Technical Papers
Jun 25, 2024

Drained Cavity Expansion–Contraction in CASM and Its Application for Pressuremeter Tests in Sands

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 9

Abstract

The contraction behavior of monotonically expanded cavities is intriguing as it offers insights into certain geotechnical scenarios, especially for pressuremeter tests, where the unloading data is equally informative as the loading data. Despite many solutions for cavity expansion, attempts for the analyses of cavity contraction from an expanded state were rarely made. To extend previous solutions to include contraction, this paper presents a novel semianalytical solution for drained contraction of spherical and cylindrical cavities from an initially expanded state in soils characterized by a unified state parameter model for clay and sand (CASM). Given the nonself-similar nature of the contraction after expansion problems, the hybrid Eulerian-Lagrangian (HEL) approach is employed to derive distributions and evolutions of stresses and strains around the cavities during the unloading process. Combined with the previous expansion solution, the complete loading-unloading cavity pressure curves and stress paths at the cavity wall are presented and verified against numerical simulations. Following validation through comparisons with calibration chamber pressuremeter tests conducted in Stockton Beach sand, a new method for the interpretation of pressuremeter testing data is developed based on the proposed solution. This method demonstrates its capability in the back-calculation of the effective horizontal stresses and state parameters for four distinct types of sands.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (Grant No. 52178374, Grant No. 51908546), Basic and Applied Basic Research Foundation of Guangdong Province (Grant No. 2024A1515011552), and the Foundation Research Project of Xuzhou (Grant No. KC22019).

References

Ajalloeian, R., and H. S. Yu. 1998. “Chamber studies of the effects of pressuremeter geometry on test results in sand.” Géotechnique 48 (5): 621–636. https://doi.org/10.1680/geot.1998.48.5.621.
Ajalloeian, R., H. S. Yu, and M. A. Allman. 1996. “Physical and mechanical properties of Stockton Beach sand.” In Proc., 7th Australia New Zealand Conf. Geomechanics Change World Conf., edited by M. B. Jaksa, W. S. Kaggwa, and D. A. Cameron, 60–65. Barton, ACT, Australia: Institution of Engineers.
Altuhafi, F. N., R. J. Jardine, V. N. Georgiannou, and W. W. Moinet. 2018. “Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles.” Géotechnique 68 (6): 546–555. https://doi.org/10.1680/jgeot.17.P.117.
Bagbag, A. A., J. P. Doherty, and B. M. Lehane. 2016. “Stress-strain response of fine silica sand using a miniature pressuremeter.” In Proc., 5th Int. Conf. Geotech Geophysics Site Characterisation ISC 2016, 749–754. The Gap, QLD, Australia: Australian Geomechanics Society.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bellotti, R., V. Crippa, V. N. Ghionna, M. Jamiolkowski, and P. K. Robertson. 1987. Self-boring pressuremeter in pluvially deposited sands. Milan, Italy: Italian National Electricity Board, Hydraulic and Structural Research Center.
Borela, R., J. D. Frost, G. Viggiani, and F. Anselmucci. 2021. “Earthworm-inspired robotic locomotion in sand: An experimental study with X-ray tomography.” Géotech. Lett. 11 (1): 66–73. https://doi.org/10.1680/jgele.20.00085.
Cami, B., S. Javankhoshdel, K. K. Phoon, and J. Ching. 2020. “Scale of fluctuation for spatially varying soils: Estimation methods and values.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 6 (4): 03120002. https://doi.org/10.1061/AJRUA6.0001083.
Cao, L. F., C. I. Teh, and M. F. Chang. 2001. “Undrained cavity expansion in modified Cam clay I: Theoretical analysis.” Géotechnique 51 (4): 323–334. https://doi.org/10.1680/geot.2001.51.4.323.
Castro, J., and N. Sivasithamparam. 2021. “Theoretical solution for drained cylindrical cavity expansion in clays with fabric anisotropy and structure.” Acta Geotech. 17 (5): 1917–1933. https://doi.org/10.1007/s11440-021-01311-9.
Chen, H., and P. Q. Mo. 2022. “An undrained expansion solution of cylindrical cavity in SANICLAY for K0-consolidated clays.” J. Rock Mech. Geotech. Eng. 14 (3): 922–935. https://doi.org/10.1016/j.jrmge.2021.10.016.
Chen, S. L., and Y. N. Abousleiman. 2013. “Exact drained solution for cylindrical cavity expansion in modified cam clay soil.” Géotechnique 63 (6): 510–517. https://doi.org/10.1680/geot.11.P.088.
Cheng, Y., and H. Yang. 2019. “Exact solution for drained spherical cavity expansion in saturated soils of finite radial extent.” Int. J. Numer. Anal. Methods Geomech. 43 (8): 1594–1611. https://doi.org/10.1002/nag.2924.
Collins, I. F., M. J. Pender, and W. Yan. 1992. “Cavity expansion in sands under drained loading conditions.” Int. J. Numer. Anal. Methods Geomech. 16 (1): 3–23. https://doi.org/10.1002/nag.1610160103.
Collins, I. F., and J. R. Stimpson. 1994. “Similarity solutions for drained a undrained cavity expansions in soils.” Géotechnique 44 (1): 21–34. https://doi.org/10.1680/geot.1994.44.1.21.
Collins, I. F., and H. S. Yu. 1996. “Undrained cavity expansions in critical state soils.” Int. J. Numer. Anal. Methods Geomech. 20 (7): 489–516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7%3C489::AID-NAG829%3E3.0.CO;2-V.
Coop, M. R. 1990. “The mechanics of uncemented carbonate sands.” Géotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
Cudmani, R., and V. A. Osinov. 2001. “The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests.” Can. Geotech. J. 38 (3): 622–638. https://doi.org/10.1139/t00-124.
Ferreira, R. D. S. 1992. “Interpretation of pressuremeter tests using a curve fitting technique.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Alberta.
Gaaloul, I., S. Montassar, and W. Frikha. 2021. “Thermal effects on limit pressure in a cylindrical cavity expansion.” Innov. Infrastruct. Solut. 6 (4): 194. https://doi.org/10.1007/s41062-021-00562-5.
Ghafghazi, M., and D. A. Shuttle. 2008. “Evaluation of soil state from SBP and CPT: A case history.” Can. Geotech. J. 45 (6): 824–844. https://doi.org/10.1139/T08-025.
González, N. A., M. Arroyo, and A. Gens. 2009. “Identification of bonded clay parameters in SBPM tests: A numerical study.” Soils Found. 49 (3): 329–340. https://doi.org/10.3208/sandf.49.329.
Houlsby, G. T. 1997. “Discussion: A practical geometry correction for interpreting pressuremeter tests in clay.” Géotechnique 47 (4): 879–882. https://doi.org/10.1680/geot.1997.47.4.879.
Houlsby, G. T., and J. P. Carter. 1993. “The effects of pressuremeter geometry on the results of tests in clay.” Géotechnique 43 (4): 567–576. https://doi.org/10.1680/geot.1993.43.4.567.
Houlsby, G. T., and J. P. Carter. 1995. “Discussion: The effects of pressuremeter geometry on the results of tests in clay.” Géotechnique 45 (4): 741–748. https://doi.org/10.1680/geot.1995.45.4.741.
Houlsby, G. T., and B. G. Clarke. 1986. “Analysis of the unloading of a pressuremeter in sand.” In Proc., 2nd Int. Symp. on Pressuremeters, 245–264. Philadelphia: ASTM STP.
Houlsby, G. T., and N. J. Withers. 1988. “Analysis of the cone pressuremeter test in clay.” Géotechnique 38 (4): 575–587. https://doi.org/10.1680/geot.1988.38.4.575.
Hu, N. 2015. On fabric tensor-based constitutive modelling of granular materials: Theory and numerical implementation. Nottingham, England: Univ. of Nottingham.
Hughes, J. M. O., C. P. Wroth, and D. Windle. 1977. “Pressuremeter tests in sands.” Géotechnique 27 (4): 455–477. https://doi.org/10.1680/geot.1977.27.4.455.
Jardine, R. J., B. T. Zhu, P. Foray, and Z. X. Yang. 2013. “Interpretation of stress measurements made around closed-ended displacement piles in sand.” Géotechnique 63 (8): 613–627. https://doi.org/10.1680/geot.9.P.138.
Jiang, M. J., and Y. G. Sun. 2012. “Cavity expansion analyses of crushable granular materials with state-dependent dilatancy: Cavity expansion analyses of crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 36 (6): 723–742. https://doi.org/10.1002/nag.1027.
Jin, Y. F., Z. Y. Yin, W. H. Zhou, and S. Horpibulsuk. 2019. “Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method.” Acta Geotech. 14 (6): 1925–1947. https://doi.org/10.1007/s11440-019-00847-1.
Li, G. Y., P. Q. Mo, C. Li, J. Hu, P. Z. Zhuang, and H.-S. Yu. 2023. “Loading-unloading of spherical and cylindrical cavities in cohesive-frictional materials with arbitrary radially symmetric boundary conditions.” Appl. Math. Modell. 124 (Dec): 488–508. https://doi.org/10.1016/j.apm.2023.07.037.
Li, L., J. Li, and D. Sun. 2016. “Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay.” Comput. Geotech. 73 (Mar): 83–90. https://doi.org/10.1016/j.compgeo.2015.11.022.
Liu, G., G. Wei, J. Li, X. Du, and C. Xu. 2024. “CEM–DSR-based explicit solution of limit expansion pressure in unsaturated soils and its application.” Comput. Geotech. 166 (Feb): 106007. https://doi.org/10.1016/j.compgeo.2023.106007.
Liu, H., H. Zhou, Z. Wang, and X. Li. 2021. “Theoretical solution for cavity expansion in crushable soil.” Int. J. Geomech. 21 (7): 04021098. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002065.
Luo, W., J. Li, J. Zou, P. Zhang, and Y. Rong. 2021. “A novel simple solution to cavity expansion problem in crushable granular materials based on energy dissipation method.” Int. J. Geomech. 22 (2): 04021281. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002271.
Mo, P. Q., H. Chen, and H. S. Yu. 2022. “Undrained cavity expansion in anisotropic soils with isotropic and frictional destructuration.” Acta Geotech. 17 (6): 2325–2346. https://doi.org/10.1007/s11440-021-01412-5.
Mo, P. Q., Y. Fang, and H. S. Yu. 2020. “Benchmark solutions of large-strain cavity contraction for deep tunnel convergence in geomaterials.” J. Rock Mech. Geotech. Eng. 12 (3): 596–607. https://doi.org/10.1016/j.jrmge.2019.07.015.
Mo, P. Q., A. M. Marshall, and H. S. Yu. 2016. “Interpretation of cone penetration test data in layered soils using cavity expansion analysis.” J. Geotech. Geoenviron. Eng. 143 (1): 04016084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001577.
Mo, P. Q., and J. Wang. 2020. “Shakedown analysis of cavities in cohesive-frictional materials and its application to underground energy storage caverns.” Soils Found. 60 (1): 77–89. https://doi.org/10.1016/j.sandf.2020.01.003.
Mo, P. Q., and H. S. Yu. 2018. “Drained cavity expansion analysis with a unified state parameter model for clay and sand.” Can. Geotech. J. 55 (7): 1029–1040. https://doi.org/10.1139/cgj-2016-0695.
Nutt, N. R. F. 1993. Development of the cone pressuremeter. Oxford, UK: Oxford Univ.
Oztoprak, S., S. Sargin, H. K. Uyar, and I. Bozbey. 2018. “Modeling of pressuremeter tests to characterize the sands.” Geomech. Eng. 14 (6): 509–517. https://doi.org/10.12989/gae.2018.14.6.509.
Pournaghiazar, M., A. R. Russell, and N. Khalili. 2013. “Drained cavity expansions in soils of finite radial extent subjected to two boundary conditions: Cavity expansion in soils of finite extent.” Int. J. Numer. Anal. Methods Geomech. 37 (4): 331–352. https://doi.org/10.1002/nag.1099.
Randolph, M. F., R. Dolwin, and R. Beck. 1994. “Design of driven piles in sand.” Géotechnique 44 (3): 427–448. https://doi.org/10.1680/geot.1994.44.3.427.
Rouainia, M., S. Panayides, M. Arroyo, and A. Gens. 2020. “A pressuremeter-based evaluation of structure in London Clay using a kinematic hardening constitutive model.” Acta Geotech. 15 (8): 2089–2101. https://doi.org/10.1007/s11440-020-00940-w.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 269 (1339): 500–527. https://doi.org/10.1098/rspa.1962.0193.
Russell, A. R., and N. Khalili. 2002. “Drained cavity expansion in sands exhibiting particle crushing.” Int. J. Numer. Anal. Methods Geomech. 26 (4): 323–340. https://doi.org/10.1002/nag.203.
Russell, A. R., and N. Khalili. 2006. “On the problem of cavity expansion in unsaturated soils.” Comput. Mech. 37 (4): 311. https://doi.org/10.1007/s00466-005-0672-7.
Russell, A. R., Y. Wang, and N. Khalili. 2023. “Cavity expansions in partially drained soils and a comparison to CPT results.” Comput. Geotech. 158 (Jun): 105381. https://doi.org/10.1016/j.compgeo.2023.105381.
Salgado, R., and M. Prezzi. 2007. “Computation of cavity expansion pressure and penetration resistance in sands.” Int. J. Geomech. 7 (4): 251–265. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:4(251).
Schnaid, F. 1990. “A study of the cone pressuremeter tests in sand.” Ph.D. thesis, Magdalen College, Univ. of Oxford.
Schnaid, F., J. A. Ortigao, F. M. Mántaras, R. P. Cunha, and I. MacGregor. 2000. “Analysis of self-boring pressuremeter (SBPM) and Marchetti dilatometer (DMT) tests in granite saprolites.” Can. Geotech. J. 37 (4): 796–810. https://doi.org/10.1139/t00-005.
Shuttle, D. A. 2006. “Can the effect of sand fabric on plastic hardening be determined using a self-bored pressuremeter?” Can. Geotech. J. 43 (7): 659–673. https://doi.org/10.1139/t06-033.
Shuttle, D. A., and M. G. Jefferies. 1995. “A practical geometry correction for interpreting pressuremeter tests in clay.” Géotechnique 45 (3): 549–553. https://doi.org/10.1680/geot.1995.45.3.549.
Silvestri, V. 2001. “Interpretation of pressuremeter tests in sand.” Can. Geotech. J. 38 (6): 1155–1165. https://doi.org/10.1139/t01-045.
Sivasithamparam, N., and J. Castro. 2020. “Undrained cylindrical cavity expansion in clays with fabric anisotropy and structure: Theoretical solution.” Comput. Geotech. 120 (Apr): 103386. https://doi.org/10.1016/j.compgeo.2019.103386.
Su, D., and Z. X. Yang. 2019. “Drained analyses of cylindrical cavity expansion in sand incorporating a bounding-surface model with state-dependent dilatancy.” Appl. Math. Model. 68 (Apr): 1–20. https://doi.org/10.1016/j.apm.2018.11.017.
Vrakas, A., and G. Anagnostou. 2014. “A finite strain closed-form solution for the elastoplastic ground response curve in tunnelling.” Int. J. Numer. Anal. Methods Geomech. 38 (11): 1131–1148. https://doi.org/10.1002/nag.2250.
Wang, X., and S. Chen. 2022. “Revisiting undrained cavity expansion problem in critical state soils: A simple graph-based approach.” Int. J. Numer. Anal. Methods Geomech. 46 (12): 2356–2374. https://doi.org/10.1002/nag.3410.
White, D. J., and M. D. Bolton. 2004. “Displacement and strain paths during plane-strain model pile installation in sand.” Géotechnique 54 (6): 375–397. https://doi.org/10.1680/geot.2004.54.6.375.
Withers, N. J., J. Howie, J. M. O. Hughes, and P. K. Robinson. 1989. “Performance and analysis of cone pressuremeter tests in sands.” Géotechnique 39 (3): 433–454. https://doi.org/10.1680/geot.1989.39.3.433.
Wroth, C. P. 1984. “The interpretation of in situ soil tests.” Géotechnique 34 (4): 449–489. https://doi.org/10.1680/geot.1984.34.4.449.
Yang, H., and A. R. Russell. 2015. “Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions.” Int. J. Numer. Anal. Methods Geomech. 39 (18): 1975–2016. https://doi.org/10.1002/nag.2379.
Yang, H., H. S. Yu, X. Chen, and P. Z. Zhuang. 2023. “Rigorous solution for drained analysis of spherical cavity expansion in soils of finite radial extent.” Comput. Geotech. 160 (Aug): 105516. https://doi.org/10.1016/j.compgeo.2023.105516.
Yang, H., P. Z. Zhuang, J. L. Zhang, Y. Ma, H. S. Yu, and X. Chen. 2024. “A hybrid Eulerian–Lagrangian approach for non-self-similar expansion analysis of a cylindrical cavity in saturated and unsaturated critical state soils.” Acta Geotech. 2024 (Jan): 1–20. https://doi.org/10.1007/s11440-023-02189-5.
Yang, J., and F. Mu. 2011. “Relating the maximum radial stress on pile shaft to pile base resistance.” Géotechnique 61 (12): 1087–1092. https://doi.org/10.1680/geot.10.T.006.
Yang, Z. X., R. J. Jardine, B. T. Zhu, and S. Rimoy. 2013. “Stresses developed around displacement piles penetration in sand.” J. Geotech. Geoenviron. Eng. 140 (3): 04013027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001022.
Yin, Z. Y., Y. F. Jin, S. L. Shen, and H. W. Huang. 2017. “An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model.” Acta Geotech. 12 (4): 849–867. https://doi.org/10.1007/s11440-016-0486-0.
Yu, H. S. 1994. “State parameter from self-boring pressuremeter tests in sand.” J. Geotech. Eng. 120 (12): 2118–2135. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2118).
Yu, H. S. 1996. “Interpretation of pressuremeter unloading tests in sands.” Géotechnique 46 (1): 17–31. https://doi.org/10.1680/geot.1996.46.1.17.
Yu, H. S. 1998. “CASM: A unified state parameter model for clay and sand.” Int. J. Numer. Anal. Methods Geomech. 22 (8): 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8%3C621::AID-NAG937%3E3.0.CO;2-8.
Yu, H. S. 2000. Cavity expansion methods in geomechanics. Berlin: Springer.
Yu, H. S., and G. T. Houlsby. 1991. “Finite cavity expansion in dilatant soils: Loading analysis.” Géotechnique 41 (2): 173–183. https://doi.org/10.1680/geot.1991.41.2.173.
Yu, H. S., and G. T. Houlsby. 1995. “A large strain analytical solution for cavity contraction in dilatant soils.” Int. J. Numer. Anal. Methods Geomech. 19 (11): 793–811. https://doi.org/10.1002/nag.1610191104.
Yu, H. S., and R. K. Rowe. 1999. “Plasticity solutions for soil behaviour around contracting cavities and tunnels.” Int. J. Numer. Anal. Methods Geomech. 23 (12): 1245–1279. https://doi.org/10.1002/(SICI)1096-9853(199910)23:12%3C1245::AID-NAG30%3E3.0.CO;2-W.
Zhang, J. L., E. C. Sun, P. Z. Zhuang, H. S. Yu, and H. Yang. 2023a. “Elastoplastic solution for cylindrical cavity contraction in unsaturated soils under constant suction conditions.” In Géotechnique Letter. New York: Emerald.
Zhang, N., Y. Chen, A. Martinez, and R. Fuentes. 2023b. “A bioinspired self-burrowing probe in shallow granular materials.” J. Geotech. Geoenviron. Eng. 149 (9): 04023073. https://doi.org/10.1061/JGGEFK.GTENG-11507.
Zhang, Y., D. Gallipoli, and C. Augarde. 2013. “Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization.” Comput. Geotech. 48 (Jun): 293–303. https://doi.org/10.1016/j.compgeo.2012.08.004.
Zhou, H., G. Kong, H. Liu, and L. Laloui. 2018. “Similarity solution for cavity expansion in thermoplastic soil.” Int. J. Numer. Anal. Methods Geomech. 42 (2): 274–294. https://doi.org/10.1002/nag.2724.
Zhou, H., H. Liu, and Z. Wang. 2022. “A semi-analytical solution for displacement-controlled elliptical cavity expansion in undrained MCC soil.” Int. J. Numer. Anal. Methods Geomech. 46 (2): 339–373. https://doi.org/10.1002/nag.3302.
Zhou, H., H. Liu, Z. Wang, and X. Ding. 2021. “A unified and rigorous solution for quasi-static cylindrical cavity expansion in plasticity constitutive models.” Comput. Geotech. 135 (Jul): 104162. https://doi.org/10.1016/j.compgeo.2021.104162.
Zhuang, P. Z., H. Yang, H. Y. Yue, R. Fuentes, and H. S. Yu. 2022. “Plasticity solutions for ground deformation prediction of shallow tunnels in undrained clay.” Tunnelling Underground Space Technol. 120 (Feb): 104277. https://doi.org/10.1016/j.tust.2021.104277.
Zhuang, P. Z., H. S. Yu, S. J. Mooney, and P. Q. Mo. 2021. “Loading and unloading of a thick-walled cylinder of critical-state soils: Large strain analysis with applications.” Acta Geotech. 16 (1): 237–261. https://doi.org/10.1007/s11440-020-00994-w.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 9September 2024

History

Received: Oct 26, 2023
Accepted: Apr 8, 2024
Published online: Jun 25, 2024
Published in print: Sep 1, 2024
Discussion open until: Nov 25, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Postgraduate Student, School of Mechanics and Civil Engineering, China Univ. of Mining and Technology, Xuzhou, Jiangsu 221116, China. Email: [email protected]
Associate Professor, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China Univ. of Mining and Technology, Xuzhou, Jiangsu 221116, China; Shenzhen Research Institute, China Univ. of Mining and Technology, Room B401, Virtual University, Nankeyuan Ave., Shenzhen, Guangdong 518057, China (corresponding author). ORCID: https://orcid.org/0000-0002-1469-4838. Email: [email protected]
Zhao Lu, Ph.D. [email protected]
Associate Researcher, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518048, China; Associate Researcher, Research and Development Center, Shenzhen Foundation Engineering Co. LTD, No. 3, Zhuzilin Zizhu Six Rd., Shenzhen 518040, China. Email: [email protected]
Associate Professor, Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong Univ., Chengdu 611756, China. ORCID: https://orcid.org/0000-0001-6620-6587. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Faculty of Engineering, Univ. of Leeds, Leeds LS2 9JT, UK. Email: [email protected]
Hai-Sui Yu, Ph.D. [email protected]
Professor, School of Civil Engineering, Faculty of Engineering, Univ. of Leeds, Leeds LS2 9JT, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share