Technical Papers
Nov 22, 2022

A Unified Formula for Small-Strain Shear Modulus of Sandy Soils Based on Extreme Void Ratios

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 2

Abstract

Small-strain shear modulus (G0) is a fundamental property required in dynamic analyses. For sandy soils, G0 may be affected strongly by particle characteristics such as uniformity coefficient (Cu), mean particle size (d50), fines content (FC), and particle shape. Based on an extensive experimental study of the mechanical behavior of coral sands, this paper proposes a new formula for predicting G0 for sandy soils with various Cu, d50, FC, and particle shapes. A notable feature of the new formula is the use of the extreme void ratios (maximum void ratio emax and minimum void ratio emin) as the indexes, which were shown to be able to account for the effects of the various factors in a simple yet collective manner. Power-law correlations were established between the minimum small-strain shear modulus G0min and emax as well as between the maximum small-strain shear modulus G0max and emin. The wide applicability of this formula was validated further using extensive data from the literature from resonant column, bender element, and torsional shear tests on siliceous, calcareous, and coral sandy soils.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The financial support provided by the National Natural Science Foundation of China (51978334 and 52278503), the Research Grants Council of Hong Kong (17206119), and the Beijing Natural Science Foundation (8224082) is gratefully acknowledged.

References

Åberg, B. 1992. “Void ratio of noncohesive soils and similar materials.” J. Geotech. Eng. 118 (9): 1315–1334. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1315).
Åberg, B. 1996. “Grain-size distribution for smallest possible void ratio.” J. Geotech. Eng. 122 (1): 74–77. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(74).
Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
ASTM. 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohocken, PA: ASTM.
Atkinson, J. H., and G. Sallfors. 1991. “Experimental determination of soil properties.” In Proc., 10th European Conf. on Soil Mechanics and Foundation Engineering, 915–956. New York: A.A. Balkema.
Bayat, M., and A. Ghalandarzadeh. 2019. “Influence of depositional method on dynamic properties of granular soil.” Int. J. Civ. Eng. 17 (6): 907–920. https://doi.org/10.1007/s40999-019-00412-7.
Bellotti, R., M. Jamiolkowski, D. C. F. Lo Presti, and D. A. O’Neill. 1996. “Anisotropy of small strain stiffness in Ticino sand.” Géotechnique 46 (1): 115–131. https://doi.org/10.1680/geot.1996.46.1.115.
Brandes, H. G. 2011. “Simple shear behavior of calcareous and quartz sands.” Geotech. Geol. Eng. 29 (1): 113–126. https://doi.org/10.1007/s10706-010-9357-x.
Bui, M. T. 2009. “Influence of some particle characteristics on the small strain response of granular materials.” Doctoral dissertation, School of Civil Engineering and the Environment, Univ. of Southampton.
Cataño-Arango, J. 2006. “Stress strain behavior and dynamic properties of Cabo Rojo calcareous sands.” M.Sc thesis, Dept. of Civil Engineering, Univ. of Puerto Rico.
Chang, C. S., Y. Deng, and Z. Yang. 2017. “Modeling of minimum void ratio for granular soil with effect of particle size distribution.” J. Eng. Mech. 143 (9): 04017060. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001270.
Chang, C. S., J. Y. Wang, and L. Ge. 2016. “Maximum and minimum void ratios for sand-silt mixtures.” Eng. Geol. 211 (23): 7–18. https://doi.org/10.1016/j.enggeo.2016.06.022.
Chen, G., Q. Wu, T. Sun, K. Zhao, E. Zhou, L. Xu, and Y. Zhou. 2021a. “Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading.” J. Earthquake Eng. 25 (4): 756–789. https://doi.org/10.1080/13632469.2018.1540370.
Chen, G. X., K. Liang, K. Zhao, and J. Yang. 2022. “Shear modulus and damping ratio of saturated coral sand under generalised cyclic loadings.” Géotechnique 1 (Jan): 18. https://doi.org/10.1680/jgeot.21.00181.
Chen, G. X., W. J. Ma, Y. Qin, K. Zhao, and J. Yang. 2021b. “Liquefaction susceptibility of saturated coral sand subjected to various patterns of principal stress rotation.” J. Geotech. Geoenviron. Eng. 147 (9): 04021093. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002590.
Chen, G. X., Y. Z. Wang, D. F. Zhao, K. Zhao, and J. Yang. 2021c. “A new effective stress method for nonlinear site response analyses.” Earthquake Eng. Struct. Dyn. 50 (6): 1595–1611. https://doi.org/10.1002/eqe.3414.
Chen, G. X., Q. Wu, K. Zhao, Z. F. Shen, and J. Yang. 2020. “A binary packing material-based procedure for evaluating soil liquefaction triggering during earthquakes.” J. Geotech. Geoenviron. Eng. 146 (6): 04020040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002263.
Chen, G. X., D. F. Zhao, W. Y. Chen, and C. H. Juang. 2019a. “Excess pore-water pressure generation in cyclic undrained testing.” J. Geotech. Geoenviron. Eng. 145 (7): 04019022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002057.
Chen, G. X., Z. L. Zhou, H. Pan, T. Sun, and X. J. Li. 2016. “The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range.” Eng. Geol. 204 (14): 14–22. https://doi.org/10.1016/j.enggeo.2016.02.008.
Chen, G. X., Z. L. Zhou, T. Sun, Q. Wu, L. Y. Xu, S. Khoshnevisan, and D. S. Ling. 2019b. “Shear modulus and damping ratio of sand–gravel mixtures over a wide strain range.” J. Earthquake Eng. 23 (8): 1407–1440. https://doi.org/10.1080/13632469.2017.1387200.
Cheng, L., M. S. Hossain, Y. Hu, Y. H. Kim, and S. N. Ullah. 2022. “A simple breakage model for calcareous sand and its FE implementation.” J. Geotech. Geoenviron. Eng. 148 (9): 04022065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002834.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 133 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Clayton, C. R. I. 2011. “Stiffness at small strain: Research and practice.” Géotechnique 61 (1): 5–37. https://doi.org/10.1680/geot.2011.61.1.5.
Clayton, C. R. I., and G. Heymann. 2001. “Stiffness of geomaterials at very small strains.” Géotechnique 51 (3): 245–255. https://doi.org/10.1680/geot.2001.51.3.245.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cubrinovski, M., and K. Ishihara. 1999. “Empirical correlation between SPT N-value and relative density for sandy soils.” Soils Found. 39 (5): 61–71. https://doi.org/10.3208/sandf.39.5_61.
Cubrinovski, M., and K. Ishihara. 2002. “Maximum and minimum void ratio characteristics of sands.” Soils Found. 42 (6): 65–78. https://doi.org/10.3208/sandf.42.6_65.
Darvasi, Y. 2021. “Shear-wave velocity measurements and their uncertainties at six industrial sites.” Earthquake Spectra 37 (3): 2223–2246. https://doi.org/10.1177/8755293020988029.
De Alba, P., K. Baldwin, V. Janoo, G. Roe, and B. Celikkol. 1984. “Elastic-wave velocities and liquefaction potential.” Geotech. Test. J. 7 (2): 77–87. https://doi.org/10.1520/GTJ10596J.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Flores Lopez, F. A., V. M. Taboada, Z. X. Gonzalez Ramirez, D. Cruz Roque, P. Barrera Nabor, and V. S. Dantal. 2018. “Normalized modulus reduction and damping ratio curves for Bay of Campeche carbonate sand.” In Proc., Offshore Technology Conf. Houston: Offshore Technology Conference.
GCTS (Geotechnical Consulting and Testing Systems). 2014. TSH-100 resonant column/torsional shear technical information manual. Tempe, AZ: GCTS.
Goudarzy, M., M. M. Rahman, D. König, and T. Schanz. 2016. “Influence of non-plastic fines content on maximum shear modulus of granular materials.” Soils Found. 56 (6): 973–983. https://doi.org/10.1016/j.sandf.2016.11.003.
Gu, X. Q., L. T. Lu, and J. G. Qian. 2017. “Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils.” Particuology 32 (Aug): 21–29. https://doi.org/10.1016/j.partic.2016.08.002.
Gu, X. Q., and J. Yang. 2013. “A discrete element analysis of elastic properties of granular materials.” Granular Matter 15 (2): 139–147. https://doi.org/10.1007/s10035-013-0390-3.
Gu, X. Q., J. Yang, M. Huang, and G. Gao. 2015. “Bender element tests in dry and saturated sand: Signal interpretation and result comparison.” Soils Found. 55 (5): 951–962. https://doi.org/10.1016/j.sandf.2015.09.002.
Gu, X. Q., J. Yang, and M. S. Huang. 2013. “Laboratory measurements of small strain properties of dry sands by bender element.” Soils Found. 53 (5): 735–745. https://doi.org/10.1016/j.sandf.2013.08.011.
Ha Giang, P. H., P. O. Van Impe, W. F. Van Impe, P. Menge, and W. Haegeman. 2017. “Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation.” Soil Dyn. Earthquake Eng. 100 (Jun): 371–379. https://doi.org/10.1016/j.soildyn.2017.06.016.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hardin, B. O., and W. L. Black. 1966. “Sand stiffness under various triaxial stresses.” J. Soil Mech. Found. Div. 92 (2): 27–42. https://doi.org/10.1061/JSFEAQ.0000865.
Hardin, B. O., and F. E. Richart Jr. 1963. “Elastic wave velocities in granular soils.” J. Soil Mech. Found. Div. 89 (1): 33–65. https://doi.org/10.1061/JSFEAQ.0000493.
Ishihara, K. 1996. Soil behaviour in earthquake geotechnics. Oxford, UK: Clarendon.
Iwasaki, T., and F. Tatsuoka. 1977. “Effects of grain size and grading on dynamic shear moduli of sands.” Soils Found. 17 (3): 19–35. https://doi.org/10.3208/sandf1972.17.3_19.
Jafarian, Y., and H. Javdanian. 2020. “Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database.” Int. J. Civ. Eng. 18 (2): 245–249. https://doi.org/10.1007/s40999-019-00402-9.
Jovicic, V., M. R. Coop, and M. Simic. 1996. “Objective criteria for determining Gmax from bender element tests.” Géotechnique 46 (2): 357–362. https://doi.org/10.1680/geot.1996.46.2.357.
Kokusho, T. 1980. “Cyclic triaxial test of dynamic soil properties for wide strain range.” Soils Found. 20 (2): 45–60. https://doi.org/10.3208/sandf1972.20.2_45.
Krumbein, W. C., and L. L. Sloss. 1963. Stratigraphy and sedimentation. 2nd ed. San Francisco: Freeman and Company.
Lee, J.-S., and J. C. Santamarina. 2005. “Bender elements: Performance and signal interpretation.” J. Geotech. Geoenviron. Eng. 131 (9): 1063–1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
Liang, K., Y. He, and G. X. Chen. 2020. “Experimental study on dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands.” [In Chinese.] Rock Soil Mech. 41 (1): 23–38. https://doi.org/10.16285/j.rsm.2018.7359.
Liu, X., S. Li, and L. Sun. 2020. “The study of dynamic properties of carbonate sand through a laboratory database.” Bull. Eng. Geol. Environ. 79 (7): 3843–3855. https://doi.org/10.1007/s10064-020-01785-z.
Liu, X., and J. Yang. 2018. “Shear wave velocity in sand: Effect of grain shape.” Géotechnique 68 (8): 742–748. https://doi.org/10.1680/jgeot.17.T.011.
Liu, X., J. Yang, G. Wang, and L. Chen. 2016. “Small-strain shear modulus of volcanic granular soil: An experimental investigation.” Soil Dyn. Earthquake Eng. 86 (4): 15–24. https://doi.org/10.1016/j.soildyn.2016.04.005.
Lo Presti, D. C. F. 1995. “General Report: Measurement of shear deformation of geomaterials in the laboratory.” In Proc., Int. Conf. on Pre-failure Deformation Characteristics of Geomaterials, 1067–1088. Rotterdam, Netherlands: Balkema.
Lo Presti, D. C. F., M. Jamiolkowski, O. Pallara, A. Cavallaro, and S. Pedroni. 1997. “Shear modulus and damping of soils.” Géotechnique 47 (3): 603–617. https://doi.org/10.1680/geot.1997.47.3.603.
Ma, W. J., Y. Qin, K. Zhao, and G. X. Chen. 2022. “Comparisons on liquefaction behavior of saturated coral sand and quartz sand under principal stress rotation.” Mar. Georesour. Geotechnol. 40 (2): 235–247. https://doi.org/10.1080/1064119X.2021.1882627.
Matesic, L., and M. Vucetic. 2003. “Strain-rate effects on soil secant shear modulus at small cyclic strains.” J. Geotech. Geoenviron. Eng. 129 (6): 536–549. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(536).
Menq, F. Y. 2003. “Dynamic properties of sandy and gravelly soils.” Ph.D. dissertation, Dept. of Civil Engineering, Univ. of Texas.
Morsy, A. M., M. A. Salem, and H. H. Elmamlouk. 2019. “Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges.” Soil Dyn. Earthquake Eng. 116 (4): 692–708. https://doi.org/10.1016/j.soildyn.2018.09.030.
Oztoprak, S., and M. D. Bolton. 2013. “Stiffness of sands through a laboratory test database.” Géotechnique 63 (1): 54–70. https://doi.org/10.1680/geot.10.P.078.
Payan, M., A. Khoshghalb, K. Senetakis, and N. Khalili. 2016. “Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression.” Comput. Geotech. 72 (4): 28–41. https://doi.org/10.1016/j.compgeo.2015.11.003.
Qadimi, A., and M. R. Coop. 2007. “The undrained cyclic behaviour of a carbonate sand.” Géotechnique 57 (9): 739–750. https://doi.org/10.1680/geot.2007.57.9.739.
Rahman, M. M., S.-C. R. Lo, and Y. F. Dafalias. 2014. “Modelling the static liquefaction of sand with low-plasticity fines.” Géotechnique 64 (11): 881–894. https://doi.org/10.1680/geot.14.P.079.
Rahmani, H., and S. A. Naeini. 2020. “Influence of non-plastic fine on static liquefaction and undrained monotonic behavior of sandy gravel.” Eng. Geol. 275 (1): 105729. https://doi.org/10.1016/j.enggeo.2020.105729.
Rollins, K. M., M. D. Evans, N. B. Diehl, and W. D. Daily III. 1998. “Shear modulus and damping relationships for gravels.” J. Geotech. Geoenviron. Eng. 124 (5): 396–405. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(396).
Rollins, K. M., M. Singh, and J. Roy. 2020. “Simplified equations for shear-modulus degradation and damping of gravels.” J. Geotech. Geoenviron. Eng. 146 (9): 04020076. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002300.
Rui, S., Z. Guo, T. Si, and Y. Li. 2020. “Effect of particle shape on the liquefaction resistance of calcareous sands.” Soil Dyn. Earthquake Eng. 137 (2): 106302. https://doi.org/10.1016/j.soildyn.2020.106302.
Salem, M., H. Elmamlouk, and S. Agaiby. 2013. “Static and cyclic behavior of North Coast calcareous sand in Egypt.” Soil Dyn. Earthquake Eng. 55 (12): 83–91. https://doi.org/10.1016/j.soildyn.2013.09.001.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
Sandeep, C. S., S. Li, and K. Senetakis. 2021. “Experimental and analytical investigation on the normal contact behavior of natural proppant simulants.” Geomech. Geophys. Geo-Energy Geo-Resources 7 (4): 1–15. https://doi.org/10.1007/s40948-021-00296-9.
Sarkar, D., D. König, and M. Goudarzy. 2019. “The influence of particle characteristics on the index void ratios in granular materials.” Particuology 46 (4): 1–13. https://doi.org/10.1016/j.partic.2018.09.010.
Seed, H. B., and I. M. Idriss. 1970. Soil moduli and damping factors for dynamic response analyses. Berkeley, CA: Univ. of California.
Seed, H. B., R. T. Wong, I. M. Idriss, and K. Tokimatsu. 1986. “Moduli and damping factors for dynamic analyses of cohesionless soils.” J. Geotech. Eng. 112 (11): 1016–1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016).
Senetakis, K., A. Anastasiadis, and K. Pitilakis. 2012. “Small strain shear modulus and damping ratio of quartz and volcanic sands.” Geotech. Test. J. 35 (6): 20120073. https://doi.org/10.1520/GTJ20120073.
Senetakis, K., A. Anastasiadis, and K. Pitilakis. 2013. “Normalized shear modulus reduction and damping ratio curves of quartz sand and rhyolitic crushed rock.” Soils Found. 53 (6): 879–893. https://doi.org/10.1016/j.sandf.2013.10.007.
Senetakis, K., and H. He. 2017. “Dynamic characterization of a biogenic sand with a resonant column of fixed-partly fixed boundary conditions.” Soil Dyn. Earthquake Eng. 95 (4): 180–187. https://doi.org/10.1016/j.soildyn.2017.01.042.
Sharma, S. S., and M. A. Ismail. 2006. “Monotonic and cyclic behavior of two calcareous soils of different origins.” J. Geotech. Geoenviron. Eng. 132 (12): 1581–1591. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1581).
Shi, J., W. Haegeman, and T. Xu. 2020. “Effect of non-plastic fines on the anisotropic small strain stiffness of a calcareous sand.” Soil Dyn. Earthquake Eng. 139 (2): 106381. https://doi.org/10.1016/j.soildyn.2020.106381.
Thevanayagam, S. T., S. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands, and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Wichtmann, T., M. A. Navarrete Hernández, and T. Triantafyllidis. 2015. “On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand.” Soil Dyn. Earthquake Eng. 69 (4): 103–114. https://doi.org/10.1016/j.soildyn.2014.10.017.
Wichtmann, T., and T. Triantafyllidis. 2009. “Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax.” J. Geotech. Geoenviron. Eng. 135 (10): 1404–1418. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000096.
Yamamuro, J. A., and P. V. Lade. 1997. “Static liquefaction of very loose sands.” Can. Geotech. J. 34 (6): 905–917. https://doi.org/10.1139/t97-057.
Yamashita, S., T. Kawaguchi, Y. Nakata, T. Mikami, T. Fujiwara, and S. Shibuya. 2009. “Interpretation of international parallel test on the measurement of Gmax using bender elements.” Soils Found. 49 (4): 631–650. https://doi.org/10.3208/sandf.49.631.
Yang, J., and X. Q. Gu. 2013. “Shear stiffness of granular material at small strains: Does it depend on grain size?” Géotechnique 63 (2): 165–179. https://doi.org/10.1680/geot.11.P.083.
Yang, J., and X. Liu. 2016. “Shear wave velocity and stiffness of sand: The role of non-plastic fines.” Géotechnique 66 (6): 500–514. https://doi.org/10.1680/jgeot.15.P.205.
Yang, J., X. Liu, Y. Guo, and L. B. Liang. 2018. “A unified framework for evaluating in situ state of sand with varying fines content.” Géotechnique 68 (2): 177–183. https://doi.org/10.1680/jgeot.16.P.254.
Yang, J., and L. M. Wei. 2012. “Collapse of loose sand with the addition of fines: The role of particle shape.” Géotechnique 62 (12): 1111–1125. https://doi.org/10.1680/geot.11.P.062.
Yang, J., and X. R. Yan. 2009. “Site response to multi-directional earthquake loading: A practical procedure.” Soil Dyn. Earthquake Eng. 29 (4): 710–721. https://doi.org/10.1016/j.soildyn.2008.07.008.
Yilmaz, Y., and M. Mollamahmutoglu. 2009. “Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range.” J. Geotech. Geoenviron. Eng. 135 (12): 1986–1990. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000164.
Youd, T. L. 1973. “Factors controlling maximum and minimum densities of sands.” In Evaluation of relative density and its role in geotechnical projects involving cohesionless soils, 98–112. West Conshohocken, PA: ASTM.
Youn, J.-U., Y.-W. Choo, and D.-S. Kim. 2008. “Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests.” Can. Geotech. J. 45 (10): 1426–1438. https://doi.org/10.1139/T08-069.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 2February 2023

History

Received: Mar 26, 2022
Accepted: Sep 2, 2022
Published online: Nov 22, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ke Liang
Postdoctoral Researcher, The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China.
Professor, Institute of Geotechnical Engineering, Nanjing Tech Univ., Nanjing 210009, China; Director, Civil Engineering and Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing 210009, China (corresponding author). ORCID: https://orcid.org/0000-0001-9185-7488. Email: [email protected]
Xiuli Du
Professor, The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China.
Chengshun Xu
Professor, The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China.
Jun Yang, F.ASCE
Professor, Dept. of Civil Engineering, Univ. of Hong Kong, Hong Kong, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Unified Model of Cyclic Shear–Volume Coupling and Excess Pore Water Pressure Generation for Sandy Soils under Various Cyclic Loading Patterns, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12247, 150, 9, (2024).
  • Intelligent Model for Dynamic Shear Modulus and Damping Ratio of Undisturbed Marine Clay Based on Back-Propagation Neural Network, Journal of Marine Science and Engineering, 10.3390/jmse11020249, 11, 2, (249), (2023).
  • Experimental study on liquefaction characteristics of saturated marine coral sand based on dissipated energy evaluation, Marine Georesources & Geotechnology, 10.1080/1064119X.2023.2175744, (1-11), (2023).
  • Influences of cyclic stress paths on deformation behavior of saturated marine coral sand: An experimental study, Ocean Engineering, 10.1016/j.oceaneng.2023.113626, 270, (113626), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share