Technical Papers
Jun 17, 2024

Experimental Study of Suffusion in Sand–Clay Mixtures under Variably Saturated Conditions

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 9

Abstract

Suffusion refers to the loss of small particles in a soil matrix without volume changes, caused by hydrodynamic forces and alternation of pore fluid chemistry. This study investigated the ionic concentration (IC)-induced suffusion of sand–clay mixtures under saturated and unsaturated conditions through laboratory soil-column experiments. The impacts of clay mineralogy and sand-grain size on suffusion were investigated based on the breakthrough curves (BTCs) obtained from the soil-column experiments. In addition, the degree of saturation during the experiments was measured to assess the impact of the saturation state on suffusion in the sand–clay mixtures. The observed BTCs in this study demonstrated that suffusion was more significant under saturated conditions than unsaturated conditions for the sand–kaolinite and sand–illite mixtures. In contrast, the sand–bentonite mixtures exhibited higher susceptibility to suffusion under unsaturated conditions. Moreover, for the sand–kaolinite mixtures, a higher susceptibility to suffusion was observed with smaller sand-grain sizes under saturated conditions, whereas the opposite trend was observed under unsaturated conditions. This study provides insights into the suffusion behavior of sand–clay mixtures, considering influential factors such as clay type, sand-grain size, and IC gradient under both saturated and unsaturated conditions, which highlight the importance of considering the saturation state for a comprehensive understanding of suffusion in the sand–clay mixtures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (No. RS-2023-00221719) and by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport (No. RS-2024-00410248). The authors thank Editage for English language editing. The authors are grateful to the Korea Basic Science Institute for performing the XRD analysis for this study.

References

Anson, R. W. W., and A. B. Hawkins. 1998. “The effect of calcium ions in pore water on the residual shear strength of kaolinite and sodium montmorillonite.” Géotechnique 48 (6): 787–800. https://doi.org/10.1680/geot.1998.48.6.787.
ASTM. 1998. Standard test method for particle-size analysis of soils. ASTM D422. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254. West Conshohocken, PA: ASTM.
Benamar, A. 2014. “Effect of hydraulic load and water chemistry on soil suffusion.” In Proc., Int. Conf. Scour Eros. ICSE, 197–202. Boca Raton, FL: CRC Press.
Benamar, A., R. N. Correia dos Santos, A. Bennabi, and T. Karoui. 2019. “Suffusion evaluation of coarse-graded soils from Rhine dikes.” Acta Geotech. 14 (3): 815–823. https://doi.org/10.1007/s11440-019-00782-1.
Bendahmane, F., D. Marot, and A. Alexis. 2008. “Experimental parametric study of suffusion and backward erosion.” J. Geotech. Geoenviron. Eng. 134 (1): 57–67. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57).
Blume, T., N. Weisbrod, and J. S. Selker. 2005. “On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments.” Geoderma 124 (1–2): 121–132. https://doi.org/10.1016/j.geoderma.2004.04.007.
Burden, R. L., and J. D. Faires. 2011. Numerical analysis. Boston: Brooks/Cole Cengage Learning.
Chang, D., L. Zhang, and J. Cheuk. 2014. “Mechanical consequences of internal soil erosion.” HKIE Trans. 21 (4): 198–208. https://doi.org/10.1080/1023697X.2014.970746.
Chapuis, R. P. 1990. “Sand-bentonite liners: Predicting permeability from laboratory tests.” Can. Geotech. J. 27 (1): 47–57. https://doi.org/10.1139/t90-005.
Chen, Y. G., C. M. Zhu, W. M. Ye, Y. J. Cui, and B. Chen. 2016. “Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite.” Appl. Clay Sci. 124 (May): 11–20. https://doi.org/10.1016/j.clay.2016.01.050.
Cheng, K., C. Zhang, K. Peng, H. Liu, and M. Ahmad. 2021. “Un-resolved CFD-DEM method: An insight into its limitations in the modelling of suffusion in gap-graded soils.” Powder Technol. 381 (Jun): 520–538. https://doi.org/10.1016/j.powtec.2020.12.034.
Chetti, A., A. Benamar, and A. Hazzab. 2016. “Modeling of particle migration in porous media: Application to soil suffusion.” Transp. Porous Media 113 (3): 591–606. https://doi.org/10.1007/s11242-016-0714-y.
Choe, Y., H. Choi, and J. Won. 2022. “Suffusion of a sand–clay mixture: Impact of the ionic-concentration gradient, clay type, sand-grain size and hydraulic gradient.” Géotechnique 1–15. https://doi.org/10.1680/jgeot.21.00335.
Collins, B. D., and D. Znidarcic. 2004. “Stability analyses of rainfall induced landslides.” J. Geotech. Geoenviron. Eng. 130 (4): 362–372. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362).
Compère, F., G. Porel, and F. Delay. 2001. “Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.” J. Contam. Hydrol. 49 (1–2): 1–21. https://doi.org/10.1016/S0169-7722(00)00184-4.
Feng, D., X. Li, X. Wang, J. Li, F. Sun, Z. Sun, T. Zhang, P. Li, Y. Chen, and X. Zhang. 2018. “Water adsorption and its impact on the pore structure characteristics of shale clay.” Appl. Clay Sci. 155 (Jan): 126–138. https://doi.org/10.1016/j.clay.2018.01.017.
Flury, M., and S. Aramrak. 2017. “Role of air-water interfaces in colloid transport in porous media: A review.” Water Resour. Res. 53 (7): 5247–5275. https://doi.org/10.1002/2017WR020597.
Fredlund, D. G. 2006. “Unsaturated soil mechanics in engineering practice.” J. Geotech. Geoenviron. Eng. 132 (3): 286–321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286).
Fredlund, D. G., H. Rahardjo, and M. D. Fredlund. 2012. “Unsaturated soil mechanics in engineering practice.” Unsaturated Soil Mech. Eng. Pract. 132 (Mar): 286–321. https://doi.org/10.1002/9781118280492.
Hicher, P.-Y. 2013. “Modelling the impact of particle removal on granular material behaviour.” Géotechnique 63 (2): 118–128. https://doi.org/10.1680/geot.11.P.020.
Hu, Z., Y. Zhang, and Z. Yang. 2019. “Suffusion-induced deformation and microstructural change of granular soils: A coupled CFD–DEM study.” Acta Geotech. 14 (3): 795–814. https://doi.org/10.1007/s11440-019-00789-8.
Kaoser, S., S. Barrington, M. Elektorowicz, and T. Ayadat. 2006. “The influence of hydraulic gradient and rate of erosion on hydraulic conductivity of sand-bentonite mixtures.” Soil Sediment Contam. 15 (5): 481–496. https://doi.org/10.1080/15320380600847815.
Kawano, K., T. Shire, and C. O’Sullivan. 2018. “Coupled particle-fluid simulations of the initiation of suffusion.” Soils Found. 58 (4): 972–985. https://doi.org/10.1016/j.sandf.2018.05.008.
Kenney, T. C., and D. Lau. 1985. “Internal stability of granular filters.” Can. Geotech. J. 22 (2): 215–225. https://doi.org/10.1139/t85-029.
Kenney, T. C., W. A. Van Veen, M. A. Swallow, and M. A. Sungaila. 1992. “Hydraulic conductivity of compacted bentonite–sand mixtures.” Can. Geotech. J. 29 (3): 364–374. https://doi.org/10.1139/t92-042.
Kralchevsky, P., and K. Nagayama. 2001. Particles at fluid interfaces and membranes: Attachment of colloid particles and proteins to interfaces and formation of two-dimensional arrays. Amsterdam, Netherlands: Elsevier.
Lei, X., S. He, X. Chen, H. Wong, L. Wu, and E. Liu. 2020. “A generalized interpolation material point method for modelling coupled seepage-erosion-deformation process within unsaturated soils.” Adv. Water Resour. 141 (Mar): 103578. https://doi.org/10.1016/j.advwatres.2020.103578.
Lei, X., Z. Yang, S. He, E. Liu, H. Wong, and X. Li. 2017a. “Numerical investigation of rainfall-induced fines migration and its influences on slope stability.” Acta Geotech. 12 (6): 1431–1446. https://doi.org/10.1007/s11440-017-0600-y.
Lei, X. Q., Z. J. Yang, S. M. He, E. L. Liu, H. Wong, and X. P. Li. 2017b. “Hydro-mechanical analysis of rainfall-induced fines migration process within unsaturated soils.” J. Mountain Sci. 14 (12): 2603–2619. https://doi.org/10.1007/s11629-017-4359-2.
Li, Q., and B. E. Logan. 1999. “Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants.” Water Res. 33 (4): 1090–1100. https://doi.org/10.1016/S0043-1354(98)00291-7.
Likos, W. J., X. Song, M. Xiao, A. Cerato, and N. Lu. 2019. “Fundamental challenges in unsaturated soil mechanics.” In Geotechnical fundamentals for addressing New World challenges, 209–236. New York: Springer.
Lu, N., and J. Godt. 2008. “Infinite slope stability under steady unsaturated seepage conditions.” Water Resour. Res. 44 (11). https://doi.org/10.1029/2008WR006976.
Lu, N., and W. J. Likos. 2006. “Suction stress characteristic curve for unsaturated soil.” J. Geotech. Geoenviron. Eng. 132 (2): 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
Magzoub, M. I., I. A. Hussein, M. S. Nasser, M. Mahmoud, A. S. Sultan, and A. Benamor. 2020. “An Investigation of the swelling kinetics of bentonite systems using particle size analysis.” J. Dispersion Sci. Technol. 41 (6): 817–827. https://doi.org/10.1080/01932691.2019.1612758.
Magzoub, M. I., M. S. Nasser, I. A. Hussein, A. Benamor, S. A. Onaizi, A. S. Sultan, and M. A. Mahmoud. 2017. “Effects of sodium carbonate addition, heat and agitation on swelling and rheological behavior of Ca-bentonite colloidal dispersions.” Appl. Clay Sci. 147 (Mar): 176–183. https://doi.org/10.1016/j.clay.2017.07.032.
Marcotte, D., J. C. Marron, and M. Fafard. 1994. “Washing of bentonite in laboratory hydraulic-conductivity tests.” J. Environ. Eng. 120 (3): 691–698. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:3(691).
Martin, R. T. 1962. “Adsorbed water on clay: A review.” Clays Clay Miner. 28–70. https://doi.org/10.1016/B978-1-4831-9842-2.50007-9.
Michalis, P., and P. Sentenac. 2021. “Subsurface condition assessment of critical dam infrastructure with non-invasive geophysical sensing.” Environ. Earth Sci. 80 (17): 556. https://doi.org/10.1007/s12665-021-09841-x.
Moffat, R., and J. R. Fannin. 2011. “A hydromechanical relation governing internal stability of cohesionless soil.” Can. Geotech. J. 48 (3): 413–424. https://doi.org/10.1139/T10-070.
Moore, R., and D. Brunsden. 1996. “Physico-chemical effects on the behaviour of a coastal mudslide.” Géotechnique 46 (2): 259–278. https://doi.org/10.1680/geot.1996.46.2.259.
Proia, R., P. Croce, and G. Modoni. 2016. “Experimental investigation of compacted sand-bentonite mixtures.” Procedia Eng. 158 (33): 51–56. https://doi.org/10.1016/j.proeng.2016.08.404.
Rahardjo, H., T. H. Ong, R. B. Rezaur, and E. C. Leong. 2007. “Factors controlling instability of homogeneous soil slopes under rainfall.” J. Geotech. Geoenviron. Eng. 133 (12): 1532–1543. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1532).
Rochim, A., D. Marot, L. Sibille, and V. Thao Le. 2017. “Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils.” J. Geotech. Geoenviron. Eng. 143 (7): 04017025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001673.
Sail, Y., D. Marot, L. Sibille, and A. Alexis. 2011. “Suffusion tests on cohesionless granular matter. Experimental study.” Eur. J. Environ. Civ. Eng. 15 (5): 799–817. https://doi.org/10.1080/19648189.2011.9693366.
Saleh, N., H. J. Kim, T. Phenrat, K. Matyjaszewski, R. D. Tilton, and G. V. Lowry. 2008. “Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.” Environ. Sci. Technol. 42 (9): 3349–3355. https://doi.org/10.1021/es071936b.
Saxton, K. E., W. J. Rawls, J. S. Romberger, and R. I. Papendick. 1986. “Estimating generalized soil-water characteristics from texture.” Soil Sci. Soc. Am. J. 50 (4): 1031–1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x.
Scholtès, L., P.-Y. Hicher, and L. Sibille. 2010. “Étude par approches multi-échelles de la réponse mécanique d’un milieu granulaire induite par l’extraction de ses particules.” C. R. Mec. 338 (10–11): 627–638. https://doi.org/10.1016/j.crme.2010.10.003.
Seghir, A., A. Benamar, and H. Wang. 2014. “Effects of fine particles on the suffusion of cohesionless soils: Experiments and modeling.” Transp. Porous Media 103 (2): 233–247. https://doi.org/10.1007/s11242-014-0299-2.
Silva, M., J. P. Baltrus, D. J. Burnett, and J. Baltrusaitis. 2022. “Water adsorption on hydroxyapatite and struvite as a function of relative humidity: Application of BET and Freundlich adsorption models.” ACS Earth Space Chem. 6 (2): 431–443. https://doi.org/10.1021/acsearthspacechem.1c00406.
Tiwari, B., and B. Ajmera. 2015. “Reduction in fully softened shear strength of natural clays with NaCl leaching and its effect on slope stability.” J. Geotech. Geoenviron. Eng. 141 (1): 1–10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001197.
Tiwari, B., G. R. Tuladhar, and H. Marui. 2005. “Variation in residual shear strength of the soil with the salinity of pore fluid.” J. Geotech. Geoenviron. Eng. 131 (12): 1445–1456. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1445).
Torkzaban, S., S. A. Bradford, M. T. van Genuchten, and S. L. Walker. 2008. “Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining.” J. Contam. Hydrol. 96 (1–4): 113–127. https://doi.org/10.1016/j.jconhyd.2007.10.006.
Tosco, T., J. Bosch, R. U. Meckenstock, and R. Sethi. 2012. “Transport of ferrihydrite nanoparticles in saturated porous media: Role of ionic strength and flow rate.” Environ. Sci. Technol. 46 (7): 4008–4015. https://doi.org/10.1021/es202643c.
Tosco, T., A. Tiraferri, and R. Sethi. 2009. “Ionic strength dependent transport of microparticles in saturated porous media: Modeling mobilization and immobilization phenomena under transient chemical conditions.” Environ. Sci. Technol. (12): 4425–4431. https://doi.org/10.1021/es900245d.
Tripathi, K. K. 2006. Geotechnical behaviour of sand-bentonite liners. Bombay, India: Indian Institute of Technology.
Tsai, T. L., and H. F. Chen. 2010. “Effects of degree of saturation on shallow landslides triggered by rainfall.” Environ. Earth Sci. 59 (6): 1285–1295. https://doi.org/10.1007/s12665-009-0116-3.
Wäldchen, J., I. Schöning, M. Mund, M. Schrumpf, S. Bock, N. Herold, K. U. Totsche, and E. D. Schulze. 2012. “Estimation of clay content from easily measurable water content of air-dried soil.” J. Plant Nutr. Soil Sci. 175 (3): 367–376. https://doi.org/10.1002/jpln.201100066.
Wallace, S. H., S. Shaw, K. Morris, J. S. Small, A. J. Fuller, and I. T. Burke. 2012. “Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: Implications for Sr90 mobility at contaminated nuclear sites.” Appl. Geochem. 27 (8): 1482–1491. https://doi.org/10.1016/j.apgeochem.2012.04.007.
Wan, C. F., and R. Fell. 2008. “Assessing the potential of internal instability and suffusion in embankment dams and their foundations.” J. Geotech. Geoenviron. Eng. 134 (3): 401–407. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401).
Wan, J., and J. L. Wilson. 1994. “Colloid transport in unsaturated porous media.” Water Resour. Res. 30 (4): 857–864. https://doi.org/10.1029/93WR03017.
Won, J. 2022. “Assessment of internal stability of sand–fine mixture using particle detachment model and its implications on suffusion.” Acta Geotech. 17 (10): 4667–4680. https://doi.org/10.1007/s11440-022-01515-7.
Won, J., and S. E. Burns. 2022. “Role of ionic concentration in the kinetic attachment of kaolinite and sand.” Can. Geotech. J. 60 (2). https://doi.org/10.1139/cgj-2021-0682.
Won, J., Y. Choe, Y. Yang, and H. Choi. 2023. “Impact of clay particle reattachment on suffusion of sand–clay mixtures.” J. Rock Mech. Geotech. Eng. 15 (10). https://doi.org/10.1016/j.jrmge.2022.12.013.
Yang, J., Z.-Y. Yin, F. Laouafa, and P.-Y. Hicher. 2020. “Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation.” Int. J. Numer. Anal. Methods Geomech. 44 (8): 1200–1218. https://doi.org/10.1002/nag.3057.
Zhang, L., F. Wu, H. Zhang, L. Zhang, and J. Zhang. 2019. “Influences of internal erosion on infiltration and slope stability.” Bull. Eng. Geol. Environ. 78 (3): 1815–1827. https://doi.org/10.1007/s10064-017-1185-2.
Zhuang, L., A. Raoof, M. G. Mahmoodlu, S. Biekart, R. de Witte, L. Badi, M. T. van Genuchten, and K. Lin. 2021. “Unsaturated flow effects on solute transport in porous media.” J. Hydrol. 598 (April): 126301. https://doi.org/10.1016/j.jhydrol.2021.126301.
Zornberg, J. G., and J. S. McCartney. 2010. “Centrifuge permeameter for unsaturated soils. I: Theoretical basis and experimental developments.” J. Geotech. Geoenviron. Eng. 136 (8): 1051–1063. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000319.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 9September 2024

History

Received: Jun 24, 2023
Accepted: Mar 27, 2024
Published online: Jun 17, 2024
Published in print: Sep 1, 2024
Discussion open until: Nov 17, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Student, School of Civil, Environmental and Architectural Engineering, Korea Univ., Anam-dong 5 ga, Seoul 136-713, South Korea. Email: [email protected]
Graduate Student, School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, N.W., Atlanta, GA 30332-0355. ORCID: https://orcid.org/0000-0002-9035-1087. Email: [email protected]
Professor, School of Civil, Environmental and Architectural Engineering, Korea Univ., Anam-dong 5 ga, Seoul 136-713, South Korea. ORCID: https://orcid.org/0000-0002-2040-8850. Email: [email protected]
Associate Professor, Dept. of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan 44919, South Korea; formerly, Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, South Korea (corresponding author). ORCID: https://orcid.org/0000-0001-6735-4020. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share