Technical Papers
Aug 7, 2023

Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil–Structure Interface Behavior during Cyclic Shear

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 10

Abstract

Accurate prediction of the load transfer response of a geosystem requires an understanding of the micromechanical, or local, behavior of individual particles at the soil–structure interface. The difficulty in predicting local interface behavior is inhibited by a multitude of influential factors, including material properties, state parameters, and confinement conditions. While significant efforts have been made to investigate how load transfer occurs within the soil adjacent to the structural interface surface during monotonic shearing, there is a relative lack of local behavior studies focused on cyclic shearing and the resulting postcyclic monotonic response. This study presents the results of an investigation quantifying the localized soil–structure interface evolution during cyclic shearing using a modified direct interface shear box. Parameters investigated include relative density (initial void ratio), particle angularity, particle hardness, surface roughness, normal stress, and normal stiffness. Particle image velocimetry, a local nonintrusive measurement technique, is used to measure the local 2D particle displacement and interparticle strain distributions within the test specimens. The work extends a previous study focused on monotonic shearing using the same material properties and confinement conditions and further illustrates differences observed in the localized shear strain and volumetric strain zones adjacent to the structural surface. Insights provided by the detailed presentation of local data are linked to the global response to explain differences in precyclic monotonic and postcyclic monotonic behavior. The insights can be used to further understand the micromechanical response of sand interfaces for use in geotechnical design.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Afzali-Nejad, A., A. Lashkari, and P. T. Shourijeh. 2017. “Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces.” Geotext. Geomembr. 45 (1): 54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005.
ASTM. 1991. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM-D4254. West Conshohocken, PA: ASTM.
ASTM. 1993a. Standard practice for classification of soils for engineering purposes (unified soil classification system) ASTM-D2487. West Conshohocken, PA: ASTM.
ASTM. 1993b. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM-D4253. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM-D854. West Conshohocken, PA: ASTM.
Boulon, M., and P. Foray. 1986. “Physical and numerical simulation of lateral shaft friction along offshore piles in sand.” In Proc., 3rd Int. Conf. on Numerical Methods in Offshore Piling, 127–147. Rueil-Malmaison, France: Institut Francais du Petrol.
Brumund, W. F., and G. A. Leonards. 1973. “Experimental study of static and dynamic friction between sand and typical construction materials.” J. Test. Eval. 1 (2): 162–165. https://doi.org/10.1520/JTE10893J.
Butterfield, R., R. M. Harkness, and K. Z. Andrawes. 1970. “A stereo-photogrammetric method for measuring displacement fields.” Géotechnique 20 (3): 308–314. https://doi.org/10.1680/geot.1970.20.3.308.
Christoph, G. G. 2005. “Influence of particle properties and initial specimen state on one-dimensional compression and hydraulic conductivity at elevated stress levels.” M.S. thesis, Dept. of Civil and Environmental Engineering, Univ. of Massachusetts.
Coop, M. R., K. K. Sorenson, T. Bodas Frietas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
De Gennaro, V., and P. Lerat. 1999. “Soil-structure interface behavior under cyclic loading.” In Proc., 2nd Int. Symp. Pre-failure Deformation Characteristics of Geomaterials, 183–189. Zutphen, Netherlands: A.A. Balkema.
DeJong, J. T., and Z. J. Westgate. 2005. “Role of overconsolidation on sand-geomembrane interface response and material damage evolution.” Geotext. Geomembr. 23 (6): 486–512. https://doi.org/10.1016/j.geotexmem.2005.04.001.
DeJong, J. T., and Z. J. Westgate. 2009. “Role of initial state, material properties, and confinement condition of local and global soil-structure interface behavior.” J. Geotech. Geoenviron. Eng. 135 (11): 1646–1660. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:11(1646).
DeJong, J. T., D. J. White, and M. F. Randolph. 2003. “Interface load transfer degradation during cyclic loading: A microscale investigation.” Soils Found. 43 (4): 81–93. https://doi.org/10.3208/sandf.43.4_81.
DeJong, J. T., D. J. White, and M. F. Randolph. 2006. “Microstructure observation and modelling of soil–structure interface behavior using PIV.” Soils Found. 46 (1): 15–28. https://doi.org/10.3208/sandf.46.15.
Dietz, M. S., and M. L. Lings. 2006. “Postpeak strength of interfaces in a stress-dilatancy framework.” J. Geotech. Geoenviron. Eng. 132 (11): 1474–1484. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1474).
Doreau-Malioche, J., G. Combe, G. Viggiani, and J.-B. Toni. 2017. “Shaft friction changes for cyclically loaded displacement piles: An X-ray investigation.” Geotech. Lett. 8 (1): 66–72. https://doi.org/10.1680/jgele.17.00141.
Fakharian, K., and E. Evgin. 1997. “Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition.” J. Geotech. Geoenviron. Eng. 123 (12): 1096–1105. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1096).
Ferreira, F. B., C. S. Vieira, and M. L. Lopes. 2015. “Direct shear behavior of residual soil–geosynthetic interfaces—Influence of soil moisture content, soil density and geosynthetic type.” Geosynth. Int. 22 (3): 257–272. https://doi.org/10.1680/gein.15.00011.
Frost, J. D., J. T. DeJong, and M. Recalde. 2002. “Shear failure behavior of granular-continuum interfaces.” Eng. Fract. Mech. 69 (17): 2029–2048. https://doi.org/10.1016/S0013-7944(02)00075-9.
Frost, J. D., D. Kim, and S. W. Lee. 2012. “Microscale geomembrane-granular soil material interactions.” KSCE J. Civ. Eng. 16 (1): 79–92. https://doi.org/10.1007/s12205-012-1476-x.
Galvis-Castro, A. C., R. D. Tovar-Valencia, R. Salgado, and M. Prezzi. 2019. “Effect of loading direction on the shaft resistance of jacked piled in dense sand.” Géotechnique 69 (1): 16–28. https://doi.org/10.1680/jgeot.17.P.046.
Ghionna, V. N., G. Mortara, and G. P. Vita. 2003. “Sand–structure interface behaviour under cyclic loading from constant normal stiffness direct shear tests.” In Deformation characteristics of geomaterials, 231–237. Lisse, Netherlands: Swets and Zeitlinger.
Gomez, J. E., G. M. Filz, R. M. Ebeling, and J. E. Dove. 2008. “Sand-to-concrete interface response to complex load paths in a large displacement shear box.” Geotech. Test. J. 31 (4): 358–369. https://doi.org/10.1520/GTJ100220.
Han, F., E. Ganju, R. Salgado, and M. Prezzi. 2018. “Effect of interface roughness, particle geometry, and gradation on the sand-steel interface friction angle.” J. Geotech. Geoenviron. Eng. 144 (12): 04018096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990.
Hebeler, G. L., A. Martinez, and J. D. Frost. 2016. “Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves.” KSCE J. Civ. Eng. 20 (4): 1267–1282. https://doi.org/10.1007/s12205-015-0767-6.
Ho, T. Y. K., R. J. Jardine, and N. Anh-Minh. 2011. “Large-displacement interface shear between steel and granular media.” Géotechnique 61 (3): 221–234. https://doi.org/10.1680/geot.8.P.086.
Irsyam, M., and R. D. Hryciw. 1991. “Friction and passive resistance in soil reinforced by plane ribbed inclusions.” Géotechnique 41 (4): 485–498. https://doi.org/10.1680/geot.1991.41.4.485.
Jardine, R. J., B. M. Lehane, and S. J. Everton. 1992. “Friction coefficients for piles in sands and silts.” In Vol. 28 of Proc., 4th Int. Conf. on Offshore Site Investigation and Foundation Behaviour, 661–677. Berlin: Springer.
Jitsangiam, P., S. Pra-ai, M. Boulon, O. Jenck, X. Chen, and S. Techavorasinaskul. 2021. “Characterization of a soil-rough interface using direct shear tests with varying cyclic amplitude and loading sequences under a large cyclic testing cycle condition.” Acta Geotech. 17 (Jul): 1829–1845. https://doi.org/10.1007/s11440-021-01289-4.
Kuo, C. Y., J. D. Frost, J. D. Lai, and L. B. Wang. 1996. “Three-dimensional image analysis of aggregate particles from orthogonal projections.” Transp. Res. Rec. 1526 (1): 98–103. https://doi.org/10.1177/0361198196152600112.
Lashkari, A., and V. Jamali. 2021. “Global and local sand-geosynthetic interface behaviour.” Géotechnique 71 (4): 346–367. https://doi.org/10.1680/jgeot.19.P.109.
Lee, K. M., and V. R. Manjunath. 2000. “Soil-geotextile interface friction by direct shear tests.” Can. Geotech. J. 37 (1): 238–252. https://doi.org/10.1139/t99-124.
Li, Y., Z. Guo, L. Wang, Z. Ye, C. Shen, and W. Zhou. 2021. “Interface shear behaviour between MICP-treated calcareous sand and steel.” J. Mater. Civ. Eng. 33 (2): 04020455. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003549.
Liu, J. W., L. Cui, N. Zhu, B. Han, and J. Lui. 2019. “Investigation of cyclic pile-sand interface weakening mechanism based on large-scale CNS cyclic direct shear tests.” Ocean Eng. 194 (Dec): 106650. https://doi.org/10.1016/j.oceaneng.2019.106650.
Lui, F.-Y., P. Wang, X. Geng, J. Wang, and X. Lin. 2015. “Cyclic and post-cyclic behavior from sand-geogrid interface large-scale direct shear tests.” Geosyn. Int. 23 (2): 129–139. https://doi.org/10.1680/jgein.15.00037.
Luong, M. P. 1980. “Stress-strain aspects of cohesionless soils under cyclic and transient loading.” In Proc., Int. Symp. Soils Under Cyclic and Transient Loading, edited by G. N. Pande and O. C. Zeinkiewicz, 315–324. Rotterdam, Netherlands: Balkema.
Martinez, A., and J. D. Frost. 2017. “The influence of surface roughness form on the strength of sand-structure interfaces.” Geotech. Lett. 7 (1): 104–111. https://doi.org/10.1680/jgele.16.00169.
Mortara, G., A. Mangiola, and V. Ghionna. 2007. “Cyclic shear stress degradation and post-cyclic behavior from sand-steel interface direct shear tests.” Can. Geotech. J. 44 (7): 739–752. https://doi.org/10.1139/t07-019.
Muthukkumaran, K. 2011. “Study on soil-structure interface strength properties.” Int. J. Earth Sci. Eng. 4 (6): 89–93.
Nardelli, A., P. P. Cacciari, and M. M. Futai. 2019. “Sand-concrete interface response: The role of surface texture and confinement conditions.” Soils Found. 59 (6): 1675–1694. https://doi.org/10.1016/j.sandf.2019.05.013.
Narsilio, G. A., and J. C. Santamarina. 2008. “Terminal densities.” Géotechnique 58 (8): 669–674. https://doi.org/10.1680/geot.2008.58.8.669.
O’Hara, K. B., and A. Martinez. 2022. “Load transfer directionality of snakeskin-inspired piles during installation and pullout in sands.” J. Geotech. Geoenviron. Eng. 148 (12): 04022110. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002929.
O’Rourke, T. D., S. J. Druschel, and A. N. Netravali. 1990. “Shear strength characteristics of sand-polymer interfaces.” J. Geotech. Eng. 116 (3): 451–469. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(451.
Oumarou, T., and E. Evgin. 2005. “Cyclic behavior of sand-steel plate interface.” Can. Geotech. J. 42 (1): 1695–1704. https://doi.org/10.1139/t05-083.
Paikowsky, S. G., C. M. Player, and P. J. Connors. 1995. “A dual interface apparatus for testing unrestricted friction of soil along solid surfaces.” Geotech. Test. J. 18 (2): 168–193. https://doi.org/10.1520/GTJ10320J.
Potyondy, J. G. 1961. “Skin friction between various soils and construction materials.” Géotechnique 11 (4): 339–353. https://doi.org/10.1680/geot.1961.11.4.339.
Pra-ai, S., and M. Boulon. 2017. “Soil-structure cyclic shear tests: A new interpretation of the direct shear experiment and its application to a series of cyclic tests.” Acta Geotech. 12 (Feb): 107–127. https://doi.org/10.1007/s11440-016-0456-6.
Punetha, P., P. Mohanty, and M. Samanta. 2017. “Microstructural investigation on mechanical behavior of soil-geosynthetic interface in direct shear test.” Geotext. Geomembr. 45 (3): 197–210. https://doi.org/10.1016/j.geotexmem.2017.02.001.
Rechenmacher, A. L., and R. J. Finno. 2004. “Digital image correlation to evaluate shear banding in dilative sands.” Geotech. Test. J. 27 (1): 1–10. https://doi.org/10.1520/GTJ10864.
Rui, S., L. Wang, Z. Guo, W. Zhou, and Y. Li. 2020. “Cyclic behavior of interface shear between carbonate sand and steel.” Acta Geotech. 16 (Jan): 189–209. https://doi.org/10.1007/s11440-020-01002-x.
Samanta, M., P. Punetha, and M. Sharma. 2018a. “Effect of roughness on interface shear behaviour of sand with steel and concrete surface.” Geomech. Eng. 14 (4): 387–398. https://doi.org/10.12989/GAE.2018.14.4.387.
Samanta, M., P. Punetha, and M. Sharma. 2018b. “Influence of surface texture on sand–steel interface strength response.” Geotech. Lett. 8 (1): 40–48. https://doi.org/10.1680/jgele.17.00135.
Shahrour, I., and F. Rezaie. 1999. “Experimental study of the behavior of calcareous sand: Structure interface.” In Engineering for calcareous sediments, edited by A. Shafei, 69–77. Rotterdam, Netherlands: A.A. Balkema.
Shooter, K. V., and D. Tabor. 1952. “The frictional properties of plastics.” Proc. Phys. Soc. London, Sect. B 65 (9): 661–671. https://doi.org/10.1088/0370-1301/65/9/302.
Stanier, S. A., J. Blaber, W. A. Take, and D. J. White. 2016. “Improved image-based deformation measurement for geotechnical applications.” Can. Geotech. J. 53 (5): 727–739. https://doi.org/10.1139/cgj-2015-0253.
Su, L. J., W. H. Zhou, W. B. Chen, and X. Jie. 2018. “Effects of relative roughness and mean particle size on the shear strength of sand-steel interface.” Measurement 122 (Jul): 339–346. https://doi.org/10.1016/j.measurement.2018.03.003.
Subba Rao, K. S., M. M. Allam, and R. G. Robinson. 1998. “Interfacial friction between sands and solid surfaces.” Proc. Inst. Civ. Eng.-Geotech. Eng. 131 (2): 75–82. https://doi.org/10.1680/igeng.1998.30112.
Tabucannon, J. T., D. W. Airey, and H. G. Poulos. 1995. “Pile skin friction in sands from constant normal stiffness tests.” Geotech. Test. J. 18 (3): 350–364. https://doi.org/10.1520/GTJ11004J.
Tehrani, F. S., F. Han, R. Salgado, M. Prezzi, R. D. Tovar, and A. G. Castro. 2016. “Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand.” Géotechnique 66 (5): 386–400. https://doi.org/10.1680/jgeot.15.P.007.
Tiawari, B., and A. R. Al-Adhadh. 2014. “Influence of relative density on static soil-structure frictional resistance of dry and saturated soil.” Geotech. Geol. Eng. 32 (Apr): 411–427. https://doi.org/10.1007/s10706-013-9723-6.
Uesugi, M., and H. Kishida. 1986. “Influential factors of friction between steel and dry sands.” Soils Found. 26 (2): 33–46. https://doi.org/10.3208/sandf1972.26.2_33.
Uesugi, M., H. Kishida, and Y. Tsubakihara. 1988. “Behavior of sand particles in sand-steel friction.” Soils Found. 28 (1): 107–118. https://doi.org/10.3208/sandf1972.28.107.
Uesugi, M., H. Kishida, and Y. Tsubakihara. 1989. “Friction between sand and steel under repeated loading.” Soils Found. 29 (3): 127–137. https://doi.org/10.3208/sandf1972.29.3_127.
Vangla, P., and M. L. Gali. 2016a. “Effect of particle size of sand and surface asperities of reinforcement on their interface shear behavior.” Geotext. Geomembr. 44 (3): 254–268. https://doi.org/10.1016/j.geotexmem.2015.11.002.
Vangla, P., and M. L. Gali. 2016b. “Shear behavior of sand-smooth geomembrane interfaces through micro-topographical analysis.” Geotext. Geomembr. 44 (4): 592–603. https://doi.org/10.1016/j.geotexmem.2016.04.001.
Ward, H. C. 1999. Rough surfaces. Edited by T. R. Thomas. London: Longman. https://doi.org/10.1142/p086.
White, D. J. 2005. “A general framework for shaft resistance of displacement piles in sand.” In Proc., 1st Int. Symp. Frontiers in Offshore Geotechnics, edited by Susan, 697–703. Oxfordshire, UK: Taylor & Francis.
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yoshimi, Y., and T. Kishida. 1981. “A ring torsion apparatus for evaluating friction between soil and metal surfaces.” Geotech. Test. J. 4 (4): 145–152. https://doi.org/10.1520/GTJ10783J.
Zhang, G., and J.-M. Zhang. 2009. “Constitutive rules of cyclic behavior of interface between structure and gravelly soil.” Mech. Mater. 41 (1): 48–59. https://doi.org/10.1016/j.mechmat.2008.08.003.
Zhang, P., S. Ding, and K. Fei. 2021. “Research on shear behavior of sand-structure interface based on monotonic and cyclic tests.” Appl. Sci. 11 (24): 11837. https://doi.org/10.3390/app112411837.
Zhou, W., Z. Guo, L. Wang, J. Li, and S. Rui. 2020. “Sand-steel interface behavior under large-displacement and cyclic shear.” Soil Dyn. Earthquake Eng. 138 (Nov): 106352. https://doi.org/10.1016/j.soildyn.2020.106352.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 10October 2023

History

Received: Sep 4, 2022
Accepted: Jun 7, 2023
Published online: Aug 7, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 7, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

P.E.
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Massachusetts Amherst, 27 Marston Hall, 130 Natural Resources Rd., Amherst, MA 01003 (corresponding author). ORCID: https://orcid.org/0000-0002-4204-0866. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of California, Davis, 3101 Ghausi Hall, One Shields Ave., Davis, CA 95616. ORCID: https://orcid.org/0000-0002-9809-955X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share