Technical Papers
Sep 28, 2023

Strength Behavior of Temperature-Dependent MICP-Treated Soil

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 12

Abstract

Microbially induced carbonate precipitation (MICP) is a novel soil-strengthening technique that involves a biogeochemical process. Temperature plays a crucial role in influencing the biological and chemical processes involved in the formation of carbonate precipitates, which in turn affect the mechanical properties of the treated soil. The aim of this study was to investigate the impact of temperature on the cementing structure of MICP-treated soils and its subsequent effects on their strength parameters. The results revealed that temperature considerably affected the content, size, and distribution of CaCO3 crystals produced, resulting in variations in the friction angle, cohesion, stiffness, peak strength, residual strength, and dilation of the MICP-treated soil samples. Lower strength enhancement was observed when fewer and smaller carbonate crystals were produced at 4°C and 50°C. In contrast, higher numbers of larger crystal clusters were produced at 20°C and 35°C, which effectively bonded the soil particles. Increasing the number of bacterial injections at 50°C promoted the formation of larger crystals and enhanced strength effectively. This study highlights the temperature effects on calcium carbonate growth in biocemented soils, which is a critical step in determining the field-scale application of this innovative soil stabilization technique.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Y. W. acknowledges the financial support of National Natural Science Foundation of China (Grant No. 52171262) and Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. JCYJ20210324103812033, ZDSYS20200421111201738) for conducting this study.

References

ASTM. 2014. Standard test method for rapid determination of carbonate content of soils. ASTM D4373-14. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487-17. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for consolidated drained triaxial compression test for soils. ASTM D7181-20. West Conshohocken, PA: ASTM.
Burghignoli, A., A. Desideri, and S. Miliziano. 2000. “A laboratory study on the thermomechanical behaviour of clayey soils.” Can. Geotech. J. 37 (4): 764–780. https://doi.org/10.1139/t00-010.
Chek, A., R. Crowley, T. N. Ellis, M. Durnin, and B. Wingender. 2021. “Evaluation of factors affecting erodibility improvement for MICP-treated beach sand.” J. Geotech. Geoenviron. Eng. 147 (3): 04021001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002481.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chou, S.-G., I. Chang, M. Lee, J.-H. Lee, J.-T. Han, and T.-H. Kwon. 2020. “Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers.” Constr. Build. Mater. 246 (Jun): 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
Cui, M.-J., J.-J. Zheng, R.-J. Zhang, H.-J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Cuthbert, M. O., L. A. McMillan, S. Handley-Sidhu, M. S. Riley, D. J. Tobler, and V. R. Phoenix. 2013. “A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.” Environ. Sci. Technol. 47 (23): 13637–13643. https://doi.org/10.1021/es402601g.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Fujii, T., K. Suzuki, T. Takayama, M. Tamaki, Y. Komatsu, Y. Konno, J. Yoneda, K. Yamamoto, and J. Nagao. 2015. “Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan.” Mar. Pet. Geol. 66 (Sep): 310–322. https://doi.org/10.1016/j.marpetgeo.2015.02.037.
Gao, Y., L. Hang, J. He, and J. Chu. 2019. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Graddy, C. M. R., M. G. Gomez, J. T. DeJong, and D. C. Nelson. 2021. “Native bacterial community convergence in augmented and stimulated ureolytic MICP biocementation.” Environ. Sci. Technol. 55 (15): 10784–10793. https://doi.org/10.1021/acs.est.1c01520.
Guo, Z., W. Wang, N. Guo, Z. Zeng, T. Liu, and X. Wang. 2019. “Molybdenum-mediated chemotaxis of Pseudoalteromonas lipolytica enhances biofilm-induced mineralization on low alloy steel surface.” Corros. Sci. 159 (Oct): 108123. https://doi.org/10.1016/j.corsci.2019.108123.
Hata, T., A. C. Saracho, S. K. Haigh, J. Yoneda, and K. Yamamoto. 2020. “Microbial-induced carbonate precipitation applicability with the methane hydrate-bearing layer microbe.” J. Nat. Gas Sci. Eng. 81 (Sep): 103490. https://doi.org/10.1016/j.jngse.2020.103490.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Jing, J., H. Shan, X. Zhu, Y. Huangpu, and Y. Tian. 2022. “Wellbore temperature and pressure calculation of offshore gas well based on gas–liquid separated flow model.” Processes 10 (10): 2043. https://doi.org/10.3390/pr10102043.
Konstantinou, C., G. Biscontin, N. J. Jiang, and K. Soga. 2021a. “Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone.” J. Rock Mech. Geotech. Eng. 13 (3): 579–592. https://doi.org/10.1016/j.jrmge.2021.01.010.
Konstantinou, C., Y. Wang, G. Biscontin, and K. Soga. 2021b. “The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens.” Sci. Rep. 11 (1): 6161. https://doi.org/10.1038/s41598-021-85712-6.
Li, J.-F., J.-L. Ye, X.-W. Qin, H.-J. Qiu, N.-Y. Wu, H.-L. Lu, W.-W. Xie, J.-A. Lu, F. Peng, and Z.-Q. Xu. 2018. “The first offshore natural gas hydrate production test in South China Sea.” China Geol. 1 (1): 5–16. https://doi.org/10.31035/cg2018003.
Lin, H., S. T. O’Donnell, M. T. Suleiman, E. Kavazanjian Jr., and D. G. Brown. 2021. “Effects of enzyme and microbially induced carbonate precipitation treatments on the response of axially loaded pervious concrete piles.” J. Geotech. Geoenviron. Eng. 147 (8): 04021057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002565.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016a. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian Jr. 2016b. “Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Liu, H., H. Liu, Y. Xiao, and J. S. McCartney. 2018. “Effects of temperature on the shear strength of saturated sand.” Soils Found. 58 (6): 1326–1338. https://doi.org/10.1016/j.sandf.2018.07.010.
Martinez, A., L. Huang, and M. G. Gomez. 2019. “Thermal conductivity of MICP-treated sands at varying degrees of saturation.” Géotech. Lett. 9 (1): 15–21. https://doi.org/10.1680/jgele.18.00126.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Naveed, M., J. Duan, S. Uddin, M. Suleman, Y. Hui, and H. Li. 2020. “Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil.” Ecol. Eng. 153 (Jun): 105885. https://doi.org/10.1016/j.ecoleng.2020.105885.
Phillips, A. J., E. Troyer, R. Hiebert, C. Kirkland, R. Gerlach, A. B. Cunningham, L. Spangler, J. Kirksey, W. Rowe, and R. Esposito. 2018. “Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration.” J. Pet. Sci. Eng. 171 (Dec): 1141–1148. https://doi.org/10.1016/j.petrol.2018.08.012.
Tang, S., S. Sun, T. Liu, M. Li, Y. Jiang, D. Wang, N. Guo, Z. Guo, and X. Chang. 2023. “Bionic engineering-induced formation of hierarchical structured minerals with superwetting surfaces for oil-water separation.” J. Membr. Sci. 669 (Mar): 121261. https://doi.org/10.1016/j.memsci.2022.121261.
Tian, Z., L. Shi, and L. Qiao. 2015. “Problems in the wellbore integrity of a shale gas horizontal well and corresponding countermeasures.” Nat. Gas Ind. B 2 (6): 522–529. https://doi.org/10.1016/j.ngib.2015.12.006.
Tobler, D. J., J. M. Minto, G. El Mountassir, R. J. Lunn, and V. R. Phoenix. 2018. “Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: Influence on hydraulic and mechanical performance.” Water Resour. Res. 54 (10): 8295–8308. https://doi.org/10.1029/2018WR023032.
Toribio, M. M., Y. Oshima, and S. Shimada. 2004. “Evaluation of sequesterable carbon dioxide in Japanese coal samples at sub-critical and supercritical conditions.” Stud. Surf. Sci. Catal. 153 (Jan): 375–380. https://doi.org/10.1016/S0167-2991(04)80281-7.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (2): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Venuleo, S., L. Laloui, D. Terzis, T. Hueckel, and M. Hassan. 2016. “Microbially induced calcite precipitation effect on soil thermal conductivity.” Géotech. Lett. 6 (1): 39–44. https://doi.org/10.1680/jgele.15.00125.
Wang, Y. 2018. “Microbial-induced calcium carbonate precipitation: From micro to macro scale.” Ph.D. thesis, Dept. of Engineering, Univ. of Cambridge.
Wang, Y., C. Konstantinou, K. Soga, G. Biscontin, and A. J. Kabla. 2022. “Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP-treated sandy soils.” Acta Geotech. 17 (9): 3817–3838. https://doi.org/10.1007/s11440-022-01478-9.
Wang, Y., C. Konstantinou, S. Tang, and H. Chen. 2023a. “Applications of microbial-induced carbonate precipitation: A state-of-the-art review.” Biogeotechnics 1 (1): 100008. https://doi.org/10.1016/j.bgtech.2023.100008.
Wang, Y., K. Soga, J. T. DeJong, and A. J. Kabla. 2021. “Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: Particle-scale experimental study.” J. Geotech. Geoenviron. Eng. 147 (6): 04021036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002509.
Wang, Y., Y. Wang, K. Soga, J. T. DeJong, and A. J. Kabla. 2023b. “Microscale investigations of temperature-dependent microbially induced carbonate precipitation (MICP) in the temperature range 4–50°C.” Acta Geotech. 18 (4): 2239–2261. https://doi.org/10.1007/s11440-022-01664-9.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wood, D. M. 1990. Soil behaviour and critical state soil mechanics. Cambridge, UK: Cambridge University Press.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Xiao, Y., C. Zhao, Y. Sun, S. Wang, H. Wu, H. Chen, and H. Liu. 2021. “Compression behavior of MICP-treated sand with various gradations.” Acta Geotech. 16 (5): 1391–1400. https://doi.org/10.1007/s11440-020-01116-2.
Ye, J.-L., X.-W. Qin, W.-W. Xie, H.-L. Lu, B.-J. Ma, H.-J. Qiu, J.-Q. Liang, J.-A. Lu, Z.-G. Kuang, and C. Lu. 2020. “The second natural gas hydrate production test in the South China Sea.” China Geol. 3 (2): 197–209. https://doi.org/10.31035/cg2020043.
Zamani, A., B. M. Montoya, and M. A. Gabr. 2019. “Investigating challenges of in situ delivery of microbial-induced calcium carbonate precipitation (MICP) in fine-grain sands and silty sand.” Can. Geotech. J. 56 (12): 1889–1900. https://doi.org/10.1139/cgj-2018-0551.
Zamani, A., P. Xiao, T. Baumer, T. J. Carey, B. Sawyer, J. T. DeJong, and R. W. Boulanger. 2021. “Mitigation of liquefaction triggering and foundation settlement by MICP treatment.” J. Geotech. Geoenviron. Eng. 147 (10): 04021099. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002596.
Zhang, C., et al. 2022. “Eco-engineering approaches for ocean negative carbon emission.” Sci. Bull. 67 (24): 2564–2573. https://doi.org/10.1016/j.scib.2022.11.016.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 12December 2023

History

Received: Dec 2, 2022
Accepted: Jul 21, 2023
Published online: Sep 28, 2023
Published in print: Dec 1, 2023
Discussion open until: Feb 28, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Shenzhen Key Laboratory of Natural Gas Hydrates, Southern Univ. of Science and Technology, Shenzhen 518055, China; Dept. of Ocean Science and Engineering, Southern Univ. of Science and Technology, Shenzhen 518055, China (corresponding author). ORCID: https://orcid.org/0000-0003-3085-5299. Email: [email protected]
Yong Wang
Research Assistant, Dept. of Ocean Science and Engineering, Southern Univ. of Science and Technology, Shenzhen 518055, China.
Charalampos Konstantinou, Ph.D. https://orcid.org/0000-0002-4662-5327
Research Associate, Dept. of Civil and Environmental Engineering, Univ. of Cyprus, Nicosia 1678, Cyprus. ORCID: https://orcid.org/0000-0002-4662-5327

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Comprehensive Optimization Study of Microbially Induced Carbonate Precipitation for Soil Strength Enhancement: Impact of Biochemical and Environmental Factors, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12230, 150, 10, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share