–847. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(837).
Haydar, M. M., and M. V. Khire. 2007. “Leachate recirculation using permeable blankets in engineered landfills.” J. Geotech. Geoenviron. Eng. 133 (4): 360–371. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(360).
He, R., X.-M. Wei, B.-H. Tian, Y. Su, and Y.-L. Lu. 2015. “Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment.” Waste Manage. 46: 380–388. https://doi.org/10.1016/j.wasman.2015.08.006.
Hettiarachchi, C. H., J. N. Meegoda, J. Tavantzis, and P. Hettiaratchi. 2007. “Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills.” J. Hazard. Mater. 139 (3): 514–522. https://doi.org/10.1016/j.jhazmat.2006.02.067.
Hettiaratchi, J. P. A. 2012. “Landfill bioreactors.” In Encyclopedia of sustainability science and technology, edited by R. A. Meyers, 5720–5732. New York: Springer.
Hettiaratchi, J. P. A., P. A. Jayasinghe, T. A. Yarandy, D. Attalage, H. Jalilzadeh, D. Pokhrel, E. Bartholameuz, and C. Hunte. 2021. “Innovative practices to maximize resource recovery and minimize greenhouse gas emissions from landfill waste cells: Historical and recent developments.” J. Indian Inst. Sci. 101 (4): 537–556. https://doi.org/10.1007/s41745-021-00230-8.
Hossain, M., and M. Gabr. 2005. “Prediction of municipal solid waste landfill settlement with leachate recirculation.” In Waste Containment and Remediation, Geotechnical Special Publication 142, edited by A. Alshawabkeh, C. H. Benson, P. J. Culligan, J. C. Evans, B. A. Gross, D. Narejo, K. R. Reddy, C. D. Shackelford, and J. G. Zornberg, 1–14. Reston, VA: ASCE.
Hossain, M. S., M. A. Gabr, and M. A. Barlaz. 2003. “Relationship of compressibility parameters to municipal solid waste decomposition.” J. Geotech. Geoenviron. Eng. 129 (12): 1151–1158. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1151).
Hossain, M. S., and M. A. Haque. 2009. “Stability analyses of municipal solid waste landfills with decomposition.” Geotech. Geol. Eng. 27 (6): 659–666. https://doi.org/10.1007/s10706-009-9265-0.
Hossain, M. S., K. K. Penmethsa, and L. Hoyos. 2009. “Permeability of municipal solid waste in bioreactor landfill with degradation.” Geotech. Geol. Eng. 27 (1): 43–51. https://doi.org/10.1007/s10706-008-9210-7.
Imhoff, P. T., D. R. Reinhart, M. Englund, R. Guérin, N. Gawande, B. Han, S. Jonnalagadda, T. G. Townsend, and R. Yazdani. 2007. “Review of state of the art methods for measuring water in landfills.” Waste Manage. 27 (6): 729–745. https://doi.org/10.1016/j.wasman.2006.03.024.
ITRC (Interstate Technology and Regulatory Council). 2006. Characterization, design, construction, and monitoring of bioreactor landfill. Washington, DC: ITRC Alternative Landfill Technologies Team.
Jain, P., W. M. Farfour, S. Jonnalagadda, T. G. Townsend, and D. R. Reinhart. 2005. “Performance evaluation of vertical wells for landfill leachate recirculation.” In Waste Containment and Remediation, Geotechnical Special Publication 142, edited by A. Alshawabkeh, C. H. Benson, P. J. Culligan, J. C. Evans, B. A. Gross, D. Narejo, K. R. Reddy, C. D. Shackelford, and J. G. Zornberg, 1–10. Reston, VA: ASCE.
Jain, P., J. H. Ko, D. Kumar, J. Powell, H. Kim, L. Maldonado, T. Townsend, and D. R. Reinhart. 2014. “Case study of landfill leachate recirculation using small-diameter vertical wells.” Waste Manage. 34 (11): 2312–2320. https://doi.org/10.1016/j.wasman.2014.07.005.
Jain, P., T. G. Townsend, and T. M. Tolaymat. 2010a. “Steady-state design of vertical wells for liquids addition at bioreactor landfills.” Waste Manage. 30 (11): 2022–2029. https://doi.org/10.1016/j.wasman.2010.02.020.
Jain, P., T. G. Townsend, and T. M. Tolaymat. 2010b. “Steady-state design of horizontal systems for liquids addition at bioreactor landfills.” Waste Manage. 30 (12): 2560–2569. https://doi.org/10.1016/j.wasman.2010.06.024.
Jayasinghe, P. A., J. P. A. Hettiaratchi, A. K. Mehrotra, and S. Kumar. 2011. “Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.” Bioresour. Technol. 102 (7): 4633–4637. https://doi.org/10.1016/j.biortech.2011.01.013.
Kadambala, R., J. Powell, K. Singh, and T. G. Townsend. 2016. “Evaluation of a buried vertical well leachate recirculation system for municipal solid waste landfills.” Waste Manage. Res. 34 (12): 1300–1306. https://doi.org/10.1177/0734242X16659921.
Kadambala, R., T. G. Townsend, P. Jain, and K. Singh. 2011. “Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well.” Int. J. Environ. Res. Public Health 8 (5): 1692–1706. https://doi.org/10.3390/ijerph8051692.
Kazimoglu, Y. K., J. R. McDougall, and I. C. Pyrah. 2006. “Unsaturated hydraulic conductivity of landfilled waste.” In Unsaturated Soils 2006, Geotechnical Special Publication 147, edited by G. A. Miller, C. E. Zapata, S. L. Houston, and D. G. Fredlund, 1525–1534. Reston, VA: ASCE.
Khire, M. V., and M. M. Haydar. 2003. “Numerical evaluation of granular blankets for leachate recirculation in MSW landfills.” In Proc., 9th Sardinia Solid Waste Conf. Padova, Italy: CISA, Environmental Sanitary Engineering Centre.
Khire, M. V., and M. M. Haydar. 2005. “Leachate recirculation using geocomposite drainage layer in engineered MSW landfills.” In Waste Containment and Remediation, Geotechnical Special Publication 142, edited by A. Alshawabkeh, C. H. Benson, P. J. Culligan, J. C. Evans, B. A. Gross, D. Narejo, K. R. Reddy, C. D. Shackelford, and J. G. Zornberg, 1–11. Reston, VA: ASCE.
Khire, M. V., and M. M. Haydar. 2007. “Leachate recirculation in bioreactor landfills using geocomposite drainage material.” J. Geotech. Geoenviron. Eng. 133 (2): 166–174. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(166).
Khire, M. V., and M. Mukherjee. 2007. “Leachate injection using vertical wells in bioreactor landfills.” Waste Manage. 27 (9): 1233–1247. https://doi.org/10.1016/j.wasman.2006.07.010.
Koerner, R. M., and T.-Y. Soong. 2000. “Leachate in landfills: The stability issues.” Geotext. Geomembr. 18 (5): 293–309. https://doi.org/10.1016/S0266-1144(99)00034-5.
Komilis, D. P., R. K. Ham, and R. Stegmann. 1999. “The effect of landfill design and operation practices on waste degradation behavior: A review.” Waste Manage. Res. 17 (1): 20–26. https://doi.org/10.1177/0734242X9901700104.
Kulkarni, H. S. 2012. “Optimization of leachate recirculation systems in bioreactor landfills.” Ph.D. thesis, Dept. of Earth and Environmental Sciences, Univ. of Illinois.
Kulkarni, H. S., and K. R. Reddy. 2012. “Moisture distribution in bioreactor landfills: A review.” Indian Geotech. J. 42 (3): 125–149. https://doi.org/10.1007/s40098-012-0012-8.
Kumar, G., and K. R. Reddy. 2017. “Effects of unsaturated hydraulic properties of municipal solid waste on moisture distribution and settlement in bioreactor landfills.” In PanAm Unsaturated Soils 2017, edited by L. R. Hoyos, J. S. McCartney, S. L. Houston, and W. J. Likos, 165–174. Reston, VA: ASCE.
Kumar, G., and K. Reddy. 2019. “Rapid stabilization of municipal solid waste in bioreactor landfills: Predictive performance using coupled modeling.” Global NEST J. 21 (4): 505–512. https://doi.org/10.30955/gnj.002985.
Kumar, S., C. Chiemchaisri, and A. Mudhoo. 2011. “Bioreactor landfill technology in municipal solid waste treatment: An overview.” Crit. Rev. Biotechnol. 31 (1): 77–97. https://doi.org/10.3109/07388551.2010.492206.
Lavigne, F., et al. 2014. “The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia.” Geoenviron. Disasters 1 (1): 1–12. https://doi.org/10.1186/s40677-014-0010-5.
Law, H. J., and D. E. Ross. 2019. “International Solid Waste Association’s ‘closing dumpsites’ initiative: Status of progress.” Waste Manage. Res. 37 (6): 565–568. https://doi.org/10.1177/0734242X19845755.
Leckie, J. O., C. Halvadakis, and J. G. Pacey. 1979. “Landfill management with moisture control.” J. Environ. Eng. Div. 105 (2): 337–355. https://doi.org/10.1061/JEEGAV.0000894.
Lema, J. M., R. Mendez, and R. Blazquez. 1988. “Characteristics of landfill leachates and alternatives for their treatment: A review.” Water Air Soil Pollut. 40 (3–4): 223–250. https://doi.org/10.1007/BF00163730.
Lozecznlk, S. 2006. “Hydraulic design, operation and clogging of leachate injection pipes in bioreactor landfills.” M.Sc. thesis, Civil Engineer Dept., Univ. of Manitoba.
Lozecznik, S., R. Sparling, J. A. Oleszkiewicz, S. Clark, and J. F. VanGulck. 2010. “Leachate treatment before injection into a bioreactor landfill: Clogging potential reduction and benefits of using methanogenesis.” Waste Manage. 30 (11): 2030–2036. https://doi.org/10.1016/j.wasman.2010.04.024.
Lozecznik, S., and J. Van Gulck. 2009. “Full-Scale laboratory study into clogging of pipes permeated with landfill leachate.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 13 (4): 261–269. https://doi.org/10.1061/(ASCE)1090-025X(2009)13:4(261).
Maler, T. 1998. “Analysis procedures for design of leachate recirculation systems.” Water Qual. Int. 37–40.
McBride, R. A., A. M. Gordon, and P. H. Groenevelt. 1989. “Treatment of landfill leachate by spray irrigation—An overview of research results from Ontario, Canada. I. Site hydrology.” Bull. Environ. Contam. Toxicol. 42 (4): 510–517. https://doi.org/10.1007/BF01700230.
McCreanor, P. 1998. Landfill leachate recirculation systems: Mathematical modeling and validation. Orlando, FL: Univ. of Central Florida.
McCreanor, P. T., and D. R. Reinhart. 1999. “Hydrodynamic modeling of leachate recirculating landfills.” Waste Manage. Res. 17 (6): 465–469. https://doi.org/10.1177/0734242X9901700610.
Mehta, R., M. A. Barlaz, R. Yazdani, D. Augenstein, M. Bryars, and L. Sinderson. 2002. “Refuse decomposition in the presence and absence of leachate recirculation.” J. Environ. Eng. 128 (3): 228–236. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(228).
Merry, S. M., E. Kavazanjian, and W. U. Fritz. 2005. “Reconnaissance of the July 10, 2000, Payatas landfill failure.” J. Perform. Constr. Facil 19 (2): 100–107. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:2(100).
Miller, D. E., and S. M. Emge. 1997. “Enhancing landfill leachate recirculation system performance.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 1 (3): 113–119. https://doi.org/10.1061/(ASCE)1090-025X(1997)1:3(113).
Mitchell, J. K., R. B. Seed, and H. B. Seed. 1990. “Kettleman hills waste landfill slope failure. I: Liner-system properties.” J. Geotech. Eng. 116 (4): 647–668. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647).
Morris, J. W. F., N. C. Vasuki, J. A. Baker, and C. H. Pendleton. 2003. “Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation.” Waste Manage. 23 (7): 653–666. https://doi.org/10.1016/S0956-053X(03)00098-9.
Mukherjee, M., and M. V. Khire. 2012. “Instrumented large scale subsurface liquid injection model for bioreactor landfills.” Geotech. Test. J. 35 (1): 103551. https://doi.org/10.1520/GTJ103551.
Nanda, S., and F. Berruti. 2021. “Municipal solid waste management and landfilling technologies: A review.” Environ. Chem. Lett. 19 (2): 1433–1456. https://doi.org/10.1007/s10311-020-01100-y.
Nika, M. C., K. Ntaiou, K. Elytis, V. S. Thomaidi, G. Gatidou, O. I. Kalantzi, N. S. Thomaidis, and A. S. Stasinakis. 2020. “Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology.” J. Hazard. Mater. 394: 122493. https://doi.org/10.1016/j.jhazmat.2020.122493.
Pacey, J. 2001. “Bioreactor landfill: An overview perspective.” MSW Manage. 10 (6): 68–71.
Pacey, J., D. Augenstein, R. Morck, D. Reinhart, and R. Yazdani. 1999. “The bioreactor landfill-an innovation in solid waste management.” MSW Manage. 1: 53–60.
Park, H., and S. Lee. 1997. “Long-term settlement behavior of landfills with refuse decomposition.” J. Solid Waste Technol. Manage. 24 (4): 159–165.
Patil, B. S., C. A. Anto, and D. N. Singh. 2017. “Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.” Waste Manage. Res. 35 (3): 301–312. https://doi.org/10.1177/0734242X16679258.
Pohland, F. G. 1980. “Leachate recycle as landfill management option.” J. Environ. Eng. Div. 106 (6): 1057–1069. https://doi.org/10.1061/JEEGAV.0001108.
Pohland, F. G., D. J. Genetelli, and J. Cirello. 1976. “Landfill management with leachate recycle and treatment: An overview.” In Proc., Gas Leachate from Landfills, 159–167. New Brunswick, NJ: Rutgers Univ.
Pohland, F. G., and J. C. Kim. 1999. “In situ anaerobic treatment of leachate in landfill bioreactors.” Water Sci. Technol. 40 (8): 203–210. https://doi.org/10.2166/wst.1999.0422.
Reddy, K. R. 2006. “Geotechnical aspects of bioreactor landfills.” In Proc. Indian Geotech. Conf., 79–94. New Delhi, India: Allied Publishers Pvt. Ltd.
Reddy, K. R., R. K. Giri, and H. S. Kulkarni. 2014a. “Validation of two-phase flow model for leachate recirculation in bioreactor landfills.” J. Waste Manage. 2014: 1–24. https://doi.org/10.1155/2014/308603.
Reddy, K. R., R. K. Giri, and H. S. Kulkarni. 2014b. “Design of drainage blankets for leachate recirculation in bioreactor landfills using two-phase flow modeling.” Comput. Geotech. 62: 77–89. https://doi.org/10.1016/j.compgeo.2014.06.013.
Reddy, K. R., R. K. Giri, and H. S. Kulkarni. 2015a. “Design of horizontal trenches for leachate recirculation in bioreactor landfills using two-phase modelling.” Int. J. Environ. Waste Manage. 15 (4): 347. https://doi.org/10.1504/IJEWM.2015.069962.
Reddy, K. R., R. K. Giri, and H. S. Kulkarni. 2015b. “Design of vertical wells for leachate recirculation in bioreactor landfills using Two-phase modeling.” J. Solid Waste Technol. Manage. 41 (2): 203–218. https://doi.org/10.5276/JSWTM.2015.203.
Reddy, K. R., R. K. Giri, and H. S. Kulkarni. 2015c. “Two-phase modeling of leachate recirculation using drainage blankets in bioreactor landfills.” Environ. Model. Assess. 20 (5): 475–490. https://doi.org/10.1007/s10666-014-9435-1.
Reddy, K. R., H. Hettiarachchi, J. Gangathulasi, and J. E. Bogner. 2011. “Geotechnical properties of municipal solid waste at different phases of biodegradation.” Waste Manage. 31 (11): 2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002.
Reddy, K. R., H. Hettiarachchi, Naveen Parakalla, J. Gangathulasi, J. Bogner, and T. Lagier. 2009. “Hydraulic conductivity of MSW in landfills.” J. Environ. Eng. 135 (8): 677–683. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000031.
Reddy, K. R., H. S. Kulkarni, R. K. Giri, and M. V. Khire. 2017. “Horizontal trench system effects on leachate recirculation in bioreactor landfills.” Geomech. Geoeng. 12 (2): 115–136. https://doi.org/10.1080/17486025.2016.1181793.
Reddy, K. R., H. S. Kulkarni, and M. V. Khire. 2013. “Two-Phase modeling of leachate recirculation using vertical wells in bioreactor landfills.” J. Hazard. Toxic Radioact. Waste 17 (4): 272–284. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000180.
Reddy, K. R., G. Kumar, and H. S. Kulkarni. 2020. “Two-phase flow modeling to evaluate effectiveness of different leachate injection systems for bioreactor landfills.” Environ. Model. Assess. 25 (1): 115–128. https://doi.org/10.1007/s10666-019-09663-z.
Reinhart, D. R. 1996. “Full-Scale experiences with leachate recirculating landfills: Case studies.” Waste Manage. Res. 14 (4): 347–365. https://doi.org/10.1177/0734242X9601400403.
Reinhart, D. R., and A. B. Al-Yousfi. 1996. “The impact of leachate recirculation on municipal solid waste landfill operating characteristics.” Waste Manage. Res. 14 (4): 337–346. https://doi.org/10.1177/0734242X9601400402.
Reinhart, D. R., and D. Carson. 1993. “Experiences with full-scale application of landfill bioreactor technology.” In Proc., 31st Annual Solid Waste Expo. Solid Waste Association of North America. Silver Spring, MD: Solid Waste Association of North America.
Reinhart, D. R., P. T. McCreanor, and T. Townsend. 2002. “The bioreactor landfill: Its status and future.” Waste Manage. Res. 20 (2): 172–186. https://doi.org/10.1177/0734242X0202000209.
Sanphoti, N., S. Towprayoon, P. Chaiprasert, and A. Nopharatana. 2006. “The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.” J. Environ. Manage. 81 (1): 27–35. https://doi.org/10.1016/j.jenvman.2005.10.015.
Sharma, H. D., and K. R. Reddy. 2004. Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. Hoboken, NJ: Wiley.
Singh, K. 2010. “Performance evaluation of surface infiltration trenches and anisotropy determination of waste for municipal solid waste landfills.” Master’s thesis, Dept. of Environmental Engineering Sciences, Univ. of Florida.
Singh, K., R. Kadambala, P. Jain, Q. Xu, and T. G. Townsend. 2014. “Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection.” Waste Manage. Res. 32 (6): 482–491. https://doi.org/10.1177/0734242X14532003.
Spokas, K., J. Bogner, J. P. Chanton, M. Morcet, C. Aran, C. Graff, Y. M. Le Golvan, and I. Hebe. 2006. “Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?” Waste Manage. 26 (5): 516–525. https://doi.org/10.1016/j.wasman.2005.07.021.
Stark, T. D., H. T. Eid, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. II: Stability analyses.” J. Geotech. Geoenviron. Eng. 126 (5): 408–419. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(408).
Stoltz, G., A.-J. Tinet, M. J. Staub, L. Oxarango, and J.-P. Gourc. 2012. “Moisture retention properties of municipal solid waste in relation to compression.” J. Geotech. Geoenviron. Eng. 138 (4): 535–543. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000616.
Sughosh, P., and G. L. S. Babu. 2021. “The role of bioreactor landfill concept in waste management in India.” J. Indian Inst. Sci. 101 (4): 659–683. https://doi.org/10.1007/s41745-021-00248-y.
Thiel, R., and M. Christie. 2005. “Leachate recirculation and potential concerns on landfill stability.” In Proc. 19th Annual GRI Conf., 14–16. Jupiter, FL: Geosynthetica.net.
Tolaymat, T., H. Kim, P. Jain, J. Powell, and T. Townsend. 2013. “Moisture addition requirements for bioreactor landfills.” J. Hazard. Toxic Radioact. Waste 17 (4): 360–364. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000184.
Townsend, T. 1995. “Leachate recycle at solid waste landfills using horizontal injection.” Ph.D. thesis, The Dept. of Environmental Engineering Sciences, Univ. of Florida.
Townsend, T. G., and W. L. Miller. 1998. “Leachate recycle using horizontal injection.” Adv. Environ. Res. 2 (2): 129.
Townsend, T. G., W. L. Miller, and J. F. K. Earle. 1995. “Leachate-recycle infiltration ponds.” J. Environ. Eng. 121 (6): 465–471. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:6(465).
Townsend, T. G., W. L. Miller, H.-J. Lee, and J. F. K. Earle. 1996. “Acceleration of landfill stabilization using leachate recycle.” J. Environ. Eng. 122 (4): 263–268. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:4(263).
Townsend, T. G., J. Powell, P. Jain, Q. Xu, T. Tolaymat, and D. Reinhart. 2015. Sustainable practices for landfill design and operation. New York: Springer.
USEPA. 1989. Seminar publication: Requirements for hazardous waste landfill design, construction, and closure. Washington, DC: USEPA.
USEPA. 2007. Bioreactor performance. EPA530-R-07-007. Washington, DC: USEPA.
USEPA. 2009. A technical assessment of leachate recirculation. Washington, DC: USEPA.
USEPA. 2022. Bioreactor landfills. Washington, DC: USEPA.
VanGulck, J. F., S. Lozecznik, and J. H. Murdock. 2009. “Hydraulic design tables for horizontal liquid injection systems in bioreactor landfills.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 13 (3): 147–155. https://doi.org/10.1061/(ASCE)1090-025X(2009)13:3(147).
Warith, M. 2002. “Bioreactor landfills: Experimental and field results.” Waste Manage. 22 (1): 7–17. https://doi.org/10.1016/S0956-053X(01)00014-9.
Warith, M., X. Li, and H. Jin. 2005. “Bioreactor landfills: State-of-the-art review.” Emirates J. Eng. Res. 10 (1): 1–14.
Warith, M. A., P. A. Smolkin, and J. G. Caldwell. 2001. “Effect of leachate recirculation on enhancement of biological degradation of solid waste: Case study.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 5 (1): 40–46. https://doi.org/10.1061/(ASCE)1090-025X(2001)5:1(40).
Wong, J. W. C., R. Y. Surampalli, T. C. Zhang, R. D. Tyagi, and A. Selvam. 2016. Sustainable solid waste management (J. W. C. Wong, R. Y. Surampalli, T. C. Zhang, R. D. Tyagi, and A. Selvam, eds.). Reston, VA: ASCE.
Wu, H., H. Wang, Y. Zhao, T. Chen, and W. Lu. 2012. “Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age.” Waste Manage. 32 (3): 463–470. https://doi.org/10.1016/j.wasman.2011.10.029.
Xing, W., W. Lu, Y. Zhao, X. Zhang, W. Deng, and T. H. Christensen. 2013. “Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).” Waste Manage. 33 (2): 382–389. https://doi.org/10.1016/j.wasman.2012.10.017.
Xu, H. X., and H. J. Zhang. 2019. “Intermittent leachate injection in bio-reactor landfills with bonded whole waste tyres.” IOP Conf. Ser.: Earth Environ. Sci. 351 (1): 012039. https://doi.org/10.1088/1755-1315/351/1/012039.
Xu, Q., T. Tolaymat, and T. G. Townsend. 2012. “Impact of pressurized liquids addition on landfill slope stability.” J. Geotech. Geoenviron. Eng. 138 (4): 472–480. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000609.
Xu, S. Y., O. P. Karthikeyan, A. Selvam, and J. W. C. Wong. 2014a. “Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: Effect of different leachate recirculation practices.” Bioresour. Technol. 168: 41–48. https://doi.org/10.1016/j.biortech.2014.05.009.
Xu, X. B., T. L. T. Zhan, Y. M. Chen, and R. P. Beaven. 2014b. “Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qizishan landfill, China.” Can. Geotech. J. 51 (11): 1243–1252. https://doi.org/10.1139/cgj-2013-0306.
Xu, X. B., T. L. T. Zhan, Y. M. Chen, and Q. G. Guo. 2015. “Parameter determination of a compression model for landfilled municipal solid waste: An experimental study.” Waste Manage. Res. 33 (2): 199–210. https://doi.org/10.1177/0734242X14565657.
Yuen, S. T. S., Q. J. Wang, J. R. Styles, and T. A. McMahon. 2001. “Water balance comparison between a dry and a wet landfill — A full-scale experiment.” J. Hydrol. 251 (1–2): 29–48. https://doi.org/10.1016/S0022-1694(01)00432-2.
Zhan, T. L. T., Y. M. Chen, and W. A. Ling. 2008. “Shear strength characterization of municipal solid waste at the Suzhou landfill, China.” Eng. Geol. 97 (3–4): 97–111. https://doi.org/10.1016/j.enggeo.2007.11.006.
Zhang, H., P. He, and L. Shao. 2008. “Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation.” Atmos. Environ. 42 (22): 5579–5588. https://doi.org/10.1016/j.atmosenv.2008.03.010.
Zhang, P., H. Liu, X. Jiang, H. Lv, C. Cui, and Z. Huyan. 2021. “Numerical model of leachate recirculation in bioreactor landfills with high kitchen waste content.” Water 13 (13): 1750. https://doi.org/10.3390/w13131750.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27Issue 3July 2023

History

Received: Jun 25, 2022
Accepted: Sep 20, 2022
Published online: Feb 22, 2023
Published in print: Jul 1, 2023
Discussion open until: Jul 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Lagudu S. Avinash [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India (corresponding author). ORCID: https://orcid.org/0000-0003-0739-6610. Email: [email protected]; [email protected]
Venkata Balaiah Kami, S.M.ASCE [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]
C.S.P. Ojha, F.ASCE [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share