Open access
Technical Papers
Jul 11, 2023

Construction on Slow-Moving Landslides: Effects of Excavation on Neighboring Structures

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 9

Abstract

In mountainous areas, urban development often takes place on slow-moving ground, which over time may inflict severe damage on buildings and infrastructure. This process can be accelerated significantly by new construction near existing structures. Although for stable ground conditions the problem of excavation-induced damage has been studied extensively, for slow-moving landslides the question of how to reduce damage to neighbors remains open. This paper presents a general finite-element modeling procedure which allows for a full-scale investigation of the landslide excavation problem. The evaluation of structural damage follows an existing approach, in which the effect on the neighboring buildings is deduced from greenfield displacements, using the limiting tensile strain method, correlated with damage categories. The results of the study, which was inspired by real landslide cases, show that failing to estimate the correct compression state of the landslide can lead to significantly higher damage to close neighbors than in the case of a stable slope. Designing the anchors close to the true in situ earth pressure reduces the damage potential, but can result in enormous anchorage costs, if situated in a compressed landslide zone. Excavating farther from neighbors allows for a significant reduction in the required anchor support, which the proposed procedure helps to quantify. Another distinctive feature of excavations within landslides is the development of considerable compressive strains in the sliding direction along the lateral sides of the excavation. It is shown that these compressive strains also have the potential to damage neighboring buildings.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including the detailed formulation of soil material model, the detailed formulation of the contact law formulation for the shear zone, and the Abaqus user subroutine file.

Acknowledgments

Part of this research was funded by the Federal Office for the Environment (FOEN) of Switzerland.

References

Alonso, E. E., N. M. Pinyol, and A. M. Puzrin. 2010. “A constrained creeping landslide: Brattas-St. Moritz landslide, Switzerland.” In Geomechanics of failures. Advanced topics, 3–32. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-90-481-3538-7_1.
Angeli, M.-G., A. Pasuto, and S. Silvano. 1999. “Towards the definition of slope instability behaviour in the Alvera mudslide (Cortina d’Ampezzo, Italy).” Geomorphology 30 (1–2): 201–211. https://doi.org/10.1016/S0169-555X(99)00055-0.
Béjar-Pizarro, M., et al. 2017. “Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1 InSAR data.” Remote Sens. 9 (9): 876. https://doi.org/10.3390/rs9090876.
Bonzanigo, L., E. Eberhardt, and S. Loew. 2007. “Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide.” Can. Geotech. J. 44 (10): 1157–1180. https://doi.org/10.1139/T07-043.
Borrelli, L., G. Nicodemo, S. Ferlisi, D. Peduto, S. Di Nocera, and G. Gullà. 2018. “Geology, slow-moving landslides, and damages to buildings in the Verbicaro area (north-western Calabria region, southern Italy).” J. Maps 14 (2): 32–44. https://doi.org/10.1080/17445647.2018.1425164.
Boscardin, M. D., and E. J. Cording. 1989. “Building response to excavation-induced settlement.” J. Geotech. Eng. 115 (1): 1–21. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1).
Burland, J. B. 1995. “Assessment of risk of damage to buildings due to tunnelling and excavations.” In Vol. 3 of Proc., 1st Int. Conf. on Earthquake Geotechnical Engineering, IS-Tokyo’95, edited by K. Ishihara, 1189–1201. Rotterdam, Netherlands: A.A. Balkema.
Burland, J. B., B. B. Broms, and V. F. B. De Mello. 1977. “Behaviour of foundations and structures.” In Proc., 9th Int. Conf. on Soil Mechanics and Foundation Engineering, 495–546. Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering.
Burland, J. B., and C. P. Wroth. 1974. “Settlement of buildings and associated damage.” In Proc., Settlement of Structures, edited by British Geotechnical Society, 611–654. London: Pentech Press.
Caleca, F., V. Tofani, S. Segoni, F. Raspini, A. Rosi, M. Natali, F. Catani, and N. Casagli. 2022. “A methodological approach of QRA for slow-moving landslides at a regional scale.” Landslides 19 (7): 1539–1561. https://doi.org/10.1007/s10346-022-01875-x.
Caquot, A., and J. Kérisel. 1948. Tables de butée, de poussée et de force portante des fondations. Paris: Gauthier-Villars.
Caquot, A., and J. Kérisel. 1949. Traité de mécanique des sols. 2nd ed. Paris: Gauthier-Villars.
Castaldo, R., P. Tizzani, P. Lollino, F. Calò, F. Ardizzone, R. Lanari, F. Guzzetti, and M. Manunta. 2015. “Landslide kinematical analysis through inverse numerical modelling and differential SAR interferometry.” Pure Appl. Geophys. 172 (11): 3067–3080. https://doi.org/10.1007/s00024-014-1008-3.
CEN (European Committee for Standardization). 2004. Eurocode 7: Geotechnical design—Part 1: General rules. EN 1997-1. Brussels, Belgium: CEN.
Cevasco, A., F. Termini, R. Valentino, C. Meisina, R. Bonì, M. Bordoni, G. P. Chella, and P. De Vita. 2018. “Residual mechanisms and kinematics of the relict Lemeglio coastal landslide (Liguria, northwestern Italy).” Geomorphology 320 (Nov): 64–81. https://doi.org/10.1016/j.geomorph.2018.08.010.
Chen, Q., L. Chen, L. Gui, K. Yin, D. P. Shrestha, J. Du, and X. Cao. 2020. “Assessment of the physical vulnerability of buildings affected by slow-moving landslides.” Nat. Hazards Earth Syst. Sci. 20 (9): 2547–2565. https://doi.org/10.5194/nhess-20-2547-2020.
Coulomb, C. A. 1776. “Essai sur une application des règles de maximis et minimis à quelques problemes de statique, relatifs à l’architecture.” In Mémoires de Mathématique et de Physique, Présentés à l’Académie Royale des Sciences, par divers Savans, & lûs dans les Assemblées. Année 1773, 343–382. Paris: L’Imprimerie Royale.
Cruden, D. M. 1991. “A simple definition of a landslide.” Bull. Int. Assoc. Eng. Geol. 43 (1): 27–29. https://doi.org/10.1007/BF02590167.
Cruden, D. M., and D. J. Varnes. 1996. “Landslide types and processes.” In Landslides: Investigation and mitigation, edited by A. K. Turner and R. L. Schuster, 36–75. Washington, DC: National Academy Press.
Del Soldato, M., D. Di Martire, S. Bianchini, R. Tomás, P. De Vita, M. Ramondini, N. Casagli, and D. Calcaterra. 2019. “Assessment of landslide-induced damage to structures: The Agnone landslide case study (southern Italy).” Bull. Eng. Geol. Environ. 78 (4): 2387–2408. https://doi.org/10.1007/s10064-018-1303-9.
Deutsche Gesellschaft für Geotechnik e.V. 2012. Empfehlungen des Arbeitskreises “Baugruben” (EAB). 5th ed. Berlin: Ernst & Sohn. https://doi.org/10.1002/9783433602478.
Dille, A., et al. 2022. “Acceleration of a large deep-seated tropical landslide due to urbanization feedbacks.” Nat. Geosci. 15 (12): 1048–1055. https://doi.org/10.1038/s41561-022-01073-3.
Ferlisi, S., A. Marchese, and D. Peduto. 2021. “Quantitative analysis of the risk to road networks exposed to slow-moving landslides: A case study in the Campania region (southern Italy).” Landslides 18 (1): 303–319. https://doi.org/10.1007/s10346-020-01482-8.
Franke, E. 1974. ‘Ruhedruck in kohäsionslosen Böden.’ Accessed April 1, 2021. https://structurae.net/en/literature/journal-article/ruhedruck-in-kohasionslosen-boden.
Friedli, B., D. Hauswirth, and A. M. Puzrin. 2017. “Lateral earth pressures in constrained landslides.” Géotechnique 67 (10): 1–16. https://doi.org/10.1680/jgeot.16.P.158.
Guo, Z., L. Chen, K. Yin, D. P. Shrestha, and L. Zhang. 2020. “Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China.” Eng. Geol. 273 (Aug): 105667. https://doi.org/10.1016/j.enggeo.2020.105667.
Häusler, M., V. Gischig, R. Thöny, F. Glueer, and F. Donat. 2021. “Monitoring the changing seismic site response of a fast-moving rockslide (Brienz/Brinzauls, Switzerland).” Geophys. J. Int. 229 (1): 299–310. https://doi.org/10.1093/gji/ggab473.
Infante, D., D. Di Martire, P. Confuorto, M. Ramondini, D. Calcaterra, R. Tomás, J. Duro, and G. Centolanza. 2017. “Multi-temporal assessment of building damage on a landslide-affected area by interferometric data.” In Proc., 3rd Int. Forum on Research and Technologies for Society and Industry (RTSI). New York: IEEE. https://doi.org/10.1109/RTSI.2017.8065907.
Kohler, M., and A. M. Puzrin. 2022. “Mechanism of co-seismic deformation of the slow-moving La Sorbella landslide in Italy revealed by MPM analysis.” J. Geophys. Res.: Earth Surf. 127 (7): e2022JF006618. https://doi.org/10.1029/2022JF006618.
Kondner, R. L., and J. S. Zelasko. 1963. “A hyperbolic stress-strain formulation of sands.” In Vol. 1 of Proc., 2nd Pan American Conf. on Soil Mechanics and Foundation Engineering, 289–324. Sao Paulo, Brazil: Associacao Brasileira de Mecanica dos Solos.
Lu, P., F. Catani, V. Tofani, and N. Casagli. 2014. “Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry.” Landslides 11 (4): 685–696. https://doi.org/10.1007/s10346-013-0432-2.
Mansour, M. F., N. R. Morgenstern, and C. D. Martin. 2011. “Expected damage from displacement of slow-moving slides.” Landslides 8 (1): 117–131. https://doi.org/10.1007/s10346-010-0227-7.
Nappo, N., O. Mavrouli, F. Nex, C. J. van Westen, R. Gambillara, and A. M. Michetti. 2021. “Use of UAV-based photogrammetry products for semi-automatic detection and classification of asphalt road damage in landslide-affected areas.” Eng. Geol. 294 (Dec): 106363. https://doi.org/10.1016/j.enggeo.2021.106363.
Nappo, N., D. Peduto, O. Mavrouli, C. J. van Westen, and G. Gullà. 2019. “Slow-moving landslides interacting with the road network: Analysis of damage using ancillary data, in situ surveys and multi-source monitoring data.” Eng. Geol. 260 (Oct): 105244. https://doi.org/10.1016/j.enggeo.2019.105244.
Netzel, H. 2005. “Review of the limiting tensile strain method for predicting settlement induced building damage.” In Proc., Geotechnical Aspects of Underground Construction in Soft Ground: Proc. of the 5th Int. Symp. TC28, edited by K. J. Bakker, A. Bezuijen, W. Broere, and E. A. Kwast, 159–164. Boca Raton, FL: CRC Press.
Notti, D., J. P. Galve, R. M. Mateos, O. Monserrat, F. Lamas-Fernández, F. Fernández-Chacón, F. J. Roldán-García, J. V. Pérez-Peña, M. Crosetto, and J. M. Azañón. 2015. “Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain).” Landslides 12 (5): 1007–1014. https://doi.org/10.1007/s10346-015-0612-3.
Oberender, P. W., and A. M. Puzrin. 2016. “Observation-guided constitutive modelling for creeping landslides.” Géotechnique 66 (3): 232–247. https://doi.org/10.1680/jgeot.15.LM.003.
Oberender, P. W., D. V. Val, and A. M. Puzrin. 2020. “Mechanical models for hazard and risk analysis of structures in creeping landslides.” Geotech. Eng. 51 (3): 52–59.
Peck, R. B. 1969. “Deep excavations and tunneling in soft ground.” In Proc., 7th Int. Conf. on Soil Mechanics and Foundation Engineering, 225–290. Mexico City: Sociedad Mexicana de Mecanica de Suelos.
Peduto, D., S. Ferlisi, G. Nicodemo, D. Reale, G. Pisciotta, and G. Gullà. 2017. “Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales.” Landslides 14 (6): 1993–2007. https://doi.org/10.1007/s10346-017-0826-7.
Peduto, D., G. Nicodemo, M. Caraffa, and G. Gullà. 2018. “Quantitative analysis of consequences to masonry buildings interacting with slow-moving landslide mechanisms: A case study.” Landslides 15 (10): 2017–2030. https://doi.org/10.1007/s10346-018-1014-0.
Polshin, D. E., and R. A. Tokar. 1957. “Maximum allowable non-uniform settlement of structures.” In Proc., 4th Int. Conf. on Soil Mechanics and Foundation Engineering, 402–405. London: Butterworths Scientific.
Puzrin, A. M., and A. M. Schmid. 2011. “Progressive failure of a constrained creeping landslide.” Proc. R. Soc. A 467 (2133): 2444–2461. https://doi.org/10.1098/rspa.2011.0063.
Puzrin, A. M., and A. M. Schmid. 2012. “Evolution of stabilised creeping landslides.” Géotechnique 62 (6): 491–501. https://doi.org/10.1680/geot.11.P.041.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London, Ser. A 269 (1339): 500–527. https://doi.org/10.1098/rspa.1962.0193.
Rowe, P. W. 1971. “Theoretical meaning and observed values of deformation parameters for soil.” In Proc., Stress-Strain Behaviour of Soils: Proc. of the Roscoe Memorial Symp., edited by R. H. G. Parry and K. H. Roscoe, 143–194. Henley-on-Thames, UK: G. T. Foulis.
Schanz, T., and P. A. Vermeer. 1996. “Angles of friction and dilatancy of sand.” Géotechnique 46 (1): 145–151. https://doi.org/10.1680/geot.1996.46.1.145.
Schanz, T., and P. A. Vermeer. 1998. “On the stiffness of sands.” In Pre-failure deformation behaviour of geomaterials, 383–387. London: Thomas Telford.
Schanz, T., P. A. Vermeer, and P. G. Bonnier. 1999. “The hardening soil model: Formulation and verification.” In Proc., Beyond 2000 in Computational Geotechnics. Ten Years of PLAXIS Int. Proc. of the Int. Symp., edited by R. B. J. Brinkgreve, 281–296. Rotterdam, Netherlands: A.A. Balkema. https://doi.org/10.1201/9781315138206-27.
SIA (Schweizerischer Ingenieur- und Architektenverein). 2020. Einwirkungen auf Tragwerke. SIA 261. SN 505 261. Zurich, Switzerland: SIA.
Skempton, A. W., and D. H. MacDonald. 1956. “The allowable settlements of buildings.” Proc. Inst. Civ. Eng. 5 (6): 727–768. https://doi.org/10.1680/ipeds.1956.12202.
Son, M., and E. J. Cording. 2005. “Estimation of building damage due to excavation-induced ground movements.” J. Geotech. Geoenviron. Eng. 131 (2): 162–177. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(162).
Tacher, L., C. Bonnard, L. Laloui, and A. Parriaux. 2005. “Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity.” Landslides 2 (1): 3–14. https://doi.org/10.1007/s10346-004-0038-9.
Terzaghi, K. 1941. “General wedge theory of earth pressure.” Trans. Am. Soc. Civ. En. 106 (1): 68–80. https://doi.org/10.1061/TACEAT.0005429.
Uzielli, M., F. Catani, V. Tofani, and N. Casagli. 2015. “Risk analysis for the Ancona landslide—II: Estimation of risk to buildings.” Landslides 12 (1): 83–100. https://doi.org/10.1007/s10346-014-0477-x.
von Soos, P., and J. Bohac. 2002. “Properties of soils and rocks and their laboratory determination.” In Geotechnical engineering handbook, Volume 1: Fundamentals, edited by U. Smoltczyk, 116–206. Berlin: Ernst und Sohn.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 9September 2023

History

Received: Sep 8, 2022
Accepted: Apr 4, 2023
Published online: Jul 11, 2023
Published in print: Sep 1, 2023
Discussion open until: Dec 11, 2023

Authors

Affiliations

Doctoral Student, Institute for Geotechnical Engineering, ETH Zurich, Zurich 8093, Switzerland (corresponding author). ORCID: https://orcid.org/0000-0002-3119-5619. Email: [email protected]
Alexander M. Puzrin, Ph.D. https://orcid.org/0000-0002-9566-8841
Professor, Institute for Geotechnical Engineering, ETH Zurich, Zurich 8093, Switzerland. ORCID: https://orcid.org/0000-0002-9566-8841

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share