Technical Papers
Jul 4, 2024

Effect of Interlayer Cation on the Desiccation and Shrinkage Behavior of Bentonite

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 9

Abstract

Bentonite, used as a barrier material in landfill systems and the geological disposal of radioactive waste, undergoes various processes such as the cation exchange with landfill leachate and repository groundwater, desiccation shrinkage due to heat released from solid waste or nuclide decay. In the context of these engineering applications, it is crucial to consider the effect of interlayer cation composition on the desiccation-shrinkage behavior of bentonite for assessing the long-term performance of barrier systems. This study investigates this impact by conducting desiccation tests on four different cation-type bentonite samples (i.e., K-, Na-, Ca-, and Mg-bentonite) and elucidating the underlying mechanisms through mercury intrusion porosimetry test, X-ray diffraction analysis, and suction measurements. The results indicate that K-bentonite exhibits the highest water evaporation rate and the lowest shrinkage potential, with no shrinkage cracks detected, and that Na-bentonite evaporates water at a relatively fast rate but presents the most pronounced volumetric shrinkage. In contrast, Ca- and Mg-bentonite have the highest water-retention capacity, and their shrinkage potentials are less than Na-bentonite. An improved shrinkage model is proposed, which is shown to describe the measured shrinkage curves for four types of homoionic bentonite samples. Additionally, the mechanism behind the effect of different interlayer cations was interpreted in terms of the interlayer–cation–water interaction, pore structure evolution, and soil suction variation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data are available from the corresponding author upon reasonable request.

Acknowledgments

This research was funded by the National Natural Science Foundation of China (NSFC) under Grants 42377192 and 41972298. All this support is sincerely acknowledged.

References

Abdullah, W. S., K. A. Alshibli, and M. S. Al-Zou’bi. 1999. “Influence of porewater chemistry on the swelling behavior of compacted clays.” Appl. Clay Sci. 15 (5–6): 447–462. https://doi.org/10.1016/S0169-1317(99)00034-4.
Abdullah, W. S., M. S. Al-Zou’Bi, and K. A. Alshibli. 1997. “On the physicochemical aspects of compacted clay compressibility.” Can. Geotech. J. 34 (4): 551–559. https://doi.org/10.1139/t97-027.
Berend, I., J. Cases, M. Francois, J. Uriot, and L. Michot. 1995. “Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites; 2, The Li+, Na+, K+, Rb+ and Cs+ -exchanged forms.” Clays Clay Miner. 43 (3): 324–336. https://doi.org/10.1346/CCMN.1995.0430307.
Bernard, M., P. Dudoignon, C. Chevallier, and Y. Pons. 2006. “Shrinkage and subsidence in a marsh soil: Measurements and preliminary model.” Soil Sci. Soc. Am. J. 70 (6): 1834–1842. https://doi.org/10.2136/sssaj2005.0262.
Bohn, H. L., B. L. Mcneal, and G. A. O’Connor. 1985. Soil chemistry. New York: Wiley.
Bray, H. J., S. Redfern, and S. M. Clark. 1998. “The kinetics of dehydration in Ca-montmorillonite: An in situ X-ray diffraction study.” Mineral. Mag. 62 (5): 647–656. https://doi.org/10.1180/002646198548034.
Bronswijk, J. 1991. “Relation between vertical soil movements and water-content changes in cracking clays.” Soil Sci. Soc. Am. J. 55 (5): 1220–1226. https://doi.org/10.2136/sssaj1991.03615995005500050004x.
Bruand, A., and R. Prost. 1987. “Effect of water content on the fabric of a soil material: An experimental approach.” J. Soil Sci. 38 (3): 461–472. https://doi.org/10.1111/j.1365-2389.1987.tb02281.x.
Cancela, G. D., F. J. Huertas, E. R. Taboada, F. Sánchez-Rasero, and A. H. Laguna. 1997. “Adsorption of water vapor by homoionic montmorillonites: Heats of adsorption and desorption.” J. Colloid Interface 185 (2): 343–354. https://doi.org/10.1006/jcis.1996.4572.
Cases, J. M. 1997. “Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. the Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms.” Clays Clay Miner. 45 (1): 8–22. https://doi.org/10.1346/CCMN.1997.0450102.
Cases, J. M., I. Berend, G. Besson, M. Francois, and J. E. Poirier. 1992. “Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form.” Langmuir 8 (11): 2730–2739. https://doi.org/10.1021/la00047a025.
Chen, P., and N. Lu. 2018. “Generalized equation for soil shrinkage curve.” J. Geotech. Geoenviron. Eng. 144 (8): 04018046. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001889.
Chen, Y., Z. Sun, Y. Cui, W. Ye, and Q. Liu. 2019. “Effect of cement solutions on the swelling pressure of compacted GMZ bentonite at different temperatures.” Constr. Build. Mater. 229 (Dec): 116872. https://doi.org/10.1016/j.conbuildmat.2019.116872.
Chen, Z., D. Yuan, G. Liu, and Q. Lyu. 2023. “Effects of MWCNTs content and dry density on hydro-structural characteristics of bentonite during drying and wetting.” Fullerenes Nanotubes Carbon Nanostruct. 31 (9): 868–887. https://doi.org/10.1080/1536383X.2023.2215882.
Chertkov, V. Y. 2003. “Modelling the shrinkage curve of soil clay pastes.” Geoderma 112 (1–2): 71–95. https://doi.org/10.1016/S0016-7061(02)00297-5.
Chipera, S. J., J. W. Carey, and D. L. Bish. 1997. “Controlled-humidity XRD analyses: Application to the study of smectite expansion/contraction.” Adv. X-Ray Anal. 39 (May): 713–722. https://doi.org/10.1154/S0376030800023168.
Cho, G. C., and J. C. Santamarina. 2001. “Unsaturated particulate materials-particle-level studies.” J. Geotech. Geoenviron. Eng. 127 (1): 84–96. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84).
Danxi, S., L. Xian-feng, Y. Sheng-yang, P. Gaofeng, J. Guanlu, W. Hailong, K. Hideo, and O. Buzzi. 2023. “Three-dimensional characterization of cracks in undisturbed Mile expansive soil using X-ray computed tomography.” Soils Found. 63 (3): 101282. https://doi.org/10.1016/j.sandf.2023.101282.
Davidson, S. E., and J. B. Page. 1956. “Factors influencing swelling and shrinking in soils.” Soil Sci. Soc. Am. J. 20 (3): 320–324. https://doi.org/10.2136/sssaj1956.03615995002000030007x.
Ferrage, E., B. Lanson, B. A. Sakharov, and V. A. Drits. 2005. “Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns. Part I. Montmorillonite hydration properties.” Am. Mineral. 90 (8–9): 1358–1374. https://doi.org/10.2138/am.2005.1776.
Ferrage, E., B. A. Sakharov, L. J. Michot, A. Delville, A. Bauer, B. Lanson, S. Grangeon, G. Frapper, M. Jiménez-Ruiz, and G. J. Cuello. 2011. “Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data.” J. Phys. Chem. C 115 (5): 1867–1881. https://doi.org/10.1021/jp105128r.
Gapak, Y., G. Das, U. Yerramshetty, and T. V. Bharat. 2017. “Laboratory determination of volumetric shrinkage behavior of bentonites: A critical appraisal.” Appl. Clay Sci. 135 (May): 554–566. https://doi.org/10.1016/j.clay.2016.10.038.
Genuchten, V., and M. Th. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Giráldez, J., G. Sposito, and C. Delgado. 1983. “A general soil volume change equation: I. The two-parameter model.” Soil Sci. Soc. Am. J. 47 (3): 419–422. https://doi.org/10.2136/sssaj1983.03615995004700030005x.
Grim, R. E. 1968. Clay mineralogy. New York: McGraw-Hill Book.
Groenevelt, P. H., and C. D. Grant. 2002. “Curvature of shrinkage lines in relation to the consistency and structure of a Norwegian clay soil.” Geoderma 106 (3): 235–245. https://doi.org/10.1016/S0016-7061(01)00126-4.
Hagner, T. 2005. “Shrinkage characteristics and tensile strength of cohesive soils.” Master’s thesis, Faculty of Civil and Environmental Engineering, Bauhuas Univ.
Hallett, P. D., and T. A. Newson. 2010. “Describing soil crack formation using elastic-plastic fracture mechanics.” Eur. J. Soil Sci. 56 (1): 31–38. https://doi.org/10.1111/j.1365-2389.2004.00652.x.
He, Y., W. Ye, Y. Chen, and Y. Cui. 2019. “Effects of K+ solutions on swelling behavior of compacted GMZ bentonite.” Eng. Geol. 249 (Jun): 241–248. https://doi.org/10.1016/j.enggeo.2018.12.020.
He, Y., W. Ye, Y. Chen, K. Zhang, and D. Wu. 2020. “Effects of NaCl solution on the swelling and shrinkage behavior of compacted bentonite under one-dimensional conditions.” Bull. Eng. Geol. Environ. 79 (1): 399–410. https://doi.org/10.1007/s10064-019-01568-1.
Head, K. H. 1980. Vol. 1 of Manual of soil laboratory testing: Soil classification and compaction tests, 339. London: Pentech Press.
Herbert, H., J. Kasbohm, H. Sprenger, A. M. Fernández, and C. Reichelt. 2008. “Swelling pressures of MX-80 bentonite in solutions of different ionic strength.” Phys. Chem. Earth 33 (May): S327–S342. https://doi.org/10.1016/j.pce.2008.10.005.
Israelachvili, J. N. 2011. Intermolecular and surface forces. Amsterdam, Netherlands: Elsevier.
Khorshidi, M., and N. Lu. 2017. “Intrinsic relation between soil water retention and cation exchange capacity.” J. Geotech. Geoenviron. Eng. 143 (4): 04016119. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001633.
Konrad, J. M., and R. Ayad. 1997. “Desiccation of a sensitive clay: Field experimental observations.” Can. Geotech. J. 34 (6): 929–942. https://doi.org/10.1139/t97-063.
Likos, W. J., and N. Lu. 2006. “Pore scale analysis of bulk volume change from the crystalline interlayer swelling of Na+- and Ca2+- smectite.” Clays Clay Miner. 54 (4): 515–528. https://doi.org/10.1346/CCMN.2006.0540412.
Liu, L. N., Y. G. Chen, and W. S. Gao. 2023. “Effect of multiple-ion interaction on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite.” Bull. Eng. Geol. Environ. 82 (3): 90. https://doi.org/10.1007/s10064-023-03100-y.
Lu, N., and Y. Dong. 2017. “Correlation between soil-shrinkage curve and water-retention characteristics.” J. Geotech. Geoenviron. Eng. 143 (9): 04017054. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001741.
McGarry, D., and K. W. J. Malafant. 1987. “The analysis of volume change in unconfined units of soil.” Soil Sci. Soc. Am. J. 51 (2): 290–297. https://doi.org/10.2136/sssaj1987.03615995005100020005x.
Meng, J., C. Li, S. Yan, S. Zhang, H. Zhang, G. Wang, and X. Yang. 2022. “Atomic-level insights into the mechanism of saline-regulated montmorillonite (001)-salt droplet interface wetting: A molecular dynamics study.” Appl. Clay Sci. 224 (Jul): 106513. https://doi.org/10.1016/j.clay.2022.106513.
Montes-H, G., J. Duplay, L. Martinez, Y. Geraud, and B. Rousset-Tournier. 2003. “Influence of interlayer cations on the water sorption and swelling–shrinkage of MX80 bentonite.” Appl. Clay Sci. 23 (5–6): 309–321. https://doi.org/10.1016/S0169-1317(03)00130-3.
Mooney, R. W., A. G. Keenan, and L. A. Wood. 1952. “Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction.” J. Am. Chem. Soc. 74 (6): 1371–1374. https://doi.org/10.1021/ja01126a002.
Morodome, S., and K. Kawamura. 2009. “Swelling behavior of Na- and Ca-montmorillonite up to 150°C by in situ X-ray diffraction experiments.” Clays Clay Miner. 57 (2): 150–160. https://doi.org/10.1346/CCMN.2009.0570202.
Mu, Q., L. Meng, Y. Shen, C. Zhou, and Z. Gu. 2023. “Effects of clay content on the desiccation cracking behavior of low-plasticity soils.” Bull. Eng. Geol. Environ. 82 (8): 317. https://doi.org/10.1007/s10064-023-03346-6.
Murray, H. H. 1991. “Overview-clay mineral applications.” Appl. Clay Sci. 5 (5): 379–395. https://doi.org/10.1016/0169-1317(91)90014-Z.
Nong, R., Y. Wan, Y. Ding, M. Chai, and L. Zhu. 2023. “Effects of root systems on crack formation: Experiments, modeling, and analyses.” Soil Tillage Res. 233 (May): 105784. https://doi.org/10.1016/j.still.2023.105784.
Norrish, K. 1954. “The swelling of montmorillonite.” Discuss. Faraday Soc. 18 (May): 120–134. https://doi.org/10.1039/df9541800120.
Olsen, P. A., and L. E. Haugen. 1998. “A new model of the shrinkage characteristic applied to some Norwegian soils.” Geoderma 83 (1): 67–81. https://doi.org/10.1016/S0016-7061(97)00145-6.
Pellissier, J. P. 1991. “The toluene and wax-freezing method of determining volumetric free swell.” Geotech. Test. J. 14 (3): 309–314. https://doi.org/10.1520/GTJ10575J.
Peng, X., and R. Horn. 2005. “Modeling soil shrinkage curve across a wide range of soil types.” Soil Sci. Soc. Am. J. 69 (3): 584–592. https://doi.org/10.2136/sssaj2004.0146.
Peng, X., and R. Horn. 2013. “Identifying six types of soil shrinkage curves from a large set of experimental data.” Soil Sci. Soc. Am. J. 77 (2): 372–381. https://doi.org/10.2136/sssaj2011.0422.
Prost, R., T. Koutit, A. Benchara, and E. Huard. 1998. “State and location of water adsorbed on clay minerals: Consequences of the hydration and swelling-shrinkage phenomena.” Clays Clay Miner. 46 (2): 117–131. https://doi.org/10.1346/CCMN.1998.0460201.
Rowe, R. K. 2005. “Long-term performance of contaminant barrier systems.” Géotechnique 55 (9): 631–678. https://doi.org/10.1680/geot.2005.55.9.631.
Rytwo, G., A. Banin, and S. Nir. 1996. “Exchange reactions in the Ca-Mg-Na-montmorillonite system.” Clays Clay Miner. 44 (2): 276–285. https://doi.org/10.1346/CCMN.1996.0440212.
Salles, F., J. M. Douillard, R. Denoyel, O. Bildstein, and H. V. Damme. 2009. “Hydration sequence of swelling clays: Evolutions of specific surface area and hydration energy.” J. Colloid Interface Sci. 333 (2): 510–522. https://doi.org/10.1016/j.jcis.2009.02.018.
Seiphoori, A., L. Laloui, A. Ferrari, M. Hassan, and W. H. Khushefati. 2016. “Water retention and swelling behaviour of granular bentonites for application in geosynthetic clay liner (GCL) systems.” Soils Found. 56 (3): 449–459. https://doi.org/10.1016/j.sandf.2016.04.011.
Sposito, G., and R. Prost. 1982. “Structure of water adsorbed on smectites.” Chem. Rev. 82 (6): 553–573. https://doi.org/10.1021/cr00052a001.
Steudel, A., and K. Emmerich. 2013. “Strategies for the successful preparation of homoionic smectites.” Appl. Clay Sci. 75 (5): 13–21. https://doi.org/10.1016/j.clay.2013.03.002.
Tan, L., P. L. Zheng, and Q. B. Liu. 2020. “Effects of saline solutions on the desiccation cracking and shrinkage behavior of Gaomiaozi bentonite.” Adv. Civ. Eng. 2020 (Dec): 1–13. https://doi.org/10.1155/2020/8851838.
Tang, C. S., Y. J. Cui, B. Shi, A. M. Tang, and C. Liu. 2011. “Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles.” Geoderma 166 (1): 111–118. https://doi.org/10.1016/j.geoderma.2011.07.018.
Tang, C. S., Y. J. Cui, A. M. Tang, and B. Shi. 2010. “Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils.” Eng. Geol. 114 (3–4): 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003.
Tang, C. S., C. Zhu, Q. Cheng, H. Zeng, J. J. Xu, B. G. Tian, and B. Shi. 2021. “Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors.” Earth Sci. Rev. 216 (May): 103586. https://doi.org/10.1016/j.earscirev.2021.103586.
Tessier, D. 1990. “Behaviour and microstructure of clay minerals.” Vol. 214 of Soil colloids and their associations in aggregates, edited by M. F. De Boodt, M. H. B. Hayes, A. Herbillon, E. B. A. De Strooper, and J. J. Tuck. Boston: Springer.
Thyagaraj, T., S. R. Thomas, and A. P. Das. 2016. “Physico-chemical effects on shrinkage behavior of compacted expansive clay.” Int. J. Geomech. 17 (2): 06016013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000698.
Villar, M. V., G. Campos, L. Gutiérrez-Nebot, and X. Arroyo. 2019. “Effect of prolonged drying at high temperature on the water retention capacity of bentonite (FEBEX-DP samples).” Appl. Clay Sci. 182 (Mar): 105290. https://doi.org/10.1016/j.clay.2019.105290.
Villar, M. V., G. Á. Carlos, and C. Gemma. 2022. “Bentonite swelling into a void under suction or water flow.” Acta Geotech. 18 (3): 1495–1513. https://doi.org/10.1007/s11440-022-01702-6.
Villar, M. V., R. Gómez-Espina, and L. Gutiérrez-Nebot. 2012. “Basal spacings of smectite in compacted bentonite.” Appl. Clay Sci. 65 (Mar): 95–105. https://doi.org/10.1016/j.clay.2012.05.010.
Villar, M. V., R. J. Iglesias, J. L. García-Siñeriz, A. Lloret, and F. Huertas. 2020. “Physical evolution of a bentonite buffer during 18 years of heating and hydration.” Eng. Geol. 264 (Mar): 105408. https://doi.org/10.1016/j.enggeo.2019.105408.
Villar, M. V., I. R. Javier, G. Carlos, and C. Beatriz. 2021. “Pellets/block bentonite barriers: Laboratory study of their evolution upon hydration.” Eng. Geol. 292 (Mar): 106272. https://doi.org/10.1016/j.enggeo.2021.106272.
Wang, C., V. F. Myshkin, E. V. Bespala, A. D. Poberezhnikov, A. P. Baraban, D. D. Shukshina, and D. A. Semenov. 2023. “Structure and properties of montmorillonite containing Ca2+, Sr2+, and Ba2+ cations simultaneously.” J. Mol. Liq. 382 (121994): 167–322. https://doi.org/10.1016/j.molliq.2023.121994.
Won, J., J. Kim, and H. Choo. 2023. “Estimation of the swelling strain and swelling pressure of compacted bentonite using electrical conductivity.” Appl. Clay Sci. 242 (Mar): 107040. https://doi.org/10.1016/j.clay.2023.107040.
Xu, L. B., W. M. Ye, Z. R. Liu, Q. Wang, and Y. G. Chen. 2022. “Investigation on intrusion of bentonite–sand mixtures in fractures with consideration of sand content and seepage effects.” Bull. Eng. Geol. Environ. 81 (1): 70. https://doi.org/10.1007/s10064-021-02559-x.
Ye, W. M., Y. G. Chen, B. Chen, Q. O. Wang, and J. Wang. 2010. “Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite.” Eng. Geol. 116 (1–2): 12–20. https://doi.org/10.1016/j.enggeo.2010.06.002.
Ye, W. M., F. Zhang, Y. G. Chen, B. Chen, and Y. J. Cui. 2017. “Influences of salt solutions and salinization-desalinization processes on the volume change of compacted GMZ01 bentonite.” Eng. Geol. 222 (May): 140–145. https://doi.org/10.1016/j.enggeo.2017.04.002.
Ye, W. M., C. M. Zhu, Y. G. Chen, B. Chen, Y. J. Cui, and J. Wang. 2015. “Influence of salt solutions on the swelling behavior of the compacted GMZ01 bentonite.” Environ. Earth Sci. 74 (1): 793–802. https://doi.org/10.1007/s12665-015-4108-1.
Yotsuji, K., Y. Tachi, H. Sakuma, and K. Kawamura. 2021. “Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments.” Appl. Clay Sci. 204 (May): 106034. https://doi.org/10.1016/j.clay.2021.106034.
Zhang, F., and Y. Cui. 2022. “Microstructure-based insight into different swelling pressure determination methods.” Eng. Geol. 307 (May): 106777. https://doi.org/10.1016/j.enggeo.2022.106777.
Zhang, F., Y. Cui, and B. Chen. 2022. “Investigation of suction effects due to stress release with compacted MX80 bentonite.” J. Geotech. Geoenviron. Eng. 148 (9): 04022070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002849.
Zhang, F., W. Ye, Q. Wang, Y. Chen, and Y. Cui. 2023. “Insight into volume change behavior of GMZ01 bentonite over cyclic salinization–desalinization processes.” Environ. Earth Sci. 82 (12): 312. https://doi.org/10.1007/s12665-023-10997-x.
Zhao, Z., C. Yu-Jun, Y. Jin-Wen, and M. Nadia. 2022. “Investigation into the hydro-mechanical behaviour and microstructural evolution of MX80 bentonite pellet upon wetting/drying.” Constr. Build. Mater. 345 (May): 128319. https://doi.org/10.1016/j.conbuildmat.2022.128319.
Zheng, Y., A. Zaoui, and I. Shahrour. 2011. “A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite.” Appl. Clay Sci. 51 (1–2): 177–181. https://doi.org/10.1016/j.clay.2010.10.027.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 9September 2024

History

Received: Nov 7, 2023
Accepted: Apr 9, 2024
Published online: Jul 4, 2024
Published in print: Sep 1, 2024
Discussion open until: Dec 4, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Penglin Zheng [email protected]
Ph.D. Student, Badong National Observation and Research Station of Geohazards, China Univ. of Geosciences, 388 Lumo Rd., Wuhan 430074, China. Email: [email protected]
Professor, Badong National Observation and Research Station of Geohazards, China Univ. of Geosciences, 388 Lumo Rd., Wuhan 430074, China (corresponding author). ORCID: https://orcid.org/0000-0002-5268-4702. Email: [email protected]
Associate Professor, Badong National Observation and Research Station of Geohazards, China Univ. of Geosciences, 388 Lumo Rd., Wuhan 430074, China. Email: [email protected]
Jingfang Mei [email protected]
Engineer, Geophysical and Geochemical Exploration Institution of Zhejiang Province, 220 Hushu South Rd., Hangzhou 310000, China. Email: [email protected]
Changdong Li [email protected]
Professor, Faculty of Engineering, China Univ. of Geosciences, 388 Lumo Rd., Wuhan 430074, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share