Abstract

Tailings dams, which are storage structures for tailings, often are constructed using the tailings itself. A large number of tailings dam failures have been reported recently, especially due to static liquefaction, and can be attributed to a lack of knowledge of the geotechnical principles to be used and the lack of characterization of tailings as they continuously are produced and used as construction materials. Furthermore, the majority of past research work has been based on triaxial conditions even though it is believed that direct simple shear conditions may better represent the in situ condition of a tailings dam structure. This paper characterized the behavior of a tailings material from a copper tailings storage facility in Canada using the critical state soil mechanics framework using constant volume (undrained), drained, and constant shear drained shearing tests in direct simple shear space. The correlation between a modified state parameter (ψm) with instability state and the flow potential was investigated. Special attention was paid to the behavioral features of the material such as pore-water pressure generation, flow rule and dilatancy, phase transformation, characteristics state, and how they correlate with ψm. The differences in behavior from that of natural granular soils were highlighted.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work forms part of TAILLIQ (Tailings Liquefaction), which is an Australian Research Council (ARC) Linkage Project supported by financial and in-kind contributions from Anglo American, BHP, Freeport-McMoRan, Newmont, Rio Tinto, and Teck. The TAILLIQ project is being carried out at The University of New South Wales (UNSW), The University of South Australia, The University of Western Australia (lead university), and The University of Wollongong. The authors acknowledge the support and contributions of project personnel at each of the supporting organizations. The authors specifically thank the mine site personnel who assisted in the sampling works that provided the material used for this study.

References

Airey, D. W., and D. M. Wood. 1987. “An evaluation of direct simple shear tests on clay.” Géotechnique 37 (1): 25–35. https://doi.org/10.1680/geot.1987.37.1.25.
Anderson, S. A., and M. F. Riemer. 1995. “Collapse of saturated soil due to reduction in confinement.” J. Geotech. Eng. 121 (2): 216–220. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(216).
ASTM. 2000a. Standard test method for consolidated undrained direct simple shear testing of cohesive soils. ASTM D6528. West Conshohocken, PA: ASTM.
ASTM. 2000b. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253. West Conshohocken, PA: ASTM.
ASTM. 2000c. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254. West Conshohocken, PA: ASTM.
ASTM. 2003. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084. West Conshohocken, PA: ASTM.
Baki, M. A. L., M. M. Rahman, and S. R. Lo. 2014. “Predicting onset of cyclic instability of loose sand with fines using instability curves.” Soil Dyn. Earthquake Eng. 61–62 (2): 140–151. https://doi.org/10.1016/j.soildyn.2014.02.007.
Baki, M. A. L., M. M. Rahman, S. R. Lo, and C. T. Gnanendran. 2012. “Linkage between static and cyclic liquefaction of loose sand with a range of fines contents.” Can. Geotech. J. 49 (8): 891–906. https://doi.org/10.1139/t2012-045.
Baxter, C. D. P., A. S. Bradshaw, M. Ochoa-Lavergne, and R. Hankour. 2010. “DSS test results using wire-reinforced membranes and stacked rings.” GeoFlorida 2010 (1): 600–607. https://doi.org/10.1061/41095(365)57.
Been, K. 2016. “Characterizing mine tailings for geotechnical design.” In Proc., Geotechnical and Geophysical Site Characterisation 5—Lehane, Acosta-Martínez & Kelly (Eds). Sydney, Australia: Australian Geomechanics Society.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bobei, D. C., S. R. Lo, D. Wanatowski, C. T. Gnanendran, and M. M. Rahman. 2009. “Modified state parameter for characterizing static liquefaction of sand with fines.” Can. Geotech. J. 46 (3): 281–295. https://doi.org/10.1139/T08-122.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Brand, E. W. 1981. “Some thoughts on rain-induced slope failures.” In Proc., Int. Society for Soil Mechanics and Geotechnical Engineering. Stockholm, Sweden: International Society for Soil Mechanics and Geotechnical Engineering.
Budhu, M. 1984. “Nonuniformities imposed by simple shear apparatus.” Can. Geotech. J. 21 (1): 125–137. https://doi.org/10.1139/t84-010.
Budhu, M. 1988. “Failure state of a sand in simple shear.” Can. Geotech. J. 25 (2): 395–400. https://doi.org/10.1139/t88-041.
Buscarnera, G., and A. J. Whittle. 2013. “Model prediction of static liquefaction: Influence of the initial state on potential instabilities.” J. Geotech. Geoenviron. Eng. 139 (3): 420–432. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000779.
Cappellaro, C., M. Cubrinovski, J. D. Bray, G. Chiaro, M. F. Riemer, and M. E. Stringer. 2021. “Liquefaction resistance of Christchurch sandy soils from direct simple shear tests.” Soil Dyn. Earthquake Eng. 141 (Jan): 106489. https://doi.org/10.1016/j.soildyn.2020.106489.
Castro, G. 1969. “Liquefaction of sands.” Ph.D. thesis, Div. of Engineering and Applied Physics, Harvard Univ.
Castro, G., J. L. Enos, J. W. France, and S. J. Poulos. 1982. Liquefaction induced by cyclic loading. NASA STI/Recon Technical Rep. N, 83. Providence, RI: Brown Univ.
Chu, J. 1995. “An experimental examination of the critical state and other similar concepts for granular soils.” Can. Geotech. J. 32 (6): 1065–1075. https://doi.org/10.1139/t95-104.
Chu, J., and W. K. Leong. 2002. “Effect of fines on instability behaviour of loose sand.” Géotechnique 52 (10): 751–755. https://doi.org/10.1680/geot.2002.52.10.751.
Chu, J., W. K. Leong, W. L. Loke, and D. Wanatowski. 2012. “Instability of loose sand under drained conditions.” J. Geotech. Geoenviron. Eng. 138 (2): 207–216. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000574.
Chu, J., S. Leroueil, and W. K. Leong. 2003. “Unstable behavior of sand and its implication for slope instability.” Can. Geotech. J. 40 (5): 873–885. https://doi.org/10.1139/t03-039.
Chu, J., D. Wanatowski, W. K. Leong, W. L. Loke, and J. He. 2015. “Instability of dilative sand.” Geotech. Res. 2 (1): 35–48. https://doi.org/10.1680/gr.14.00015.
Dawson, R. F., N. R. Morgenstern, and A. W. Stokes. 1998. “Liquefaction flowslides in Rocky Mountain coal mine waste dumps.” Can. Geotech. J. 35 (2): 328–343. https://doi.org/10.1139/t98-009.
Dong, Q., C. Xu, Y. Cai, H. Juang, J. Wang, Z. Yang, and C. Gu. 2015. “Drained instability in loose granular material.” Int. J. Geomech. 16 (2): 04015043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000524.
Drucker, D. C., and U. Brown. 1951. A more fundamental approach to plastic stress-strain relations. Providence, RI: Brown Univ.
Dyvik, R., T. Berre, S. Lacasse, and B. Raadim. 1987. “Comparison of truly undrained and constant volume direct simple shear tests.” Géotechnique 37 (1): 3–10. https://doi.org/10.1680/geot.1987.37.1.3.
Eckersley, D. 1990. “Instrumented laboratory flowslides.” Géotechnique 40 (3): 489–502. https://doi.org/10.1680/geot.1990.40.3.489.
Fourie, A. B., G. E. Blight, and A. G. Papadimitriou. 2001. “Static liquefaction as a possible explanation for the Merriespruit tailing dam failure.” Can. Geotech. J. 38 (4): 707–719. https://doi.org/10.1139/t00-112.
Gitari, M. W., S. A. Akinyemi, R. Thobakgale, P. C. Ngoejana, L. Ramugondo, M. Matidza, S. E. Mhlongo, F. A. Dacosta, and N. Nemapate. 2018. “Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials.” J. Afr. Earth Sci. 137 (Jan): 218–228. https://doi.org/10.1016/j.jafrearsci.2017.10.016.
Guo, Y.-G., P. Huang, W.-G. Zhang, X.-W. Yuan, F.-X. Fan, H.-L. Wang, J.-S. Liu, and Z.-H. Wang. 2013. “Leaching of heavy metals from Dexing copper mine tailings pond.” Trans. Nonferrous Metals Soc. China 23 (10): 3068–3075. https://doi.org/10.1016/S1003-6326(13)62835-6.
Hanzawa, H., N. Nutt, T. Lunne, Y. X. Tang, and M. Long. 2007. “A comparative study between the NGI direct simple shear apparatus and the Mikasa direct shear apparatus.” Soils Found. 47 (1): 47–58. https://doi.org/10.3208/sandf.47.47.
Harp, E. L., and W. G. Wells, and J. G. Sarmiento. 1990. “Pore pressure response during failure in soils.” GSA Bulletin 102 (4): 428–438. https://doi.org/10.1130/0016-7606(1990)102%3C0428:PPRDFI%3E2.3.CO;2.
Hill, R. 1958. “A general theory of uniqueness and stability in elastic-plastic solids.” J. Mech. Phys. Solids 6 (3): 236–249. https://doi.org/10.1016/0022-5096(58)90029-2.
Hubler, J. F., A. Athanasopoulos-Zekkos, and D. Zekkos. 2017. “Monotonic, cyclic, and postcyclic simple shear response of three uniform gravels in constant volume conditions.” J. Geotech. Geoenviron. Eng. 143 (9): 04017043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001723.
Ibsen, L. B. 1998. “The mechanism controlling static liquefaction and cyclic strength of sand.” In Proc., Int. Workshop on the Physics and Mechanics of Soil Liquefaction, 29–39. Aalborg, Denmark: Geotechnical Engineering Group.
Ishihara, K. 1984. “Post-earthquake failure of a tailings dam due to liquefaction of pond deposit.” In Proc., 1st Conf. Int. Conf. on Case Histories in Geotechnical Engineering. Rolla, MO: Univ. of Missouri.
Ishihara, K., F. Tatsuoka, and S. Yasuda. 1975. “Undrained deformation and liquefaction of sand under cyclic stresses.” Soils Found 15 (1): 29–44. https://doi.org/10.3208/sandf1972.15.29.
Jamalludin, D., A. Ahmad, M. M. M. Nordin, M. Z. Hashim, A. Ibrahim, and F. Ahmad. 2017. “To determine the slow shearing rate for consolidation drained shear box tests.” Conf. Proc. 1875 (1): 030010. https://doi.org/10.1063/1.4998381.
Jefferies, M., and K. Been. 2006. Soil liquefaction: A critical state approach. London: Taylor & Francis.
Karim, M. E., and M. J. Alam. 2014. “Effect of non-plastic silt content on the liquefaction behavior of sand–silt mixture.” Soil Dyn. Earthquake Eng. 65 (Jun): 142–150. https://doi.org/10.1016/j.soildyn.2014.06.010.
Karim, M. E., and M. J. Alam. 2017. “Effect of nonplastic silt content on undrained shear strength of sand–silt mixtures.” Int. J. Geo-Eng. 8 (1): 14. https://doi.org/10.1186/s40703-017-0051-1.
Kelm, U., S. Helle, R. Matthies, and A. Morales. 2009. “Distribution of trace elements in soils surrounding the El Teniente porphyry copper deposit, Chile: The influence of smelter emissions and a tailings deposit.” Environ. Geol. 57 (2): 365–376. https://doi.org/10.1007/s00254-008-1305-1.
Kouakou, N. M., O. Cuisinier, and F. Masrouri. 2020. “Estimation of the shear strength of coarse-grained soils with fine particles.” Transp. Geotech. 25 (Dec): 100407. https://doi.org/10.1016/j.trgeo.2020.100407.
Ladd, C. C. 1991. “Stability evaluation during staged construction.” J. Geotech. Eng. 117 (4): 540–615. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:4(540).
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (Jul): 16–23.
Lade, P., R. Nelson, and Y. Ito. 1987. “Nonassociated flow and stability of granular materials.” J. Eng. Mech. 113 (9): 1302–1318. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1302).
Lashkari, A., S. R. Falsafizadeh, P. T. Shourijeh, and M. J. Alipour. 2020. “Instability of loose sand in constant volume direct simple shear tests in relation to particle shape.” Acta Geotech. 15 (9): 2507–2527. https://doi.org/10.1007/s11440-019-00909-4.
Lashkari, A., M. Khodadadi, S. M. Binesh, and M. M. Rahman. 2019. “Instability of particulate assemblies under constant shear drained stress path: DEM approach.” Int. J. Geomech. 19 (6): 04019049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001407.
Lee, K. L., and H. B. Seed. 1967. “Dynamic strength of anisotropically consolidated sand.” J. Soil Mech. Found. Div. 93 (5): 169–190. https://doi.org/10.1061/JSFEAQ.0001019.
Leroueil, S. 2001. “Natural slopes and cuts: Movement and failure mechanisms.” Géotechnique 51 (3): 197–243. https://doi.org/10.1680/geot.2001.51.3.197.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, X.-S., Y. F. Dafalias, and Z.-L. Wang. 1999. “State-dependant dilatancy in critical-state constitutive modelling of sand.” Can. Geotech. J. 36 (4): 599–611. https://doi.org/10.1139/t99-029.
Luo, B., T. Peng, and H. Sun. 2021. “Recovery of γFe2O3 from copper ore tailings by magnetization roasting and magnetic separation.” Open Chem. 19 (1): 128–137. https://doi.org/10.1515/chem-2021-0194.
Mayne, P. W. 2014. “Interpretation of geotechnical parameters from seismic piezocone tests.” In Proc., 3rd Int. Symp. on Cone Penetration Testing (CPT14, Las Vegas), edited by P. K. Robertson, and K. I. Cabal, 47–73. London: ISSMGE Technical Committee.
Monkul, M. M., J. A. Yamamuro, and P. V. Lade. 2011. “Failure, instability, and the second work increment in loose silty sand.” Can. Geotech. J. 48 (6): 943–955. https://doi.org/10.1139/t11-013.
Morgenstern, N. R., S. G. Vick, C. B. Viotti, and B. D. Watts. 2016. Report on the immediate causes of the failure of the Fundão dam. Mariana, Brazil: Fundão Tailings Dam Review Panel.
Nguyen, H. B. K., M. M. Rahman, and A. Fourie. 2021. “The critical state behaviour of granular material in triaxial and direct simple shear condition: A DEM approach.” Comput. Geotech. 138 (21): 104325. https://doi.org/10.1016/j.compgeo.2021.104325.
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2018. “Characteristic behavior of drained and undrained triaxial compression tests: DEM study.” J. Geotech. Geoenviron. Eng. 144 (9): 04018060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001940.
Olson, S. M., and T. D. Stark. 2002. “Liquefied strength ratio from liquefaction flow failure case histories.” Can. Geotech. J. 39 (3): 629–647. https://doi.org/10.1139/t02-001.
Olson, S. M., and T. D. Stark. 2003. “Use of laboratory data to confirm yield and liquefied strength ratio concepts.” Can. Geotech. J. 40 (6): 1164–1184. https://doi.org/10.1139/t03-058.
Pak, A., and M. Nabipour. 2017. “Numerical study of the effects of drainage systems on saturated/unsaturated seepage and stability of tailings dams.” Mine Water Environ. 36 (3): 341–355. https://doi.org/10.1007/s10230-017-0468-y.
Papadimitriou, A. G., Y. F. Dafalias, and M. Yoshimine. 2005. “Plasticity modeling of the effect of sample preparation method on sand response.” Soils Found. 45 (2): 109–123. https://doi.org/10.3208/sandf.45.2_109.
Prevost, J.-H., and K. Høeg. 1976. “Reanalysis of simple shear soil testing.” Can. Geotech. J. 13 (4): 418–429. https://doi.org/10.1139/t76-042.
Rabbi, A. T. M. Z. 2015. “Behaviour of silty sand: Effect of consolidation, stress path and fines content.” Ph.D. thesis, UniSA STEM, Univ. of South Australia.
Rabbi, A. T. M. Z., M. M. Rahman, and D. Cameron. 2018. “Undrained behavior of silty sand and the role of isotropic and K0 consolidation.” J. Geotech. Geoenviron. Eng. 144 (4): 04018014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001859.
Rabbi, A. T. M. Z., M. M. Rahman, and D. Cameron. 2019. “Critical state study of natural silty sand instability under undrained and constant shear drained path.” Int. J. Geomech. 19 (8): 04019083. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001462.
Rabbi, A. T. M. Z., M. M. Rahman, and D. A. Cameron. 2015. “Undrained behaviour of silty glacial sand under K0-consolidation.” In Proc., 6th Int. Conf. on Earthquake Geotechnical Engineering, 441–448. Christchurch, New Zealand: Univ. of Canterbury.
Rahman, M. M., M. Baki, and S. Lo. 2014a. “Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter.” Int. J. Geomech. 14 (2): 254–266. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000316.
Rahman, M. M., and Y. F. Dafalias. 2022. “Modelling undrained behavior of sand with fines and fabric anisotropy.” Acta Geotech. 17 (6): 2305–2324. https://doi.org/10.1007/s11440-021-01410-7.
Rahman, M. M., S.-C. R. Lo, and Y. F. Dafalias. 2014b. “Modelling the static liquefaction of sand with low-plasticity fines.” Géotechnique 64 (11): 881–894. https://doi.org/10.1680/geot.14.P.079.
Rahman, M. M., and S. R. Lo. 2012. “Predicting the onset of static liquefaction of loose sand with fines.” J. Geotech. Geoenviron. Eng. 138 (8): 1037–1041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000661.
Rahman, M. M., and S. R. Lo. 2014. “Undrained behavior of sand-fines mixtures and their state parameters.” J. Geotech. Geoenviron. Eng. 140 (7): 04014036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115.
Rahman, M. M., H. B. K. Nguyen, A. B. Fourie, and M. R. Kuhn. 2021. “Critical state soil mechanics for cyclic liquefaction and postliquefaction behavior: DEM study.” J. Geotech. Geoenviron. Eng. 147 (2): 04020166. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002453.
Rahman, M. M., and T. G. Sitharam. 2020. “Cyclic liquefaction screening of sand with non-plastic fines: Critical state approach.” Geosci. Front. 11 (2): 429–438. https://doi.org/10.1016/j.gsf.2018.09.009.
Reid, D., R. Fanni, K. Koh, and I. Orea. 2018. “Characterisation of a subaqueously deposited silt iron ore tailings.” Géotech. Lett. 8 (4): 278–283. https://doi.org/10.1680/jgele.18.00105.
Riveros, G. A., and A. Sadrekarimi. 2021. “Static liquefaction behaviour of gold mine tailings.” Can. Geotech. J. 58 (6): 889–901. https://doi.org/10.1139/cgj-2020-0209.
Robertson, P. K., et al. 2000. “The Canadian Liquefaction Experiment: An overview.” Can. Geotech. J. 37 (3): 499–504. https://doi.org/10.1139/t00-043.
Robertson, P. K., and K. L. Cabal. 2010. “Estimating soil unit weight from CPT.” In Proc., 2nd Int. Symp. on Cone Penetration Testing. London: ISSMGE Technical Committee.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” In Vol. 269 of Proc., Royal Society of London. Series A, Mathematical and Physical Sciences, 500–527. London: Royal Society.
Sadrekarimi, A. 2013. “Influence of state and compressibility on liquefied strength of sands.” Can. Geotech. J. 50 (10): 1067–1076. https://doi.org/10.1139/cgj-2012-0395.
Sadrekarimi, A., and S. M. Olson. 2011. “Yield strength ratios, critical strength ratios, and brittleness of sandy soils from laboratory tests.” Can. Geotech. J. 48 (3): 493–510. https://doi.org/10.1139/T10-078.
Sadrekarimi, A., and G. A. Riveros. 2020. “Static liquefaction analysis of the Fundão dam failure.” Geotech. Geol. Eng. 38 (6): 6431–6446. https://doi.org/10.1007/s10706-020-01446-8.
Santos, A. P. S. D., N. C. Consoli, and B. A. Baudet. 2010. “The mechanics of fibre-reinforced sand.” Géotechnique 60 (10): 791–799. https://doi.org/10.1680/geot.8.P.159.
Sha’al, B. Z. 1972. The behaviour of cohesionless soils in simple shear under cyclic loading. London: Univ. of London.
Shamsai, A., A. Pak, S. M. Bateni, and S. A. H. Ayatollahi. 2007. “Geotechnical characteristics of copper mine tailings: A case study.” Geotech. Geol. Eng. 25 (5): 591–602. https://doi.org/10.1007/s10706-007-9132-9.
Shibuya, S., and D. W. Hight. 1987. “On the stress path in simple shear.” Géotechnique 37 (4): 511–515. https://doi.org/10.1680/geot.1987.37.4.511.
Szypcio, Z. 2017. “Stress-dilatancy for soils. Part IV: Experimental validation for simple shear conditions.” Studia Geotechnica et Mechanica 39 (1): 81. https://doi.org/10.1515/sgem-2017-0008.
Taylor, D. W. 1948. Fundamentals of soil mechanics. New York: Wiley.
Tian, X., H. Zhang, T. Zhang, and C. A. Fernández. 2020. “Alkali-activated copper tailings-based pastes: Compressive strength and microstructural characterization.” J. Mater. Res. Technol. 9 (3): 6557–6567. https://doi.org/10.1016/j.jmrt.2020.04.043.
Torres-Cruz, L. A., and J. C. Santamarina. 2020. “The critical state line of nonplastic tailings.” Can. Geotech. J. 57 (10): 1508–1517. https://doi.org/10.1139/cgj-2019-0019.
Wadell, H. 1932. “Volume, shape, and roundness of rock particles.” J. Geol. 40 (5): 443–451. https://doi.org/10.1086/623964.
Wanatowski, D., J. Chu, and W. L. Loke. 2010. “Drained instability of sand in plane strain.” Can. Geotech. J. 47 (4): 400–412. https://doi.org/10.1139/T09-111.
Wu, Q. X., T. T. Xu, and Z. X. Yang. 2020. “Diffuse instability of granular material under various drainage conditions: Discrete element simulation and constitutive modeling.” Acta Geotech. 15 (7): 1763–1778. https://doi.org/10.1007/s11440-019-00885-9.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Yamamuro, J. A., and P. V. Lade. 1998. “Steady-state concepts and static liquefaction of silty sands.” J. Geotech. Geoenviron. Eng. 124 (9): 868–877. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868).
Yang, J. 2002. “Non-uniqueness of flow liquefaction line for loose sand.” Géotechnique 52 (10): 757–760. https://doi.org/10.1680/geot.2002.52.10.757.
Yoshimine, M., and K. Ishihara. 1998. “Flow potential of sand during liquefaction.” Soils Found. 38 (3): 189–198. https://doi.org/10.3208/sandf.38.3_189.
Zekkos, D., and X. Fei. 2017. “Constant load and constant volume response of municipal solid waste in simple shear.” Waste Manage. 63 (Aug): 380–392. https://doi.org/10.1016/j.wasman.2016.09.029.
Zhang, J., S.-C. R. Lo, M. M. Rahman, and J. Yan. 2018. “Characterizing monotonic behavior of pond ash within critical state approach.” J. Geotech. Geoenviron. Eng. 144 (1): 04017100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001798.
Zhu, J.-H., and S. A. Anderson. 1998. “Determination of shear strength of Hawaiian residual soil subjected to rainfall-induced landslides.” Géotechnique 48 (1): 73–82. https://doi.org/10.1680/geot.1998.48.1.73.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 5May 2023

History

Received: May 12, 2022
Accepted: Nov 30, 2022
Published online: Feb 16, 2023
Published in print: May 1, 2023
Discussion open until: Jul 16, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Mohammad Emdadul Karim [email protected]
Ph.D. Candidate, UniSA STEM (Science, Technology, Engineering and Mathematics), Univ. of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. Email: [email protected]
Professorial Lead and Professor, UniSA STEM (Science, Technology, Engineering and Mathematics), Univ. of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-0638-4055. Email: [email protected]
Md. Rajibul Karim [email protected]
Senior Lecturer, UniSA STEM (Science, Technology, Engineering and Mathematics), Univ. of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. Email: [email protected]
Andy B. Fourie, Ph.D. [email protected]
Professor, Dept. of Civil, Environmental & Mining Engineering, Univ. of Western Australia, Crawley, WA 6009, Australia. Email: [email protected]
Research Fellow, Dept. of Civil, Environmental & Mining Engineering, Univ. of Western Australia, Crawley, WA 6009, Australia. ORCID: https://orcid.org/0000-0002-1867-1676. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share