Technical Papers
Oct 5, 2023

A Framework for Simulating the Evolution of Underwater Landslides and Its Application to Slope Failures in Swiss Lakes

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 12

Abstract

Destructive underwater mass movements can impose a threat to off-shore infrastructure and near-shore communities. Yet predicting their formation and failure mechanisms remains a major challenge, in part due of the large variety of factors affecting their stability over time. Long-term processes such as sedimentation as well as short-term events such as earthquakes can impact the stability of the slope highlighting the need for an integrated analysis procedure to quantify their impact. In this article, such a framework is presented to simulate the evolution of subaqueous landslides, ranging from sediment deposition to seismic triggering to the postfailure evolution of the collapsing soil mass. Each stage is simulated in an individual step, based on different finite element-based methodologies, to best model the governing processes. The steps are linked in a consistent manner to facilitate the simulation of the landslide evolution as a continuous process. The presented framework is applied to analyze three historical landslide events in Swiss lakes. The model predictions compare well with the in situ landslide deposits. The simulation results provide insight into slope failure mechanisms and effects of seismic ground motion characteristics on the stability of the analyzed slope failures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article or are publically available from the referenced sources.

Acknowledgments

The authors would like to thank Balz Friedli, Marc Kohler, Achim Kopf, and Mark Randolph for valuable discussions along the way to develop the framework. The work has been supported by the Swiss National Science Foundation, SNF Grant No. 200021_168998.

References

Alsardi, A., J. Copana, and A. Yerro. 2021. “Modelling earthquake-triggered landslide runout with the material point method.” Proc. Inst. Civ. Eng. Geotech. Eng. 174 (5): 563–576. https://doi.org/10.1680/jgeen.20.00235.
Andersen, K. H. 2004. “Cyclic clay data for foundation design of structures subjected to wave loading.” In Cyclic behaviour of soils and liquefaction phenomena, edited by Triantafyllidis, 371–387. London: Taylor & Francis.
Andersen, K. H. 2015. “Cyclic soil parameters for offshore foundation design.” In Frontiers in offshore geotechnics III. London: CRC Press.
Audet, D. M., and A. C. Fowler. 1992. “A mathematical model for compaction in sedimentary basins.” Geophys. J. Int. 110 (3): 577–590. https://doi.org/10.1111/j.1365-246X.1992.tb02093.x.
Benson, D. J. 1992. “Computational methods in Lagrangian and Eulerian hydrocodes.” Comput. Methods Appl. Mech. Eng. 99 (2–3): 235–394. https://doi.org/10.1016/0045-7825(92)90042-I.
Bielak, J. 2003. “Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: Theory.” Bull. Seismol. Soc. Am. 93 (2): 817–824. https://doi.org/10.1785/0120010251.
Biscontin, G., J. Pestana, and F. Nadim. 2004. “Seismic triggering of submarine slides in soft cohesive soil deposits.” Mar. Geol. 203 (3–4): 341–354. https://doi.org/10.1016/S0025-3227(03)00314-1.
Biscontin, G., and J. M. Pestana. 2006. “Factors affecting seismic response of submarine slopes.” Nat. Hazards Earth Syst. Sci. 6 (1): 97–107. https://doi.org/10.5194/nhess-6-97-2006.
Buss, C., B. Friedli, and A. M. Puzrin. 2019. “Kinematic energy balance approach to submarine landslide evolution.” Can. Geotech. J. 56 (9): 1351–1365. https://doi.org/10.1139/cgj-2017-0651.
Carter, L., J. D. Milliman, P. J. Talling, R. Gavey, and R. B. Wynn. 2012. “Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan.” Geophys. Res. Lett. 39 (12): 1–5. https://doi.org/10.1029/2012GL051172.
Darandeli, M. B. 2001. Development of a new family of normalized modulus reduction and material damping curves. Austin, TX: Univ. of Texas.
Dassault Systèmes. 2014. Abaqus 6.14 documentation. Providence, RI: Dassault Systèmes.
Dey, R., B. Hawlader, R. Phillips, and K. Soga. 2015. “Large deformation finite-element modelling of progressive failure leading to spread in sensitive clay slopes.” Géotechnique 65 (8): 657–668. https://doi.org/10.1680/geot.14.P.193.
Dey, R., B. Hawlader, R. Phillips, and K. Soga. 2016a. “Modeling of large-deformation behaviour of marine sensitive clays and its application to submarine slope stability analysis.” Can. Geotech. J. 53 (7): 1138–1155. https://doi.org/10.1139/cgj-2015-0176.
Dey, R., B. C. Hawlader, R. Phillips, and K. Soga. 2016b. “Numerical modelling of submarine landslides with sensitive clay layers.” Géotechnique 66 (6): 454–468. https://doi.org/10.1680/jgeot.15.P.111.
Dugan, B., and T. C. Sheahan. 2012. “Offshore sediment overpressures of passive margins: Mechanisms, measurement, and models.” Rev. Geophys. 50 (3): 271–276. https://doi.org/10.1029/2011RG000379.
EPRI (Electric Power Research Institute). 1993. Guidelines for determining design basis ground motions. Palo Alto, CA: EPRI.
Fine, I. V., A. B. Rabinovich, B. D. Bornhold, R. E. Thomson, and E. A. Kulikov. 2005. “The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling.” Mar. Geol. 215 (1–2): 45–57. https://doi.org/10.1016/j.margeo.2004.11.007.
Fisher, M. A., W. R. Normark, H. G. Greene, H. J. Lee, and R. W. Sliter. 2005. “Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, Southern California.” Mar. Geol. 224 (1–4): 1–22. https://doi.org/10.1016/j.margeo.2005.07.012.
Fryer, G. J., P. Watts, and L. F. Pratson. 2004. “Source of the great tsunami of 1 April 1946: A landslide in the upper Aleutian forearc.” Mar. Geol. 203 (3–4): 201–218. https://doi.org/10.1016/S0025-3227(03)00305-0.
Germanovich, L. N., S. Kim, and A. M. Puzrin. 2016. “Dynamic growth of slip surfaces in catastrophic landslides.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 472 (2185): 20150758. https://doi.org/10.1098/rspa.2015.0758.
Gibson, R. E. 1958. “The progress of consolidation in a clay layer increasing in thickness with time.” Géotechnique 8 (4): 171–182. https://doi.org/10.1680/geot.1958.8.4.171.
Gyger, M., M. Müller-Vonmoos, and C. Schindler. 1976. “Untersuchungen zur Klassifikation spät- und nacheiszeitlicher Sedimente aus dem Zürichsee.” Schweiz. Mineral. Petrogr. Mitt. 2 (56): 387–406.
Hampton, M. A., H. J. Lee, and J. Locat. 1996. “Submarine landslides.” Rev. Geophys. 34 (1): 33–59. https://doi.org/10.1029/95RG03287.
Klein, B., A. M. Puzrin, A. Stoecklin, and A. Kopf. 2022. “Basin sediments geometry and strength as controls for post-failure emplacement style of alpine sub-lacustrine landslides.” J. Geophys. Res. Solid Earth 127 (10): e2022JB024614. https://doi.org/10.1029/2022JB024614.
Kohler, M., A. Stoecklin, and A. M. Puzrin. 2022. “A MPM framework for large-deformation seismic response analysis.” Can. Geotech. J. 59 (6): 1046–1060. https://doi.org/10.1139/cgj-2021-0252.
Kremer, K., S. B. Wirth, A. Reusch, D. Fäh, B. Bellwald, F. S. Anselmetti, S. Girardclos, and M. Strasser. 2017. “Lake-sediment based paleoseismology: Limitations and perspectives from the Swiss Alps.” Quat. Sci. Rev. 168 (Jul): 1–18. https://doi.org/10.1016/j.quascirev.2017.04.026.
Kvalstad, T. J., L. Andresen, C. F. Forsberg, K. Berg, P. Bryn, and M. Wangen. 2005. “The Storegga slide: Evaluation of triggering sources and slide mechanics.” Mar. Pet. Geol. 22 (1–2): 245–256. https://doi.org/10.1016/j.marpetgeo.2004.10.019.
Ladd, C. C., and L. Edgers. 1972. Consolidated-undrained direct-simple shear tests on saturated clays. Cambridge, MA: Massachusetts Institute of Technology.
Laue, J. 2014. “Allgemeine Konzepte des seismischen Entwurfs und der Bemessung in der Geotechnik mit Anwendung auf Hänge.” Mitteilungen der Geotechnik Schweiz 168: 37–52.
Lee, H. J., J. Locat, P. Desgagns, J. D. Parsons, B. G. McAdoo, D. L. Orange, P. Puig, F. L. Wong, P. Dartnell, and E. Boulanger. 2007. “Submarine mass movements on continental margins.” In Continental margin sedimentation, 213–274. Oxford, UK: Blackwell Publishing.
Locat, J., and H. J. Lee. 2002. “Submarine landslides: Advances and challenges.” Can. Geotech. J. 39 (1): 193–212. https://doi.org/10.1139/t01-089.
Løvholt, F., S. Bondevik, J. S. Laberg, J. Kim, and N. Boylan. 2017. “Some giant submarine landslides do not produce large tsunamis.” Geophys. Res. Lett. 44 (16): 8463–8472. https://doi.org/10.1002/2017GL074062.
Lunne, T., and K. H. Andersen. 2007. “Soft clay shear strength parameters for deepwater geotechnical design.” In Proc., 6th Int. Conf. on Offshore Site Investigation and Geotechnics: Confronting New Challenges and Sharing Knowledge. Richardson, TX: OnePetro.
Masson, D., A. Watts, M. J. Gee, R. Urgeles, N. Mitchell, T. Le Bas, and M. Canals. 2002. “Slope failures on the flanks of the western Canary Islands.” Earth Sci. Rev. 57 (1–2): 1–35. https://doi.org/10.1016/S0012-8252(01)00069-1.
Masson, D. G., C. B. Harbitz, R. B. Wynn, G. Pedersen, and F. Løvholt. 2006. “Submarine landslides: Processes, triggers and hazard prediction.” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (1845): 2009–2039. https://doi.org/10.1098/rsta.2006.1810.
Mejia, L. H., and E. M. Dawson. 2006. “Earthquake deconvolution for FLAC.” In Proc., 4th Int. FLAC Symp. on Numerical Modeling in Geomechanics, Hart and Varona, 211–219. Minneapolis: Itasca Consulting Group.
Mesri, G., and A. Rokhsar. 1974. “Theory of consolidation of clays.” ASCE J. Geotech. Eng. Div. 100 (8): 889–904. https://doi.org/10.1061/AJGEB6.0000075.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley.
Mohrig, D., C. Ellis, G. Parker, K. X. Whipple, and M. Hondzo. 1998. “Hydroplaning of subaqueous debris flows.” Geol. Soc. Am. Bull. 110 (3): 387–394. https://doi.org/10.1130/0016-7606(1998)110%3C0387:HOSDF%3E2.3.CO;2.
Montáns, F. J. 2001. “Implicit multilayer J2-plasticity using Prager’s translation rule.” Int. J. Numer. Methods Eng. 50 (2): 347–375. https://doi.org/10.1002/1097-0207(20010120)50:2%3C347::AID-NME28%3E3.0.CO;2-Q.
Mosher, D. C., L. Moscardelli, R. C. Shipp, J. D. Chaytor, C. D. P. Baxter, H. J. Lee, and R. Urgeles. 2010. Submarine mass movements and their consequences, 1–8. Dordrecht, Netherlands: Springer.
Nadim, F., G. Biscontin, and A. M. Kaynia. 2007. “Seismic triggering of submarine slides.” In Proc., Offshore Technology Conf., 1–8. Richardson, TX: OnePetro. https://doi.org/10.4043/18911-MS.
Nielsen, A. H. 2014. “Towards a complete framework for seismic analysis in Abaqus.” Proc. Inst. Civ. Eng.: Eng. Comput. Mech. 167 (1): 3–12. https://doi.org/10.1680/eacm.12.00004.
Palmer, A. C., and J. R. Rice. 1973. “The growth of slip surfaces in the progressive failure of over-consolidated clay.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 332 (1591): 527–548. https://doi.org/10.1098/rspa.1973.0040.
Prevost, J. H. 1985. “A simple plasticity theory for frictional cohesionless soils.” Int. J. Soil Dyn. Earthquake Eng. 4 (1): 9–17. https://doi.org/10.1016/0261-7277(85)90030-0.
Puzrin, A., S. Frydman, and M. Talesnick. 1997. “Effect of degradation on seismic response of Israeli continental slope.” J. Geotech. Geoenviron. Eng. 123 (2): 85–93. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(85).
Puzrin, A. M., L. N. Germanovich, and B. Friedli. 2016. “Shear band propagation analysis of submarine slope stability.” Géotechnique 66 (3): 188–201. https://doi.org/10.1680/jgeot.15.LM.002.
Puzrin, A. M., L. N. Germanovich, and S. Kim. 2004. “Catastrophic failure of submerged slopes in normally consolidated sediments.” Géotechnique 54 (10): 631–643. https://doi.org/10.1680/geot.2004.54.10.631.
Puzrin, A. M., T. E. Gray, and A. J. Hill. 2015. “Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 471 (2175): 20140772. https://doi.org/10.1098/rspa.2014.0772.
Randolph, M. F., and S. Gourvenec. 2011. Offshore geotechnical engineering. Hoboken, NJ: Taylor & Francis.
Roscoe, K. H., and J. B. Burland. 1970. “On the generalized stress-strain behavior of ‘wet’ clay.” J. Terramech. 7 (2): 107–108.
Sammartini, M., J. Moernaut, A. Kopf, S. Stegmann, S. C. Fabbri, F. S. Anselmetti, and M. Strasser. 2021. “Propagation of frontally confined subaqueous landslides: Insights from combining geophysical, sedimentological, and geotechnical analysis.” Sediment. Geol. 416 (Apr): 105877. https://doi.org/10.1016/j.sedgeo.2021.105877.
Sawyer, D. E., and J. R. Devore. 2015. “Elevated shear strength of sediments on active margins: Evidence for seismic strengthening.” Geophys. Res. Lett. 42 (23): 10216–10221. https://doi.org/10.1002/2015GL066603.
Sawyer, D. E., R. S. Reece, S. P. S. Gulick, and B. L. Lenz. 2017. “Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation.” Geophys. Res. Lett. 44 (16): 8435–8442. https://doi.org/10.1002/2017GL074537.
Schnellmann, M., F. S. Anselmetti, D. Giardini, and J. A. Mckenzie. 2006. “15,000 Years of mass-movement history in Lake Lucerne: Implications for seismic and tsunami hazards.” Eclogae Geol. Helv. 99 (3): 409–428. https://doi.org/10.1007/s00015-006-1196-7.
Schnellmann, M., F. S. Anselmetti, D. Giardini, and J. A. McKenzie. 2005. “Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland).” Sedimentology 52 (2): 271–289. https://doi.org/10.1111/j.1365-3091.2004.00694.x.
Schnellmann, M., F. S. Anselmetti, D. Giardini, J. A. McKenzie, and S. N. Ward. 2002. “Prehistoric earthquake history revealed by lacustrine slump deposits.” Geology 30 (12): 1131–1134. https://doi.org/10.1130/0091-7613(2002)030%3E1131:PEHRBL%3E2.0.CO;2.
Skempton, A. W. 1985. “Residual strength of clays in landslides, folded strata and the laboratory.” Géotechnique 35 (1): 3–18. https://doi.org/10.1680/geot.1985.35.1.3.
Soga, K., E. Alonso, A. Yerro, K. Kumar, and S. Bandara. 2016. “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method.” Géotechnique 66 (3): 248–273. https://doi.org/10.1680/jgeot.15.LM.005.
Stigall, J., and B. Dugan. 2010. “Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico.” J. Geophys. Res. 115 (B4): B04101. https://doi.org/10.1029/2009JB006848.
Stoecklin, A., B. Friedli, and A. M. Puzrin. 2017. “Sedimentation as a control for large submarine landslides: Mechanical modeling and analysis of the Santa Barbara Basin.” J. Geophys. Res. Solid Earth 122 (11): 8645–8663. https://doi.org/10.1002/2017JB014752.
Stoecklin, A., B. Friedli, and A. M. Puzrin. 2020. “A multisurface kinematic hardening model for the behavior of clays under combined static and undrained cyclic loading.” Int. J. Numer. Anal. Methods Geomech. 44 (17): 2358–2387. https://doi.org/10.1002/nag.3149.
Stoecklin, A., and A. M. Puzrin. 2020. “A combined analysis procedure for submarine landslide evolution.” In Proc., 4th Int. Symp. on Frontiers in Offshore Geotechnics, 878–886. Hawthorne, NJ: Deep Foundation Institute.
Stoecklin, A., P. Trapper, and A. M. Puzrin. 2021. “Controlling factors for post-failure evolution of subaqueous landslides.” Géotechnique 71 (10): 879–892. https://doi.org/10.1680/jgeot.19.P.230.
Strasser, M., and F. S. Anselmetti. 2008. “Mass-movement event stratigraphy in Lake Zurich: A record of varying seismic and environmental impacts.” Beiträge zur Geologie der Schweiz, Geotechnische Serie 95: 23–41.
Strasser, M., P. Henry, T. Kanamatsu, M. K. Thu, and G. F. Moore. 2012. “Scientific drilling of mass transport deposits in the Nankai accretionary wedge: First results from IODP expedition 333.” In Proc., Submarine Mass Movements and Their Consequences—5th Int. Symp., 671–681. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-2162-3_60.
Strasser, M., M. Hilbe, and F. S. Anselmetti. 2011. “Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards.” Mar. Geophys. Res. 32 (1–2): 331–347. https://doi.org/10.1007/s11001-010-9100-2.
Strasser, M., K. Monecke, M. Schnellmann, and F. S. Anselmetti. 2013. “Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation.” Sedimentology 60 (1): 319–341. https://doi.org/10.1111/sed.12003.
Strasser, M., S. Stegmann, F. Bussmann, F. S. Anselmetti, B. Rick, and A. Kopf. 2007. “Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins.” Mar. Geol. 240 (1–4): 77–97. https://doi.org/10.1016/j.margeo.2007.02.016.
Strozyk, F., M. Strasser, A. Frster, A. Kopf, and K. Huhn. 2010. “Slope failure repetition in active margin environments: Constraints from submarine landslides in the Hellenic fore arc, eastern Mediterranean.” J. Geophys. Res. Solid Earth 115 (B8). https://doi.org/10.1029/2009JB006841.
Strupler, M., M. Hilbe, F. S. Anselmetti, A. J. Kopf, T. Fleischmann, and M. Strasser. 2017. “Probabilistic stability evaluation and seismic triggering scenarios of submerged slopes in Lake Zurich (Switzerland).” Geo-Mar. Lett. 37 (3): 241–258. https://doi.org/10.1007/s00367-017-0492-8.
Tappin, D. R., P. Watts, G. M. McMurtry, Y. Lafoy, and T. Matsumoto. 2001. “The Sissano, Papua New Guinea tsunami of July 1998—Offshore evidence on the source mechanism.” Mar. Geol. 175 (1–4): 1–23. https://doi.org/10.1016/S0025-3227(01)00131-1.
Tavenas, F., P. Jean, P. Leblond, S. Leroueil, and E. Juàrez-Badillo. 1983. “The permeability of natural soft clays. Part II: Permeability characteristics.” Can. Geotech. J. 20 (4): 645–660. https://doi.org/10.1139/t83-073.
ten Brink, U. S., B. D. Andrews, and N. C. Miller. 2016. “Seismicity and sedimentation rate effects on submarine slope stability.” Geology 44 (7): 563–566. https://doi.org/10.1130/G37866.1.
Trapper, P. A., A. M. Puzrin, and L. N. Germanovich. 2015. “Effects of shear band propagation on early waves generated by initial breakoff of tsunamigenic landslides.” Mar. Geol. 370 (Dec): 99–112. https://doi.org/10.1016/j.margeo.2015.10.014.
Vanneste, M., N. Sultan, S. Garziglia, C. F. Forsberg, and J.-S. L’Heureux. 2014. “Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations.” Mar. Geol. 352 (Jun): 183–214. https://doi.org/10.1016/j.margeo.2014.01.005.
Viesca, R. C., and J. R. Rice. 2012. “Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure.” J. Geophys. Res. Solid Earth 117 (B3). https://doi.org/10.1029/2011JB008866.
Völker, D., F. Scholz, and J. Geersen. 2011. “Analysis of submarine landsliding in the rupture area of the 27 February 2010 Maule earthquake, Central Chile.” Mar. Geol. 288 (1–4): 79–89. https://doi.org/10.1016/j.margeo.2011.08.003.
Wangen, M. 1992. “Pressure and temperature evolution in sedimentary basins.” Geophys. J. Int. 110 (3): 601–613. https://doi.org/10.1111/j.1365-246X.1992.tb02095.x.
Zhang, W., M. F. Randolph, A. M. Puzrin, and D. Wang. 2019. “Transition from shear band propagation to global slab failure in submarine landslides.” Can. Geotech. J. 56 (4): 554–569. https://doi.org/10.1139/cgj-2017-0648.
Zhang, W., D. Wang, M. F. Randolph, and A. M. Puzrin. 2015. “Catastrophic failure in planar landslides with a fully softened weak zone.” Géotechnique 65 (9): 755–769. https://doi.org/10.1680/geot14.P.218.
Zhang, W., D. Wang, M. F. Randolph, and A. M. Puzrin. 2017. “From progressive to catastrophic failure in submarine landslides with curvilinear slope geometries.” Géotechnique 67 (12): 1104–1119. https://doi.org/10.1680/jgeot.16.P.249.
Zhou, Y.-G., J. Chen, Y. She, A. M. Kaynia, B. Huang, and Y.-M. Chen. 2017. “Earthquake response and sliding displacement of submarine sensitive clay slopes.” Eng. Geol. 227 (Sep): 69–83. https://doi.org/10.1016/j.enggeo.2017.05.004.
Zienkiewicz, O. C., N. Bicanic, and F. Q. Shen. 1989. “Earthquake input definition and the transmitting boundary conditions.” In Advances in computational nonlinear mechanics, 109–138. Berlin: Springer.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 12December 2023

History

Received: Nov 18, 2022
Accepted: Jul 19, 2023
Published online: Oct 5, 2023
Published in print: Dec 1, 2023
Discussion open until: Mar 5, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Scientiffic Assistant, Institute for Geotechnical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich CH-8093, Switzerland (corresponding author). ORCID: https://orcid.org/0000-0002-2095-056X. Email: [email protected]
Professor, Institute for Geotechnical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich CH-8093, Switzerland. ORCID: https://orcid.org/0000-0002-9566-8841. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share