Open access
Technical Notes
Sep 13, 2024

Distribution-Theoretic Basis for Hidden Deltas in Frequency-Domain Structural Modeling

Publication: Journal of Engineering Mechanics
Volume 150, Issue 11

Abstract

Frequency-domain modeling is a core tool for the analysis of linear time-invariant structures. In a process that has been unclear, additional Dirac delta distributions can arise in the frequency-domain transfer functions of certain structures, beyond those seemingly given by the structural model—e.g., in the mechanical impedance of a linear spring. Previous analyses have manually appended these “hidden deltas” to the relevant transfer functions in to ensure that they remain causal, but questions remain as to their exact origin and behavior in in noncausal models. Here, we demonstrate that these hidden deltas arise from the theory of distributions and the solution of the distributional division equation. We demonstrate a rigorous and reliable method for deriving these hidden deltas in which the role of causality constraints are made clear. Furthermore, we demonstrate that the appropriate frequency-domain conditions for causality in such systems are generalized—not classical—Hilbert transform relations, and that the process of appending delta distributions is related to the analysis of causality via these generalized relations.

Formats available

You can view the full content in the following formats:

Data Availability Statement

No data, models, or code were generated or used during the study.

References

Beltrami, E. J., and M. R. Wohlers. 1965. “Distributional boundary value theorems and Hilbert transforms.” Arch. Ration. Mech. Anal. 18 (4): 304–309. https://doi.org/10.1007/BF00251669.
Beltrami, E. J., and M. R. Wohlers. 1966. Distributions and the boundary values of analytic functions. New York: Academic Press.
Beltrami, E. J., and M. R. Wohlers. 1967. “The Cauchy integral of tempered distributions and some theorems on analytic continuation.” SIAM J. Appl. Math. 15 (4): 1077–1087. https://doi.org/10.1137/0115092.
Carcione, J. M., F. Cavallini, J. Ba, W. Cheng, and A. N. Qadrouh. 2019. “On the Kramers-Kronig relations.” Rheol. Acta 58 (1–2): 21–28. https://doi.org/10.1007/s00397-018-1119-3.
Crandall, S. H. 1991. “The hysteretic damping model in vibration theory.” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 205 (1): 23–28. https://doi.org/10.1243/PIME_PROC_1991_205_086_02.
Deng, W., and I. B. Morozov. 2018. “Causality relations and mechanical interpretation of band-limited seismic attenuation.” Geophys. J. Int. 215 (3): 1622–1632. https://doi.org/10.1093/gji/ggy354.
Enelund, M., and P. Olsson. 1999. “Damping described by fading memory-analysis and application to fractional derivative models.” Int. J. Solids Struct. 36 (7): 939–970. https://doi.org/10.1016/S0020-7683(97)00339-9.
Faedo, N., S. Olaya, and J. V. Ringwood. 2017. “Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview.” IFAC J. Syst. Control 1 (Sep): 37–56. https://doi.org/10.1016/j.ifacsc.2017.07.001.
Falnes, J. 1995. “On non-causal impulse response functions related to propagating water waves.” Appl. Ocean Res. 17 (6): 379–389. https://doi.org/10.1016/S0141-1187(96)00007-7.
Findeisen, D. 2000. System dynamics and mechanical vibrations. Berlin: Springer.
Friedlander, F. G., and M. S. Joshi. 1998. Introduction to the theory of distributions. Cambridge, UK: Cambridge University Press.
Gulgowski, J., and T. P. Stefański. 2021. “Generalization of Kramers-Krönig relations for evaluation of causality in power-law media.” Commun. Nonlinear Sci. Numer. Simul. 95 (Apr): 105664. https://doi.org/10.1016/j.cnsns.2020.105664.
Ishikawa, S. 1987. “Generalized Hilbert transforms in tempered distributions.” Tokyo J. Math. 10 (1): 119–132. https://doi.org/10.3836/tjm/1270141796.
Kammler, D. W. 2008. A first course in Fourier analysis. Cambridge, UK: Cambridge University Press.
Keivan, A., B. M. Phillips, M. Ikenaga, and K. Ikago. 2017. “Causal realization of rate-independent linear damping for the protection of low-frequency structures.” J. Eng. Mech. 143 (9): 04017058. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001259.
Kelly, J. F., and R. J. McGough. 2009. “Fractal ladder models and power law wave equations.” J. Acoust. Soc. Am. 126 (4): 2072–2081. https://doi.org/10.1121/1.3204304.
King, F. W. 2009. Hilbert transforms. Cambridge, UK: Cambridge University Press.
Madsen, E. L., G. R. Frank, M. A. Hobson, S. Lin-Gibson, T. J. Hall, J. Jiang, and T. A. Stiles. 2008. “Instrument for determining the complex shear modulus of soft-tissue-like materials from 10 to 300 Hz.” Phys. Med. Biol. 53 (19): 5313–5342. https://doi.org/10.1088/0031-9155/53/19/004.
Makris, N. 1997a. “Causal hysteretic element.” J. Eng. Mech. 123 (11): 1209–1214. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1209).
Makris, N. 1997b. “Stiffness, flexibility, impedance, mobility, and hidden delta function.” J. Eng. Mech. 123 (11): 1202–1208. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1202).
Makris, N. 2017. “Basic response functions of simple inertoelastic and inertoviscous models.” J. Eng. Mech. 143 (11): 04017123. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001348.
Makris, N. 2018. “Time-response functions of mechanical networks with inerters and causality.” Meccanica 53 (9): 2237–2255. https://doi.org/10.1007/s11012-018-0822-6.
Makris, N., and E. Efthymiou. 2020. “Time-response functions of fractional derivative rheological models.” Rheol. Acta 59 (12): 849–873. https://doi.org/10.1007/s00397-020-01241-5.
Meza-Fajardo, K. C., and C. G. Lai. 2007. “Explicit causal relations between material damping ratio and phase velocity from exact solutions of the dispersion equations of linear viscoelasticity: Explicit relations between damping ratio and phase velocity.” Geophys. J. Int. 171 (3): 1247–1257. https://doi.org/10.1111/j.1365-246X.2007.03590.x.
Nussenzveig, H. M. 1972. Causality and dispersion relations. New York: Academic Press.
Pandey, J. N. 2011. The Hilbert transform of Schwartz distributions and applications. New York: Wiley.
Park, J., K. Jung, Y. H. Hong, H.-K. Kim, and H. S. Lee. 2014. “Exact enforcement of the causality condition on the aerodynamic impulse response function using a truncated Fourier series.” J. Eng. Mech. 140 (5): 04014017. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000721.
Pfaffelhuber, E. 1971. “Generalized impulse response and causality.” IEEE Trans. Circuit Theory 18 (2): 218–223. https://doi.org/10.1109/TCT.1971.1083260.
Pons, A. 2023. “The self-oscillation paradox in the flight motor of Drosophila melanogaster.” J. R. Soc. Interface 20 (208): 20230421. https://doi.org/10.1098/rsif.2023.0421.
Schwartz, L. 1957. Vol. 1–2 of Théorie des distributions. Paris: Hermann.
Shanbhag, S., and Y. M. Joshi. 2022. “Kramers–Kronig relations for nonlinear rheology. Part I: General expression and implications.” J. Rheol. 66 (5): 973–982. https://doi.org/10.1122/8.0000480.
Srivastava, A. 2021. “Causality and passivity: From electromagnetism and network theory to metamaterials.” Mech. Mater. 154 (Mar): 103710. https://doi.org/10.1016/j.mechmat.2020.103710.
Szabo, T. L. 1994. “Time domain wave equations for lossy media obeying a frequency power law.” J. Acoust. Soc. Am. 96 (1): 491–500. https://doi.org/10.1121/1.410434.
Titchmarsh, E. C. 1948. Introduction to the theory of Fourier integrals. Oxford, UK: Clarendon Press.
Waters, K. R., M. S. Hughes, J. Mobley, G. H. Brandenburger, and J. G. Miller. 2000. “On the applicability of Kramers–Krönig relations for ultrasonic attenuation obeying a frequency power law.” J. Acoust. Soc. Am. 108 (2): 556–563. https://doi.org/10.1121/1.429586.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 11November 2024

History

Received: Mar 17, 2024
Accepted: Jun 26, 2024
Published online: Sep 13, 2024
Published in print: Nov 1, 2024
Discussion open until: Feb 13, 2025

ASCE Technical Topics:

Authors

Affiliations

Assistant Professor, Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers Univ. of Technology, Gothenburg 41296, Sweden. ORCID: https://orcid.org/0000-0001-6102-1735. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share