Technical Papers
Aug 27, 2024

Microscopic and Macroscopic Creep Damage Behavior and Constitutive Model of Sandstone Subjected to Static and Dynamic Coupled Loading

Publication: Journal of Engineering Mechanics
Volume 150, Issue 11

Abstract

Understanding the instantaneous and creep mechanical responses of rocks subjected to the combined influence of static and dynamic loading is of great importance for designing underground works. This study developed an impact-disturbance creep loading apparatus and conducted a series of multistage impact-disturbance creep experiments on sandstones, varying static creep loads, and dynamic disturbances. The investigation analyzed specimen deformation, acoustic emission (AE) signals, and nuclear magnetic resonance (NMR) porosity changes to determine creep characteristics from microscopic damage to macroscopic failure. The experiment revealed the profound influence of dynamic disturbances on sandstone’s instantaneous and creep behavior. Initially, these disturbances induce specimen densification under low creep stress but exacerbate damage propagation beyond a certain creep stress threshold. Moreover, increased dynamic disturbance energy correlates with higher creep failure strains but lower long-term specimen strengths. AE monitoring highlighted the role of dynamic disturbances in promoting tensile failure and the dominance of tensile cracks throughout the creep process. Notably, impact disturbances cause a significant increase in specimen porosity postcreep failure, especially in large pores. To capture sandstone creep behavior comprehensively under dynamic disturbance, a viscoplastic disturbance-damage creep model is proposed by integrating a disturbance-damage instantaneous element and dynamic-damage viscous element. The model can effectively describe sandstone creep behavior under dynamic disturbance conditions, offering valuable insights for underground work design.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data and models generated during the study are available from the corresponding author upon request.

Acknowledgments

The research work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52378410, U21A20153, and 42077246), the Knowledge Innovation Program of Wuhan-Shuguang Project (Grant No. 2023010201020246), and the Fundamental Research Funds for the Central Universities (Grant No. 2042023kf0165), for which the authors are grateful.

References

Adams, G. R., and A. J. Jager. 1980. “Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold-mines.” J. S. Afr. Inst. Min. Metall. 80 (6): 204–209.
Bai, Y., R. Shan, X. Tong, T. Han, and H. Dou. 2021. “Study on the effect of dynamic disturbance on creep behavior of frozen fractured red sandstone.” Mech. Time-Depend. Mater. 26 (2): 463–483. https://doi.org/10.1007/s11043-021-09496-y.
Brantut, N., P. Baud, M. J. Heap, and P. G. Meredith. 2012. “Micromechanics of brittle creep in rocks.” J. Geophys. Res.: Solid Earth 117 (B8): 12. https://doi.org/10.1029/2012JB009299.
Brantut, N., M. J. Heap, P. G. Meredith, and P. Baud. 2013. “Time-dependent cracking and brittle creep in crustal rocks: A review.” J. Struct. Geol. 52 (Jul): 17–43. https://doi.org/10.1016/j.jsg.2013.03.007.
Che, Y. X., Y. J. Song, J. X. Ren, J. X. Chen, X. X. Guo, H. Tan, and M. L. Hu. 2021. “Creep characteristics of different saturated states of red sandstone after freeze-thaw cycles.” Geofluids 2021 (1): 6622380. https://doi.org/10.1155/2021/6622380.
Chen, C., T. Xu, M. J. Heap, and P. Baud. 2018a. “Influence of unloading and loading stress cycles on the creep behavior of Darley Dale sandstone.” Int. J. Rock Mech. Min. Sci. 112 (Dec): 55–63. https://doi.org/10.1016/j.ijrmms.2018.09.002.
Chen, C. F., T. Xu, and S. H. Li. 2018b. “Microcrack evolution and associated deformation and strength properties of sandstone samples subjected to various strain rates.” Minerals 8 (6): 231. https://doi.org/10.3390/min8060231.
Cheng, Y., L. N. Y. Wong, and V. Maruvanchery. 2016. “Transgranular crack nucleation in Carrara marble of brittle failure.” Rock Mech. Rock Eng. 49 (8): 3069–3082. https://doi.org/10.1007/s00603-016-0976-2.
Chu, Z. F., Z. J. Wu, Q. S. Liu, L. Weng, Z. Y. Wang, and Y. Zhou. 2021. “Evaluating the microstructure evolution behaviors of saturated sandstone using NMR testing under uniaxial short-term and creep compression.” Rock Mech. Rock Eng. 54 (9): 4905–4927. https://doi.org/10.1007/s00603-021-02538-4.
Chu, Z. F., Z. J. Wu, Z. Y. Wang, L. Weng, Q. S. Liu, and L. F. Fan. 2022. “Micro-mechanism of brittle creep in saturated sandstone and its mechanical behavior after creep damage.” Int. J. Rock Mech. Min. Sci. 149 (Jan): 104994. https://doi.org/10.1016/j.ijrmms.2021.104994.
Cook, N. G. W. 1976. “Seismicity associated with mining.” Eng. Geol. 10 (2–4): 99–122. https://doi.org/10.1016/0013-7952(76)90015-6.
Counter, D. 2014. “Kidd Mine—Dealing with the issues of deep and high stress mining—Past, present and future.” In Proc., 7th Int. Conf. on Deep and High Stress Mining, edited by M. Hudyma and Y. Potvin, 3–22. Crawley, WA, Australia: Australian Centre for Geomechanics. https://doi.org/10.36487/ACG_rep/1410_0.1_Counter.
Cui, X., J. Li, X. Niu, and S. Wang. 2007. “Experimental study on rheological regularity and constitutive relationship of rock under disturbing loads.” Chin. J. Rock Mech. Eng. 26 (9): 1875–1881. https://doi.org/10.3321/j.issn:1000-6915.2007.09.020.
Cui, X., and C. She. 2011. “Study of viscoplastic strain rate method to quickly determine long-term strength of rock.” Supplement, Chin. J. Rock Mech. Eng. 30 (S2): 3899–3904.
Dai, F., Y. Xu, T. Zhao, N. W. Xu, and Y. Liu. 2016. “Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests.” Int. J. Rock Mech. Min. Sci. 88 (Oct): 49–60. https://doi.org/10.1016/j.ijrmms.2016.07.003.
Ding, G. S., J. F. Liu, L. Wang, Z. D. Wu, and Z. W. Zhou. 2020. “Discussion on determination method of long-term strength of rock salt.” Energies 13 (10): 2460. https://doi.org/10.3390/en13102460.
Du, H. B., F. Dai, A. Li, and R. C. Jiang. 2023. “Dynamic responses and failure behaviors of saturated rocks subjected to repetitive compression–shear impacting.” Rock Mech. Rock Eng. 56 (7): 4697–4714. https://doi.org/10.1007/s00603-023-03300-8.
Du, K., M. Tao, X. B. Li, and J. Zhou. 2016. “Experimental study of slabbing and rockburst induced by true–triaxial unloading and local dynamic disturbance.” Rock Mech. Rock Eng. 49 (9): 3437–3453. https://doi.org/10.1007/s00603-016-0990-4.
Eberhardt, E. 2001. “Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face.” Int. J. Rock Mech. Min. Sci. 38 (4): 499–518. https://doi.org/10.1016/S1365-1609(01)00017-X.
Fabre, G., and F. Pellet. 2006. “Creep and time-dependent damage in argillaceous rocks.” Int. J. Rock Mech. Min. Sci. 43 (6): 950–960. https://doi.org/10.1016/j.ijrmms.2006.02.004.
Feng, P., F. Dai, Y. Liu, N.-W. Xu, and H.-B. Du. 2019. “Coupled effects of static-dynamic strain rates on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures.” Eng. Fract. Mech. 207 (Feb): 237–253. https://doi.org/10.1016/j.engfracmech.2018.12.033.
Feng, P., J. Zhao, F. Dai, M. Wei, and B. Liu. 2022. “Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression.” Acta Geotech. 17 (5): 1765–1784. https://doi.org/10.1007/s11440-021-01322-6.
Feng, X., et al. 2012. “Studies on the evolution process of rockbursts in deep tunnels.” J. Rock Mech. Geotech. Eng. 4 (4): 289–295. https://doi.org/10.3724/SP.J.1235.2012.00289.
Fu, Z. L., Y. R. Zheng, and Y. X. Liu. 2008. “Rock bending creep and disturbance effects.” Supplement, J. Cent. South Univ. Technol. 15 (S1): 438–442. https://doi.org/10.1007/s11771-008-0395-y.
Gao, Y., H. Xiao, B. Wang, and Y. Zhang. 2008. “Rheological test of sandstone with perturbation effect and its constitutive relationship study.” Chin. J. Rock Mech. Eng. 27 (1): 3180–3185.
Griggs, D. 1939. “Creep of rocks.” J. Geol. 47 (3): 225–251. https://doi.org/10.1086/624775.
Hou, R. B., K. Zhang, J. Tao, X. R. Xue, and Y. L. Chen. 2019. “A nonlinear creep damage coupled model for rock considering the effect of initial damage.” Rock Mech. Rock Eng. 52 (5): 1275–1285. https://doi.org/10.1007/s00603-018-1626-7.
ISRM. 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Edited by R. Ulusay and J. A. Hudson. Ankara, Turkey: International Society for Rock Mechanics Turkish National Group.
Ji, D. L., H. B. Zhao, and S. K. Vanapalli. 2023. “Damage evolution and failure mechanism of coal sample induced by impact loading under different constraints.” Nat. Resour. Res. 32 (2): 619–647. https://doi.org/10.1007/s11053-022-10156-2.
Jia, H. L., F. Zi, G. S. Yang, G. Y. Li, Y. J. Shen, Q. Sun, and P. Y. Yang. 2020. “Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone.” Rock Mech. Rock Eng. 53 (2): 967–974. https://doi.org/10.1007/s00603-019-01943-0.
Jiang, Q. H., Y. J. Qi, Z. J. Wang, and C. B. Zhou. 2013. “An extended Nishihara model for the description of three stages of sandstone creep.” Geophys. J. Int. 193 (2): 841–854. https://doi.org/10.1093/gji/ggt028.
Kranz, R. L. 1983. “Microcracks in rocks: A review.” Tectonophysics 100 (1–3): 449–480. https://doi.org/10.1016/0040-1951(83)90198-1.
Lennartz-Sassinek, S., I. G. Main, M. Zaiser, and C. C. Graham. 2014. “Acceleration and localization of subcritical crack growth in a natural composite material.” Phys. Rev. E 90 (5): 9. https://doi.org/10.1103/PhysRevE.90.052401.
Li, S., W. C. Zhu, L. L. Niu, K. Guan, and T. Xu. 2021. “Experimental study on creep of double-rock samples disturbed by dynamic impact.” Int. J. Rock Mech. Min. Sci. 146 (Oct): 15. https://doi.org/10.1016/j.ijrmms.2021.104895.
Li, S. H., W. C. Zhu, L. L. Niu, M. Yu, and C. F. Chen. 2018. “Dynamic characteristics of green sandstone subjected to repetitive impact loading: Phenomena and mechanisms.” Rock Mech. Rock Eng. 51 (6): 1921–1936. https://doi.org/10.1007/s00603-018-1449-6.
Li, X. B., F. Q. Gong, M. Tao, L. J. Dong, K. Du, C. D. Ma, Z. L. Zhou, and T. B. Yin. 2017. “Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review.” J. Rock Mech. Geotech. Eng. 9 (4): 767–782. https://doi.org/10.1016/j.jrmge.2017.04.004.
Li, X. B., Z. L. Zhou, T. S. Lok, L. Hong, and T. B. Yin. 2008. “Innovative testing technique of rock subjected to coupled static and dynamic loads.” Int. J. Rock Mech. Min. Sci. 45 (5): 739–748. https://doi.org/10.1016/j.ijrmms.2007.08.013.
Li, Y. S., and C. C. Xia. 2000. “Time-dependent tests on intact rocks in uniaxial compression.” Int. J. Rock Mech. Min. Sci. 37 (3): 467–475. https://doi.org/10.1016/S1365-1609(99)00073-8.
Lian, L., H. Jingsi, L. Yanzhi, W. Haitao, and T. Qinghua. 2018. “Experimental study on dynamic mechanical properties of ordinary concrete under drop hammer impact loading.” J. Railway Sci. Eng. 15 (6): 1415–1423. https://doi.org/10.19713/j.cnki.43-1423/u.2018.06.007.
Lippmann-Pipke, J., J. Erzinger, M. Zimmer, C. Kujawa, M. Boettcher, E. Van Heerden, A. Bester, H. Moller, N. A. Stroncik, and Z. Reches. 2011. “Geogas transport in fractured hard rock—Correlations with mining seismicity at 3.54 km depth, TauTona gold mine, South Africa.” Appl. Geochem. 26 (12): 2134–2146. https://doi.org/10.1016/j.apgeochem.2011.07.011.
Liu, K., Q. B. Zhang, G. Wu, J. C. Li, and J. Zhao. 2019a. “Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar.” Rock Mech. Rock Eng. 52 (7): 2175–2195. https://doi.org/10.1007/s00603-018-1691-y.
Liu, X., S. Li, Y. Zhou, Y. Li, and W. Wang. 2020. “Study on creep behavior and long-term strength of argillaceous siltstone under high stresses.” [In Chinese.] Chin. J. Rock Mech. Eng. 39 (1): 138–146. https://doi.org/10.13722/j.cnki.jrme.2019.0279.
Liu, Y., F. Dai, and P. D. Pei. 2021. “A wing-crack extension model for tensile response of saturated rocks under coupled static-dynamic loading.” Int. J. Rock Mech. Min. Sci. 146 (Oct): 104893. https://doi.org/10.1016/j.ijrmms.2021.104893.
Liu, Y., L. Weng, and Z. F. Chu. 2022. “Numerical investigation of rock dynamic fragmentation during rockslides using a coupled 3D FEM-DEM method.” J. Mountain Sci. 19 (4): 1051–1069. https://doi.org/10.1007/s11629-021-6930-0.
Liu, Z., C. Zhou, B. Li, L. Zhang, and Y. Liang. 2019b. “Effects of grain dissolution–diffusion sliding and hydro-mechanical interaction on the creep deformation of soft rocks.” Acta Geotech. 15 (5): 1219–1229. https://doi.org/10.1007/s11440-019-00823-9.
Ma, S. S., W. Z. Chen, and W. S. Zhao. 2021. “Effects of axial static stress and confining pressure on the dynamic compressive behaviours of granite.” Eur. J. Environ. Civ. Eng. 25 (5): 795–812. https://doi.org/10.1080/19648189.2018.1547665.
Malan, D. F. 1999. “Time-dependent behaviour of deep level tabular excavations in hard rock.” Rock Mech. Rock Eng. 32 (2): 123–155. https://doi.org/10.1007/s006030050028.
Malan, D. F., U. W. Vogler, and K. Drescher. 1997. “Time-dependent behaviour of hard rock in deep level gold mines.” J. S. Afr. Inst. Min. Metall. 97 (3): 135–147. https://doi.org/10.1016/S0148-9062(98)00171-5.
Maranini, E., and M. Brignoli. 1999. “Creep behaviour of a weak rock: Experimental characterization.” Int. J. Rock Mech. Min. Sci. 36 (1): 127–138. https://doi.org/10.1016/S0148-9062(98)00171-5.
Wang, M., J. L. Shang, and L. F. Fan. 2022. “Combined static–dynamic loading effect on the wave transmission properties in rock masses with macrojoint and microdefect.” Rock Mech. Rock Eng. 55 (12): 7747–7764. https://doi.org/10.1007/s00603-022-03057-6.
Weng, L., X. B. Li, A. Taheri, Q. H. Wu, and X. F. Xie. 2018a. “Fracture evolution around a cavity in brittle rock under uniaxial compression and coupled static-dynamic loads.” Rock Mech. Rock Eng. 51 (2): 531–545. https://doi.org/10.1007/s00603-017-1343-7.
Weng, L., Z. J. Wu, and X. B. Li. 2018b. “Mesodamage characteristics of rock with a pre-cut opening under combined static–dynamic loads: A nuclear magnetic resonance (NMR) investigation.” Rock Mech. Rock Eng. 51 (8): 2339–2354. https://doi.org/10.1007/s00603-018-1483-4.
Willard, R. J., and J. R. McWilliams. 1969. “Effect of loading rate on transgranular-intergranular fracture in charcoal gray granite.” Int. J. Rock Mech. Min. Sci. 6 (4): 415–421. https://doi.org/10.1016/0148-9062(69)90042-4.
Wu, Z. J., Z. Y. Wang, L. F. Fan, L. Weng, and Q. S. Liu. 2021. “Micro-failure process and failure mechanism of brittle rock under uniaxial compression using continuous real-time wave velocity measurement.” J. Cent. South Univ. 28 (2): 556–571. https://doi.org/10.1007/s11771-021-4621-1.
Wu, Z. J., P. L. Zhang, L. F. Fan, and Q. S. Liu. 2019. “Debris characteristics and scattering pattern analysis of reinforced concrete slabs subjected to internal blast loads—A numerical study.” Int. J. Impact Eng. 131 (Sep): 1–16. https://doi.org/10.1016/j.ijimpeng.2019.04.024.
Xu, T., G. L. Zhou, M. J. Heap, S. Q. Yang, H. Konietzky, and P. Baud. 2018. “The modeling of time-dependent deformation and fracturing of brittle rocks under varying confining and pore pressures.” Rock Mech. Rock Eng. 51 (10): 3241–3263. https://doi.org/10.1007/s00603-018-1491-4.
Xue, Y. C., T. Xu, W. C. Zhu, M. J. Heap, Z. Heng, and X. W. Wang. 2021. “Full-field quantification of time-dependent and -independent deformation and fracturing of double-notch flawed rock using digital image correlation.” Geomech. Geophys. Geo.-Energy Geo-Resour. 7 (4): 15. https://doi.org/10.1007/s40948-021-00302-0.
Yan, Z. L., F. Dai, Y. Liu, Y. Z. Li, and W. You. 2021. “Experimental investigation of pre-flawed rocks under combined static-dynamic loading: Mechanical responses and fracturing characteristics.” Int. J. Mech. Sci. 211 (Dec): 106755. https://doi.org/10.1016/j.ijmecsci.2021.106755.
Yan, Z. L., W. Wu, F. Dai, and Y. Liu. 2023. “Dynamic mechanical response and damage constitutive model of multi-flawed rocks under high strain rates.” Rock Mech. Rock Eng. 56 (6): 4405–4425. https://doi.org/10.1007/s00603-023-03289-0.
Yang, Q. H., L. F. Fan, and X. L. Du. 2022a. “Determination of wave propagation coefficients of the granite by high-speed digital image correlation (HDIC).” Rock Mech. Rock Eng. 55 (7): 4497–4505. https://doi.org/10.1007/s00603-022-02894-9.
Yang, W. D., R. P. Gamage, C. C. Huang, G. Y. Luo, J. J. Guo, and S. G. Wang. 2018. “Loading history effect on creep deformation of rock.” Energies 11 (6): 19. https://doi.org/10.3390/en11061462.
Yang, Z., W. Zhu, K. Guan, B. Yan, and H. Jia. 2022b. “Influence of dynamic disturbance on rock creep from time, space and energy aspects.” Geomatics Nat. Hazards Risk 13 (1): 1065–1086. https://doi.org/10.1080/19475705.2022.2064775.
Yao, W., K. Xia, and A. K. Jha. 2019. “Experimental study of dynamic bending failure of Laurentian granite: Loading rate and pre-load effects.” Can. Geotech. J. 56 (2): 228–235. https://doi.org/10.1139/cgj-2017-0707.
You, W., F. Dai, Y. Liu, H. Du, and R. Jiang. 2021. “Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state.” Int. J. Min. Sci. Technol. 31 (5): 913–926. https://doi.org/10.1016/j.ijmst.2021.06.003.
You, W., F. Dai, Y. Liu, and Z. Yan. 2022. “Effect of confining pressure and strain rate on mechanical behaviors and failure characteristics of sandstone containing a pre-existing flaw.” Rock Mech. Rock Eng. 55 (4): 2091–2109. https://doi.org/10.1007/s00603-022-02772-4.
Zhao, K., D. X. Yang, P. Zeng, C. Gong, X. J. Wang, and W. Zhong. 2021. “Accelerating creep stage of red sandstone expressed and quantitatively identified based on acoustic emission information.” Rock Mech. Rock Eng. 54 (9): 4867–4888. https://doi.org/10.1007/s00603-021-02529-5.
Zhao, Y. L., L. Y. Zhang, W. J. Wang, W. Wan, and W. H. Ma. 2018. “Separation of elastoviscoplastic strains of rock and a nonlinear creep model.” Int. J. Geomech. 18 (1): 18. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001033.
Zhou, L., Z. Zhu, Y. Dong, and P. Ying. 2017. “Dynamic response of cracks in tunnels under impact loading of medium-low speed.” [In Chinese.] Chin. J. Rock Mech. Eng. 36 (6): 1363–1372. https://doi.org/10.13722/j.cnki.jrme.2016.1403.
Zhou, Z., X. Cai, X. Li, W. Cao, and X. Du. 2020. “Dynamic response and energy evolution of sandstone under coupled static–dynamic compression: Insights from experimental study into deep rock engineering applications.” Rock Mech. Rock Eng. 53 (3): 1305–1331. https://doi.org/10.1007/s00603-019-01980-9.
Zhu, W., S. Li, S. Li, and L. L. Niu. 2019. “Influence of dynamic disturbance on the creep of sandstone: An experimental study.” Rock Mech. Rock Eng. 52 (4): 1023–1039. https://doi.org/10.1007/s00603-018-1642-7.
Zhu, W., B. Yan, X. Liu, Z. Yang, and K. Guan. 2022. “Rock creep deformation triggered by dynamic disturbance: Numerical simulation.” Int. J. Geomech. 22 (7): 14. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002424.
Zhu, W. C., Z. H. Li, L. Zhu, and C. A. Tang. 2010. “Numerical simulation on rockburst of underground opening triggered by dynamic disturbance.” Tunnelling Underground Space Technol. 25 (5): 587–599. https://doi.org/10.1016/j.tust.2010.04.004.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 11November 2024

History

Received: Nov 4, 2023
Accepted: Jun 18, 2024
Published online: Aug 27, 2024
Published in print: Nov 1, 2024
Discussion open until: Jan 27, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China; Professor, State Key Laboratory of Water Resources Engineering and Management, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Zhaofei Chu [email protected]
Associate Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China (corresponding author). Email: [email protected]
Associate Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Professor, College of Resources and Safety Engineering, Chongqing Univ., Chongqing 400044, China. Email: [email protected]
Shijun Zhou, Ph.D. [email protected]
Engineer, Chongqing Zhonghuan Construction Co., Ltd., No. 2 Clothing City Ave., Yubei District, Chongqing 401120, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share