Technical Papers
Jan 31, 2024

Nonlinear Vibration of FG Graphene Origami Auxetic Sandwich Plate Including Smart Hybrid Nanocomposite Sheets

Publication: Journal of Engineering Mechanics
Volume 150, Issue 4

Abstract

Negative Poisson’s ratio (NPR) auxetic metamaterials are attracting significant attention because of their peculiar and interesting mechanical features. Using geometrically von-Karman nonlinear factors and Mindlin plate theory, a smart multiscale hybrid (GPL/CF/PVDF) sandwich plate with a unique two-type functionally graded graphene origami auxetic (FG-GOA) is investigated here for its nonlinear vibrational behavior. The present properties of the electro-elastic layers were established using the Halpin–Tsai (HT) model and rule of mixing (ROM). Hamilton’s principle, Maxwell’s law, and the nonlinear factors of von Karman are used to determine the governing equations for the piezo plate. The subsequent step is to use the generalized differential quadrature (GDQ) technique to discretize the equations of motion for the sandwich plate. Results show that smart FG-GOA plates exhibit hardening nonlinearity. Nonlinear ratios of frequencies and natural frequency of the intelligent plate are also measured by electric voltage, the weight fraction of GPL, and the volume fraction of carbon fibers. Furthermore, the effect of the porosity coefficient, GOri folding degree, the FG-GOA core height, and the smart hybrid nanocomposite (SHNC) layer’s height on frequency ratio and nonlinear natural frequency were calculated and displayed for each figure.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

Asghari, M., and E. Taati. 2013. “A size-dependent model for functionally graded micro-plates for mechanical analyses.” J. Vib. Control 19 (11): 1614–1632. https://doi.org/10.1177/1077546312442563.
Balamurugan, V., M. Ganapathi, and T. K. Varadan. 1996. “Nonlinear dynamic instability of laminated composite plates using finite element method.” Comput. Struct. 60 (1): 125–130. https://doi.org/10.1016/0045-7949(95)00368-1.
Billon, K., I. Zampetakis, F. Scarpa, M. Ouisse, E. Sadoulet-Reboul, M. Collet, A. Perriman, and A. Hetherington. 2017. “Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials.” Compos. Struct. 160 (Jan): 1042–1050. https://doi.org/10.1016/j.compstruct.2016.10.121.
Chen, D., J. Yang, and S. Kitipornchai. 2017. “Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams.” Compos. Sci. Technol. 142 (Apr): 235–245. https://doi.org/10.1016/j.compscitech.2017.02.008.
Chen, J., and Q.-S. Li. 2017. “Nonlinear aeroelastic flutter and dynamic response of composite laminated cylindrical shell in supersonic air flow.” Compos. Struct. 168 (May): 474–484. https://doi.org/10.1016/j.compstruct.2017.02.019.
Chen, Y., N. Jiang, and H. Hu. 2019. “Mechanical modeling of an auxetic tubular braided structure: Experimental and numerical analyses.” Int. J. Mech. Sci. 160 (Sep): 182–191. https://doi.org/10.1016/j.ijmecsci.2019.06.041.
Chen, Y. L., X. T. Wang, and L. Ma. 2020. “Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials.” Polym. Test. 81 (Jan): 106189. https://doi.org/10.1016/j.polymertesting.2019.106189.
Chu, H.-N., and G. Herrmann. 1956. “Influence of large amplitudes on free flexural vibrations of rectangular elastic plates.” J. Appl. Mech. 23 (4): 532–540. https://doi.org/10.1115/1.4011396.
Cong, P. H., and N. D. Duc. 2021. “Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments.” Thin-Walled Struct. 163 (Jun): 107748. https://doi.org/10.1016/j.tws.2021.107748.
Daneshkhah, E., and E. Carrera. 2023. “Advanced finite elements for geometrically nonlinear analysis of rectangular plates under various in-plane loadings accounting for the boundary conditions of the stiffeners.” J. Eng. Mech. 149 (3): 04022117. https://doi.org/10.1061/JENMDT.EMENG-6844.
Dong, Y., T. Liu, Z. Li, and P. Qiao. 2023. “DeepFEM: A novel element-based deep learning approach for solving nonlinear partial differential equations in computational solid mechanics.” J. Eng. Mech. 149 (2): 04022102. https://doi.org/10.1061/JENMDT.EMENG-6643.
Ebrahimi, F., and M. R. Barati. 2016a. “A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures.” Int. J. Eng. Sci. 107 (Oct): 183–196. https://doi.org/10.1016/j.ijengsci.2016.08.001.
Ebrahimi, F., and M. R. Barati. 2016b. “Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium.” J. Braz. Soc. Mech. Sci. Eng. 39 (3): 937–952. https://doi.org/10.1007/s40430-016-0551-5.
Ebrahimi, F., and M. R. Barati. 2016c. “Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field.” Appl. Phys. A 122 (4): 451. https://doi.org/10.1007/s00339-016-0001-3.
Ebrahimi, F., and A. Dabbagh. 2017. “On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory.” Compos. Struct. 162 (Feb): 281–293. https://doi.org/10.1016/j.compstruct.2016.11.058.
Ebrahimi, F., and A. Dabbagh. 2019a. Wave propagation analysis of smart nanostructures. Boca Raton, FL: CRC Press.
Ebrahimi, F., and A. Dabbagh. 2019b. “Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study.” Eur. Phys. J. Plus 134 (5): 1–15. https://doi.org/10.1140/epjp/i2019-12594-1.
Ebrahimi, F., M. Nouraei, and A. Dabbagh. 2020. “Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates.” Eng. Comput. 36 (3): 879–895. https://doi.org/10.1007/s00366-019-00737-w.
Ebrahimi, F., and A. Rastgoo. 2009. “Nonlinear vibration of smart circular functionally graded plates coupled with piezoelectric layers.” Int. J. Mech. Mater. Des. 5 (2): 157–165. https://doi.org/10.1007/s10999-008-9091-1.
Ebrahimi, F., and M. Reza Barati. 2016. “Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams.” Eur. Phys. J. Plus 131 (7): 1–14. https://doi.org/10.1140/epjp/i2016-16238-8.
Ebrahimi, F., and M. Zia. 2015. “Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities.” Acta Astronaut. 116 (Nov-Dec): 117–125. https://doi.org/10.1016/j.actaastro.2015.06.014.
Evans, K. E. 1991. “Auxetic polymers: A new range of materials.” Endeavour 15 (4): 170–174.
Flamourakis, G., I. Spanos, Z. Vangelatos, P. Manganas, L. Papadimitriou, C. Grigoropoulos, A. Ranella, and M. Farsari. 2020. “Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications.” Macromol. Mater. Eng. 305 (7): 1–9. https://doi.org/10.1002/mame.202070016.
Geim, A. K., and K. S. Novoselov. 2007. “The rise of grapheme.” Nat. Mater. 6 (3): 183–191. https://doi.org/10.1038/nmat1849.
Ghorbanpour Arani, A., M. Jamali, A. H. Ghorbanpour-Arani, R. Kolahchi, and M. Mosayyebi. 2017. “Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects.” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231 (2): 387–403.
Ha, N. H., N. C. Tan, D. G. Ninh, N. C. Hung, and D. V. Dao. 2023. “Dynamical and chaotic analyses of single-variable-edge cylindrical panels made of sandwich auxetic honeycomb core layer in thermal environment.” Thin-Walled Struct. 183 (Feb): 110300. https://doi.org/10.1016/j.tws.2022.110300.
Hebali, H., A. Tounsi, M. S. A. Houari, A. Bessaim, and E. A. A. Bedia. 2014. “New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates.” J. Eng. Mech. 140 (2): 374–383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.
Hosseini, M., M. Mahinzare, and M. Ghadiri. 2018. “Magnetic field effect on vibration of a rotary smart size-dependent two-dimensional porous functionally graded nanoplate.” J. Intell. Mater. Syst. Struct. 29 (14): 2885–2901. https://doi.org/10.1177/1045389X18781034.
Hua, L., and K. Y. Lam. 2001. “Orthotropic influence on frequency characteristics of a rotating composite laminated conical shell by the generalized differential quadrature method.” Int. J. Solids Struct. 38 (22–23): 3995–4015. https://doi.org/10.1016/S0020-7683(00)00272-9.
Hwang, J., T. Yoon, S. H. Jin, J. Lee, T. S. Kim, S. H. Hong, and S. Jeon. 2013. “Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process.” Adv. Mater. 25 (46): 6724–6729. https://doi.org/10.1002/adma.201302495.
Ilkhani, M. R., and S. H. Hosseini-Hashemi. 2016. “Size dependent vibro-buckling of rotating beam based on modified couple stress theory.” Compos. Struct. 143 (May): 75–83. https://doi.org/10.1016/j.compstruct.2016.02.013.
Jabbari, M., A. Mojahedin, and E. F. Joubaneh. 2015. “Thermal buckling analysis of circular plates made of piezoelectric and saturated porous functionally graded material layers.” J. Eng. Mech. 141 (4): 04014148. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000872.
Jiang, L., and H. Hu. 2017. “Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect.” Compos. Struct. 169 (Jun): 62–68. https://doi.org/10.1016/j.compstruct.2016.10.018.
Kinloch, I. A., J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan. 2018. “Composites with carbon nanotubes and graphene: An outlook.” Science 362 (6414): 547–553. https://doi.org/10.1126/science.aat7439.
Liew, K. M., Y. Xiang, S. Kitipornchai, and C. Wang. 1998. Vibration of Mindlin plates: Programming the p-version Ritz method. Amsterdam, Netherlands: Elsevier.
Liu, C., L. L. Ke, J. Yang, S. Kitipornchai, and Y. S. Wang. 2018. “Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory.” Mech. Adv. Mater. Struct. 25 (15–16): 1252–1264. https://doi.org/10.1080/15376494.2016.1149648.
Mahinzare, M., M. J. Alipour, S. A. Sadatsakkak, and M. Ghadiri. 2019. “A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate.” Mech. Syst. Sig. Process. 115 (Jan): 323–337. https://doi.org/10.1016/j.ymssp.2018.05.043.
Mahinzare, M., M. M. Barooti, and M. Ghadiri. 2018a. “Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment.” Microsyst. Technol. 24: 1695–1711. https://doi.org/10.1007/s00542-017-3544-0.
Mahinzare, M., K. Mohammadi, and M. Ghadiri. 2021. “A nonlocal strain gradient theory for vibration and flutter instability analysis in rotary SWCNT with conveying viscous fluid.” Waves Random Complex Medium 31 (2): 305–330. https://doi.org/10.1080/17455030.2019.1584420.
Mahinzare, M., H. Ranjbarpur, and M. Ghadiri. 2018b. “Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate.” Mech. Syst. Sig. Process. 100 (Feb): 188–207. https://doi.org/10.1016/j.ymssp.2017.07.041.
Mahinzare, M., A. Rastgoo, and F. Ebrahimi. 2023a. Magnetic field effects on wave dispersion of piezo-electrically actuated auxetic sandwich shell via GPL reinforcement. Berlin: Springer.
Mahinzare, M., A. Rastgoo, and F. Ebrahimi. 2023b. “On nonlinear vibration of piezo-electrically multi-scale hybrid nanocomposite sandwich plate including an auxetic core based on HSDT.” Int. J. Struct. Stab. Dyn. https://doi.org/10.1142/S021945542450069X.
Mashat, D. S., E. Carrera, A. M. Zenkour, S. A. Al Khateeb, and M. Filippi. 2014. “Free vibration of FGM layered beams by various theories and finite elements.” Composites, Part B 59 (Mar): 269–278. https://doi.org/10.1016/j.compositesb.2013.12.008.
Mizzi, L., J. N. Grima, R. Gatt, and D. Attard. 2019. “Analysis of the deformation behavior and mechanical properties of slit-perforated auxetic metamaterials.” Phys. Status Solidi B 256 (1): 1–15. https://doi.org/10.1002/pssb.201800153.
Mizzi, L., E. Salvati, A. Spaggiari, J. C. Tan, and A. M. Korsunsky. 2020. “Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting.” Int. J. Mech. Sci. 167 (Feb): 105242. https://doi.org/10.1016/j.ijmecsci.2019.105242.
Mohammadi, K., M. Mahinzare, K. Ghorbani, and M. Ghadiri. 2018. “Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory.” Microsyst. Technol. 24 (Feb): 1133–1146. https://doi.org/10.1007/s00542-017-3476-8.
Mohammadi, K., M. Mahinzare, A. Rajabpour, and M. Ghadiri. 2017. “Comparison of modeling a conical nanotube resting on the Winkler elastic foundation based on the modified couple stress theory and molecular dynamics simulation.” Eur. Phys. J. Plus 132 (3): 115. https://doi.org/10.1140/epjp/i2017-11395-x.
Naebe, M., and K. Shirvanimoghaddam. 2016. “Functionally graded materials: A review of fabrication and properties.” Appl. Mater. Today 5 (Dec): 223–245. https://doi.org/10.1016/j.apmt.2016.10.001.
Naskar, S., K. B. Shingare, S. Mondal, and T. Mukhopadhyay. 2022. “Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: A unified size-dependent semi-analytical framework.” Mech. Syst. Sig. Process. 169 (Apr): 108757. https://doi.org/10.1016/j.ymssp.2021.108757.
Neves, A. M. A., A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, and C. M. Soares. 2013. “Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique.” Composites, Part B 44 (1): 657–674. https://doi.org/10.1016/j.compositesb.2012.01.089.
Nguyen, D. D., and C. H. Pham. 2018. “Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs.” J. Sandwich Struct. Mater. 20 (6): 692–717. https://doi.org/10.1177/1099636216674729.
Pagani, A., and E. Carrera. 2018. “Unified formulation of geometrically nonlinear refined beam theories.” Mech. Adv. Mater. Struct. 25 (1): 15–31. https://doi.org/10.1080/15376494.2016.1232458.
Phi, L. T. M., T.-T. Nguyen, and J. Lee. 2021. “Free vibration of thin-walled open-section beams with functionally graded materials along the contour direction.” Thin-Walled Struct. 159 (Feb): 107146. https://doi.org/10.1016/j.tws.2020.107146.
Quan, T. Q., V. M. Anh, V. Mahesh, and N. D. Duc. 2022. “Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate.” Mech. Adv. Mater. Struct. 29 (1): 127–137. https://doi.org/10.1080/15376494.2020.1752864.
Quan, T. Q., and N. D. Duc. 2022. “Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading.” Thin-Walled Struct. 170 (Jan): 108606. https://doi.org/10.1016/j.tws.2021.108606.
Rachid, E. K., E. B. Khalid, and B. Rhali. 2014. “A semi-analytical study of geometrically nonlinear free axisymmetric vibrations of thin circular functionally graded plates using iterative and explicit analytical solution.” App. Mech. Mater. 704 (Feb): 131–136. https://doi.org/10.4028/www.scientific.net/AMM.704.131.
Sadeghzadeh, S., and M. Mahinzare. 2022. “Nonlocal strain gradient theory for dynamical modeling of a thermo-piezo-magnetically actuated spinning inhomogeneous nanoshell.” Mech. Based Des. Struct. Mach. 50 (6): 1932–1953. https://doi.org/10.1080/15397734.2020.1766495.
Saleh, B., J. Jiang, R. Fathi, T. Al-hababi, Q. Xu, L. Wang, D. Song, and A. Ma. 2020. “30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges.” Composites, Part B 201 (Nov): 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
Sh, E. L., S. Kattimani, and M. Vinyas. 2022. “Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates.” Archiv. Civ. Mech. Eng. 22 (1): 1–26. https://doi.org/10.1007/s43452-021-00357-6.
Shariyat, M., M. Khaghani, and S. M. H. Lavasani. 2010. “Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties.” Eur. J. Mech. A. Solids 29 (3): 378–391. https://doi.org/10.1016/j.euromechsol.2009.10.007.
Shojaeefard, M. H., H. S. Googarchin, M. Ghadiri, and M. Mahinzare. 2017. “Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT.” Appl. Math. Modell. 50 (Oct): 633–655. https://doi.org/10.1016/j.apm.2017.06.022.
Shojaeefard, M. H., M. Mahinzare, H. Safarpour, H. S. Googarchin, and M. Ghadiri. 2018a. “Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition.” Appl. Math. Modell. 61 (Sep): 255–279. https://doi.org/10.1016/j.apm.2018.04.015.
Shojaeefard, M. H., H. Saeidi Googarchin, M. Mahinzare, and M. Adibi. 2018b. “Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media.” J. Intell. Mater. Syst. Struct. 29 (11): 2344–2361. https://doi.org/10.1177/1045389X18770856.
Shojaeefard, M. H., H. Saeidi Googarchin, M. Mahinzare, and S. A. Eftekhari. 2018c. “Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: A comparative study on modified couple stress theory and nonlocal elasticity theory.” J. Intell. Mater. Syst. Struct. 29 (11): 2492–2507. https://doi.org/10.1177/1045389X18770875.
Shruti, M., N. S. Hemanth, N. D. Badgayan, and S. K. Sahu. 2020. “Compressive behavior of auxetic structural metamaterial for lightweight construction using ANSYS static structural analysis.” Mater. Today: Proc. 38 (Part 1): 12–17. https://doi.org/10.1016/j.matpr.2020.05.410.
Sundararajan, N., T. Prakash, and M. Ganapathi. 2005. “Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments.” Finite Elem. Anal. Des. 42 (2): 152–168. https://doi.org/10.1016/j.finel.2005.06.001.
Tang, Y., X. Lv, and T. Yang. 2019. “Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration.” Composites, Part B. 156 (Jan): 319–331. https://doi.org/10.1016/j.compositesb.2018.08.140.
Tang, Y., G. Wang, T. Ren, Q. Ding, and T. Yang. 2021a. “Nonlinear mechanics of a slender beam composited by three-directional functionally graded materials.” Compos. Struct. 270 (Aug): 114088. https://doi.org/10.1016/j.compstruct.2021.114088.
Tang, Y., T. Wang, Z. S. Ma, and T. Yang. 2021b. “Magneto-electro-elastic modelling and nonlinear vibration analysis of bi-directional functionally graded beams.” Nonlinear Dyn. 105: 2195–2227. https://doi.org/10.1007/s11071-021-06656-0.
Tang, Y., and T. Yang. 2018a. “Bi-directional functionally graded nanotubes: Fluid conveying dynamics.” Int. J. Appl. Mech. 10 (04): 1850041. https://doi.org/10.1142/S1758825118500412.
Tang, Y., and T. Yang. 2018b. “Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material.” Compos. Struct. 185 (Feb): 393–400. https://doi.org/10.1016/j.compstruct.2017.11.032.
Wang, Z., A. Zulifqar, and H. Hu. 2016. “Auxetic composites in aerospace engineering.” In Advanced composite materials for aerospace engineering, 213–240. Sawston, CA: Woodhead.
Wattanasakulpong, N., and V. Ungbhakorn. 2014. “Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities.” Aerosp. Sci. Technol. 32 (1): 111–120. https://doi.org/10.1016/j.ast.2013.12.002.
Yang, W., Z. M. Li, W. Shi, B. H. Xie, and M. B. Yang. 2004. “Review on auxetic materials.” J. Mater. Sci. 39 (May): 3269–3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0.
Zemri, A., M. S. A. Houari, A. A. Bousahla, and A. Tounsi. 2015. “A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory.” Struct. Eng. Mech. 54 (4): 693–710. https://doi.org/10.12989/sem.2015.54.4.693.
Zhang, C., C. Lu, L. Pei, J. Li, R. Wang, and K. Tieu. 2019. “The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites.” Carbon 143 (Mar): 125–137. https://doi.org/10.1016/j.carbon.2018.10.097.
Zhang, W., S. Zhao, F. Scarpa, J. Wang, and R. Sun. 2021. “In-plane mechanical behavior of novel auxetic hybrid metamaterials.” Thin-Walled Struct. 159 (Feb): 107191. https://doi.org/10.1016/j.tws.2020.107191.
Zhang, Y. Y., C. M. Wang, and N. Challamel. 2009. “Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model.” J. Eng. Mech. 136 (5): 562–574. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000107.
Zhao, S., Z. Yang, S. Kitipornchai, and J. Yang. 2020a. “Dynamic instability of functionally graded porous arches reinforced by graphene platelets.” Thin-Walled Struct. 147 (Feb): 106491. https://doi.org/10.1016/j.tws.2019.106491.
Zhao, S., Y. Zhang, J. Yang, and S. Kitipornchai. 2020b. “Improving interfacial shear strength between graphene sheets by strain-induced wrinkles.” Carbon 168 (Oct): 135–143. https://doi.org/10.1016/j.carbon.2020.06.054.
Zhao, S., Y. Zhang, J. Yang, and S. Kitipornchai. 2021. “Significantly improved interfacial shear strength in graphene/copper nanocomposite via wrinkles and functionalization: A molecular dynamics study.” Carbon 174 (Apr): 335–344. https://doi.org/10.1016/j.carbon.2020.12.026.
Zhao, S., Y. Zhang, J. Yang, and S. Kitipornchai. 2022a. “Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study.” J. Mater. Sci. Technol. 120 (Sep): 196–204. https://doi.org/10.1016/j.jmst.2021.12.042.
Zhao, S., Y. Zhang, Y. Zhang, J. Yang, and S. Kitipornchai. 2022b. “A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami.” Thin-Walled Struct. 181 (Dec): 109997. https://doi.org/10.1016/j.tws.2022.109997.
Zhao, S., Y. Zhang, Y. Zhang, W. Zhang, J. Yang, and S. Kitipornchai. 2022c. “Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials.” Acta Mater. 228 (Apr): 117791. https://doi.org/10.1016/j.actamat.2022.117791.
Zhao, S., Z. Zhao, Z. Yang, L. Ke, S. Kitipornchai, and J. Yang. 2020c. “Functionally graded graphene reinforced composite structures: A review.” Eng. Struct. 210 (May): 110339. https://doi.org/10.1016/j.engstruct.2020.110339.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 4April 2024

History

Received: May 29, 2023
Accepted: Nov 9, 2023
Published online: Jan 31, 2024
Published in print: Apr 1, 2024
Discussion open until: Jun 30, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

School of Mechanical Engineering, College of Engineering, Univ. of Tehran, Tehran 14399-57131, Iran (corresponding author). ORCID: https://orcid.org/0000-0002-5821-4592. Email: [email protected]; [email protected]
Abbas Rastgoo, Ph.D. [email protected]
School of Mechanical Engineering, College of Engineering, Univ. of Tehran, Tehran 14399-57131, Iran. Email: [email protected]
Farzad Ebrahimi, Ph.D. [email protected]
Dept. of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International Univ., Qazvin 34149-16818, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share