Technical Papers
Oct 31, 2023

Sustainable Landfill Liner Using Local Soils and Wastes Amended with Bentonite: Hydraulic Conductivity and Stochastic Leachate Transport Modeling

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 1

Abstract

Groundwater quality can be deteriorated by leachate that seeps through the landfills. Placing a low permeable barrier beneath the landfill is a cost-effective approach to protect the subsurface environment. Recently local soil and/or waste materials (fly ash and flushed silt) amended with clay have emerged as an effective barrier to restrict and delay the leachate migration to the subsurface environment. One of the most critical selection criteria for landfill liners is hydraulic conductivity (Ks107  cm/s), which often varies during the field construction of the liners owing to nonuniform compaction efforts. Failure to achieve the desired compaction leads to the random distribution of hydraulic conductivity within the liner. The movement of contaminants through a landfill liner becomes more complex due to the random variations in the hydraulic conductivity within the liner. To address this, a probabilistic analysis has been conducted to investigate the movement of contaminants in the landfill liner, considering the stochastic hydraulic conductivity scenario. Stochastic hydraulic conductivity realizations of four different composites (bentonite amended sand, flushed silt, fly ash, and locally available natural soil) were generated by varying the standard deviation (σ) of lognormal distribution in hydraulic conductivity and horizontal (X) and vertical (Z) correlation lengths. The performance of the landfill liner is evaluated by conducting a series of numerical experiments in HYDRUS 2D/3D in terms of breakthrough time, peak concentration, and solute mass distribution in the liner. σ is identified in an inverse correlation with the breakthrough time, and a value between 0.25 and 0.75 should be maintained to achieve a breakthrough time>30  years. The ratio of X/Z majorly governed the performance of the liner, and it is concluded that a higher ratio leads to better service life. At least a value of X/Z=5 must be maintained while ensuring that X should not be less than 2. A smaller value of Z would be favorable for both peak concentrations and the breakthrough time. Amongst all composites and all stochastic combinations, natural soil amended with 30% bentonite outperforms with a delayed breakthrough time and lower peak concentrations.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdellah, D., M. K. Gueddouda, I. Goual, H. Souli, and M. S. Ghembaza. 2020. “Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture.” Constr. Build. Mater. 234 (Feb): 117356. https://doi.org/10.1016/j.conbuildmat.2019.117356.
Abeele, W. V. 1986. “The influence of bentonite on the permeability of sandy flushed silts.” Nucl. Chem. Waste Manage. 6 (1): 81–88. https://doi.org/10.1016/0191-815X(86)90091-4.
Abichou, T., C. H. Benson, and T. B. Edil. 2002. “Micro-structure and hydraulic conductivity of simulated sand-bentonite mixtures.” Clays Clay Miner. 50 (5): 537–545. https://doi.org/10.1346/000986002320679422.
Ahmed, S. 1992. Modeling unsteady state leachate flow in a landfill using finite difference and boundary element methods. New York: City Univ. of New York.
Albright, W. H., C. H. Benson, G. W. Gee, T. Abichou, S. W. Tyler, and S. A. Rock. 2006. “Field performance of three compacted clay landfill covers.” Vadose Zone J. 5 (4): 1157–1171. https://doi.org/10.2136/vzj2005.0134.
Allen, A. 2001. “Containment landfills: The myth of sustainability.” Eng. Geol. 60 (1–4): 3–19. https://doi.org/10.1016/S0013-7952(00)00084-3.
ASTM. 2006. Standard test methods for specific gravity of soil solids by water Pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928-17. West Conshohocken, PA: ASTM.
Bandini, P., and S. Sathiskumar. 2009. “Effects of flushed silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-flushed silt mixtures.” J. Geotech. Geoenviron. Eng. 135 (12): 1976–1980. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000177.
Basheer, I. A., and Y. Najjar. 1995. “Estimating hydraulic conductivity of compacted clay liners.” J. Geotech. Eng. 121 (9): 675–676. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(675).
Bear, J. 1972. Dynamics of fluids in porous media. New York: Elsevier.
Bello, A. A. 2013. “Reliability assessment of reddish brown tropical soil as a liner material.” Geotech. Geol. Eng. 31 (1): 35–45. https://doi.org/10.1007/s10706-012-9558-6.
Benson, C. H., and G. P. Boutwell. 2000. “Compaction conditions and scale-dependent hydraulic conductivity of compacted clay liners.” ASTM Spec. Tech. Publ. 1384 (Jan): 254–273. https://doi.org/10.1520/stp15289s.
Benson, C. H., and D. Daniel. 1991. “Influence of clods on hydraulic conductivity of compacted clay.” J. Geotech. Eng. 116 (8): 1231–1248. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:8(1231).
Benson, C. H., and D. E. Daniel. 1994. “Minimum thickness of compacted soil liners: I. Stochastic models.” J. Geotech. Eng. 120 (1): 129–152. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(129).
Benson, C. H., D. E. Daniel, and G. P. Boutwell. 1999. “Field performance of compacted clay liners.” J. Geotech. Geoenviron. Eng. 125 (5): 390–403. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(390).
Bieda, B. 2013. “Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation.” Sci. Total Environ. 442 (Jan): 489–496. https://doi.org/10.1016/j.scitotenv.2012.10.032.
BIS (Bureau of Indian Standards). 1983. Methods of test for soils, Part 8: Determination of water content-dry density relation using heavy compaction. IS 2720-8. New Delhi, India: BIS.
Booker, J. R., R. Brachman, R. M. Quigley, and R. K. Rowe. 2004. Barrier systems for waste disposal facilities. Boca Raton, FL: CRC Press.
Booker, J. R., R. M. Quigley, and R. K. Rowe. 1997. Clayey barrier systems for waste disposal facilities. Boca Raton, FL: CRC Press.
Budihardjo, M. A., S. Syafrudin, I. B. Priyambada, and B. S. Ramadan. 2021. “Hydraulic stability of fly ash-bentonite mixtures in landfill containment system.” J. Ecol. Eng. 22 (7): 132–141.
Chapuis, R. P. 1990. “Sand-bentonite liners: Predicting permeability from laboratory tests.” Can. Geotech. J. 27 (1): 47–57. https://doi.org/10.1139/t90-005.
Chaudhuri, A., and M. Sekhar. 2005. “Probabilistic analysis of pollutant migration from a landfill.” J. Geotech. Geoenviron. Eng. 131 (8): 1042–1049. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1042).
Chen, Y., Y. Wang, and H. Xie. 2015. “Breakthrough time-based design of landfill composite liners.” Geotext. Geomembr. 43 (2): 196–206. https://doi.org/10.1016/j.geotexmem.2015.01.005.
Christensen, T. H., R. Cossu, and R. Stegmann. 2020. Landfilling of waste: Barriers. Boca Raton, FL: CRC Press.
Cowland, J. W., and B. N. Leung. 1991. “A field trial of a bentonite landfill liner.” Waste Manage. Res. 9 (4): 277–291. https://doi.org/10.1016/0734-242X(91)90018-3.
Daniel, D. E., and C. H. Benson. 1990. “Water content-density criteria for compacted soil liners.” J. Geotech. Eng. 116 (12): 1811–1830. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1811).
Daniel, D. E., R. M. Koerner, and D. A. Carson. 1993. Technical guidance document: Quality assurance and quality control for waste containment facilities. Cincinnati, OH: US Environmental Protection Agency, Office of Research and Development, Risk Reduction Engineering Laboratory.
Datta, M. 1997. Waste disposal in engineered landfills. New Delhi: Narosa.
Deka, A., and S. Sekharan. 2017. “Contaminant retention characteristics of fly ash-bentonite mixes.” Waste Manage. Res. 35 (1): 40–46. https://doi.org/10.1177/0734242X16670002.
Dentz, M., and J. Carrera. 2007. “Mixing and spreading in stratified flow.” Phys. Fluids 19 (1): 17107. https://doi.org/10.1063/1.2427089.
Dominijanni, A., and M. Manassero. 2021. “Steady-state analysis of pollutant transport to assess landfill liner performance.” Environ. Geotech. 8 (7): 480–494. https://doi.org/10.1680/jenge.19.00051.
Elsbury, B. R., D. E. Daniel, G. A. Sraders, and D. C. Anderson. 1990. “Lessons learned from compacted clay liner.” J. Geotech. Eng. 116 (11): 1641–1660. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1641).
Elsbury, B. B. R., D. E. Daniel, G. A. Sraders, A. Member, and D. C. Anderson. 1991. “Lessons learned from compacted clay liner.” J. Geotech. Eng. 116 (11): 1641–1660. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1641).
Fellner, J., and P. H. Brunner. 2010. “Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach.” Waste Manage. 30 (11): 2084–2095. https://doi.org/10.1016/j.wasman.2010.03.020.
Feng, S. J., M. Q. Peng, Z. L. Chen, and H. X. Chen. 2019. “Transient analytical solution for one-dimensional transport of organic contaminants through GM/GCL/SL composite liner.” Sci. Total Environ. 650 (Feb): 479–492. https://doi.org/10.1016/j.scitotenv.2018.08.413.
Fitts, C. R. 2012. Groundwater science. London: Elsevier.
Foose, G. J. 2002. “Transit-time design for diffusion through composite liners.” J. Geotech. Geoenviron. Eng. 128 (7): 590–601. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(590).
Foose, G. J., C. H. Benson, and T. B. Edil. 2002. “Comparison of solute transport in three composite liners.” J. Geotech. Geoenviron. Eng. 128 (5): 391–403. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(391).
Freeze, R. A. 1977. “A Stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media.” Water Resour. Res. 13 (2): 480. https://doi.org/10.1029/WR013i002p00480.
Garg, A., N. G. Reddy, H. Huang, P. Buragohain, and V. Kushvaha. 2020. “Modelling contaminant transport in fly ash–bentonite composite landfill liner: Mechanism of different types of ions.” Sci. Rep. 10 (1): 1–8. https://doi.org/10.1038/s41598-020-68198-6.
Gelhar, L. W., C. Welty, and K. R. Rehfeldt. 1992. “A critical review of data on field-scale dispersion in aquifers.” Water Resour. Res. 28 (7): 1955–1974. https://doi.org/10.1029/92WR00607.
Gilbert, R. B. 1995. “Reliability-based design for waste containment systems, geoenvironment 2000.” Geotech. Spec. Publ. 1995 (46): 499–513.
Gupt, C. B., S. Bordoloi, S. Sekharan, and A. K. Sarmah. 2020. “A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner.” Environ. Pollut. 265 (Oct): 114811. https://doi.org/10.1016/j.envpol.2020.114811.
Johnson, A. I., R. K. Frobel, N. J. Cavalli, and C. B. Pettersson, eds. 1985. Hydraulic barriers in soil and rock: A symposium. Philadelphia, PA: ASTM.
Kandalai, S., P. N. Singh, and K. K. Singh. 2018. “Permeability of granular soil employing flexible wall permeameter.” Arab. J. Geosci. 11 (2): 1–9. https://doi.org/10.1007/s12517-017-3352-y.
Layang, J., and M. S. Rahman. 1992. “A stochastic analysis of pollutant migration to evaluate the performance of clay liners.” Can. Geotech. J. 29 (2): 309–314. https://doi.org/10.1139/t92-034.
Lewis, T. W., P. Pivonka, S. G. Fityus, and D. W. Smith. 2009. “Parametric sensitivity analysis of coupled mechanical consolidation and contaminant transport through clay barriers.” Comput. Geotech. 36 (1–2): 31–40. https://doi.org/10.1016/j.compgeo.2008.04.003.
Mantoglou, A., and L. W. Gelhar. 1987. “Effective hydraulic conductivities of transient unsaturated flow in stratified soils.” Water Resour. Res. 23 (1): 57–67. https://doi.org/10.1029/WR023i001p00057.
Manuel, E. N., and R. D. Singh. 1987. “Hydraulic conductivity of compacted clays.” J. Geotech. Eng. 113 (3): 277–279. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(277).
Mathur, S., and L. P. Jayawardena. 2008. “Thickness of compacted natural clay barriers in MSW landfills.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 12 (1): 53–57. https://doi.org/10.1061/(ASCE)1090-025X(2008)12:1(53).
Miller, C. J., and M. Mishra. 2020. “Failure mechanisms for clay cover liners.” In Landfilling of waste: Barriers, 149–156. Boca Raton, FL: CRC Press.
Miller, E. E., and R. D. Miller. 1956. “Physical theory for capillary flow phenomena.” J. Appl. Phys. 27 (4): 324–332. https://doi.org/10.1063/1.1722370.
Mishra, A. K., and V. Ravindra. 2015. “On the utilization of fly ash and cement mixtures as a landfill liner material.” Int. J. Geosynth. Ground Eng. 1 (Jun): 1–7. https://doi.org/10.1007/s40891-015-0019-1.
Mollamahmutoǧlu, M., and Y. Yilmaz. 2001. “Potential use of fly ash and bentonite mixture as liner or cover at waste disposal areas.” Environ. Geol. 40 (11–12): 1316–1324. https://doi.org/10.1007/s002540100355.
Mukherjee, K., and A. K. Mishra. 2019. “Hydraulic and mechanical characteristics of compacted sand–bentonite: Tyre chips mix for its landfill application.” Environ. Dev. Sustainability 21 (3): 1411–1428. https://doi.org/10.1007/s10668-018-0094-2.
Nath, H., M. H. Kabir, A. Al Kafy, Z. A. Rahaman, and M. T. Rahman. 2023. “Geotechnical properties and applicability of bentonite-modified local soil as landfill and environmental sustainability liners.” Environ. Sustainability Indic. 18 (Jul): 100241. https://doi.org/10.1016/j.indic.2023.100241.
Nhan, C. T., J. W. Graydon, and D. W. Kirk. 1996. “Utilizing coal fly ash as a landfill barrier material.” Waste Manage. 16 (7): 587–595. https://doi.org/10.1016/S0956-053X(96)00108-0.
Oakley, R. E. 1987. “Design and performance of earth-lined containment systems.” In Geotechnical practice for waste disposal’87, 117–136. Reston, VA: ASCE.
Pichtel, J. 2005. Waste management practices: Municipal, hazardous, and industrial. London: CRC Press.
Pickens, J. F., and G. E. Grisak. 1981. “Scale-dependent dispersion in a stratified granular aquifer.” Water Resour. Res. 17 (4): 1191–1211. https://doi.org/10.1029/WR017i004p01191.
Prashanth, J. P., P. V. Sivapullaiah, and A. Sridharan. 2001. “Pozzolanic fly ash as a hydraulic barrier in land fills.” Eng. Geol. 60 (1–4): 245–252. https://doi.org/10.1016/S0013-7952(00)00105-8.
Quigley, R. M., and R. K. Rowe. 1986. Leachate migration through clay below a domestic waste landfill, Sarnia, Ontario, Canada: chemical interpretation and modelling philosophies. West Conshohocken, PA: ASTM.
Qureshi, A., Y. Jia, C. Maurice, and B. Öhlander. 2016. “Potential of fly ash for neutralisation of acid mine drainage.” Environ. Sci. Pollut. Res. 23 (17): 17083–17094. https://doi.org/10.1007/s11356-016-6862-3.
Rowe, R. K. 2005. “Long-term performance of contaminant barrier systems.” Géotechnique 55 (9): 631–678. https://doi.org/10.1680/geot.2005.55.9.631.
Rubinos, D. A., and G. Spagnoli. 2018. “Utilization of waste products as alternative landfill liner and cover materials—A critical review.” Crit. Rev. Environ. Sci. Technol. 48 (4): 376–438. https://doi.org/10.1080/10643389.2018.1461495.
Sasidharan, S., S. A. Bradford, J. Šimůnek, and S. R. Kraemer. 2020. “Groundwater recharge from drywells under constant head conditions.” J. Hydrol. 583 (Apr): 124569. https://doi.org/10.1016/j.jhydrol.2020.124569.
Sasidharan, S., S. A. Bradford, J. Šimůnek, and S. R. Kraemer. 2021. “Comparison of recharge from drywells and infiltration basins: A modeling study.” J. Hydrol. 594 (Mar): 125720. https://doi.org/10.1016/j.jhydrol.2020.125720.
Schaap, M. G., and M. T. van Genuchten. 2006. “A modified Mualem–van Genuchten formulation for improved description of the hydraulic conductivity near saturation.” Vadose Zone J. 5 (1): 27–34. https://doi.org/10.2136/vzj2005.0005.
Shackelford, C. D. 1990. “Transit-time design of earthen barriers.” Eng. Geol. 29 (1): 79–94. https://doi.org/10.1016/0013-7952(90)90083-D.
Shaker, A. A., M. Dafalla, A. M. Al-Mahbashi, and M. A. Al-Shamrani. 2022. “Predicting hydraulic conductivity for flexible wall conditions using rigid wall permeameter.” Water 14 (3): 286. https://doi.org/10.3390/w14030286.
Sharma, H. D., and K. R. Reddy. 2004. Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. Hoboken, NJ: Wiley.
Shu, S., W. Zhu, and J. Shi. 2019. “A new simplified method to calculate breakthrough time of municipal solid waste landfill liners.” J. Cleaner Prod. 219 (May): 649–654. https://doi.org/10.1016/j.jclepro.2019.02.050.
Šimůnek, J., and M. T. Genuchten. 2008. “Modeling nonequilibrium flow and transport processes using HYDRUS.” Vadose Zone J. 7 (2): 782–797. https://doi.org/10.2136/vzj2007.0074.
Šimunek, J., M. Šejna, and M. T. Van Genuchten. 2018. “New features of version 3 of the HYDRUS (2D/3D) computer software package.” J. Hydrol. Hydromech. 66 (2): 133–142. https://doi.org/10.1515/johh-2017-0050.
Šimůnek, J., M. T. van Genuchten, and M. Šejna. 2012. “Hydrus: Model use, calibration, and validation.” Trans. ASABE 55 (4): 1261–1274. https://doi.org/10.13031/2013.42239.
Sobti, J., and S. K. Singh. 2017. “Techno-economic analysis for barrier materials in landfills.” Int. J. Geotech. Eng. 11 (5): 467–478. https://doi.org/10.1080/19386362.2016.1232634.
Srikanth, V., and A. K. Mishra. 2016. “A laboratory study on the geotechnical characteristics of sand–bentonite mixtures and the role of particle size of sand.” Int. J. Geosynth. Ground Eng. 2 (1): 1–10. https://doi.org/10.1007/s40891-015-0043-1.
Swami, D., P. K. Sharma, and C. S. P. Ojha. 2013. “Experimental investigation of solute transport in stratified porous media.” ISH J. Hydraul. Eng. 19 (3): 145–153. https://doi.org/10.1080/09715010.2013.793930.
Thakur, A., S. Kumari, S. Sinai Borker, S. P. Prashant, A. Kumar, and R. Kumar. 2021. “Solid waste management in Indian Himalayan region: Current scenario, resource recovery, and way forward for sustainable development.” Front. Energy Res. 9 (Mar): 1–18. https://doi.org/10.3389/fenrg.2021.609229.
Tuller, M., and D. Or. 2001. “Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space.” Water Resour. Res. 37 (5): 1257–1276. https://doi.org/10.1029/2000WR900328.
Wijesekara, S. S., S. S. Mayakaduwa, A. R. Siriwardana, N. de Silva, B. F. Basnayake, K. Kawamoto, and M. Vithanage. 2014. “Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka.” Environ. Earth Sci. 72 (5): 1707–1719. https://doi.org/10.1007/s12665-014-3075-2.
Younus, M. M., and S. Sreedeep. 2012. “Evaluation of bentonite-fly ash mix for its application in landfill liners.” J. Test. Eval. 40 (3): 104161. https://doi.org/10.1520/JTE104161.
Yuan-Hui, L., and S. Gregory. 1974. “Diffusion of ions in sea water and in deep-sea sediments.” Geochim. Cosmochim. Acta 38 (5): 703–714. https://doi.org/10.1016/0016-7037(74)90145-8.
Zhai, H., and C. H. Benson. 2006. “The log-normal distribution for hydraulic conductivity of compacted clays: Two or three parameters?” Geotech. Geol. Eng. 24 (5): 1149–1162. https://doi.org/10.1007/s10706-005-1135-9.
Zhan, L. T., C. Chen, Y. Wang, and Y. M. Chen. 2017. “Failure probability assessment and parameter sensitivity analysis of a contaminant’s transit time through a compacted clay liner.” Comput. Geotech. 86 (Jun): 230–242. https://doi.org/10.1016/j.compgeo.2017.01.014.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 1January 2024

History

Received: Nov 5, 2022
Accepted: Aug 25, 2023
Published online: Oct 31, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 31, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ekta Chaudhary [email protected]
Research Scholar, School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India. Email: [email protected]
Deepak Swami [email protected]
Associate Professor, School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India (corresponding author). Email: [email protected]
Nitin Joshi [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Jammu, Jagti, Jammu and Kashmir 181221, India. Email: [email protected]
Professor, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois Chicago, 842 West Taylor St., Chicago, IL 60607. ORCID: https://orcid.org/0000-0002-6577-1151. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share