Technical Papers
Jan 16, 2024

Nanomechanics of ASR Gels from Coarse-Grained Simulations

Publication: Journal of Engineering Mechanics
Volume 150, Issue 3

Abstract

Despite alkali–silica reaction (ASR) being a major durability problem in concrete, structural features and properties of ASR gels remain poorly understood. Inspired by the success of coarse-grained (CG) simulations in unveiling key features of calcium-silicate-hydrate (C-S-H) gels, we deploy these simulations to model ASR gels. Our goals are (1) to test the suitability of these simulations to capture ASR gels structural features and mechanical properties; and (2) to quantify any alkali-dependency in the response. Effective interactions obtained at the molecular scale for Na-ASR and K-ASR (sodium-ASR and potassium-ASR) products are adopted. Simulation results are consistent with the available data on the structure, elastic, and viscous behavior of ASR gels. The ASR gel mesotexture development and mechanical properties are ion-specific, with Na-ASR showing a more rigid/less viscous behavior overall. Our results demonstrate the suitability of CG simulations to investigate ASR.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Agrawal, V., K. Holzworth, W. Nantasetphong, A. V. Amirkhizi, J. Oswald, and S. Nemat-Nasser. 2016. “Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system.” J. Polym. Sci., Part B: Polym. Phys. 54 (8): 797–810. https://doi.org/10.1002/polb.23976.
Allen, M. P., and D. J. Tildesley. 1989. Computer simulation of liquids. New York: Oxford University Press.
Bazant, Z. P., and M. Z. Bazant. 2012. “Theory of sorption hysteresis in nanoporous solids: Part I. Snap-through instabilities.” J. Mech. Phys. Solids 60 (Sep): 1644–1659. https://doi.org/10.1016/j.jmps.2012.04.014.
Bazant, Z. P., A. B. Hauggaard, S. Baweja, and F.-J. Ulm. 1997. “Microprestress-solidification theory for concrete creep. I: Aging and drying effects.” J. Eng. Mech. 123 (11): 1188–1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188).
Bažant, Z. P., and S. Rahimi-Aghdam. 2017. “Diffusion-controlled and creep-mitigated ASR damage via microplane model. I: Mass concrete.” J. Eng. Mech. 143 (2): 04016108. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001186.
Bažant, Z. P., and A. Steffens. 2000. “Mathematical model for kinetics of alkali–silica reaction in concrete.” Cem. Concr. Res. 30 (3): 419–428. https://doi.org/10.1016/S0008-8846(99)00270-7.
Benmore, C. J., and P. J. M. Monteiro. 2010. “The structure of alkali silicate gel by total scattering methods.” Cem. Concr. Res. 40 (6): 892–897. https://doi.org/10.1016/j.cemconres.2010.02.006.
Berta, M., J. Wiklund, R. Kotzé, and M. Stading. 2016. “Correlation between in-line measurements of tomato ketchup shear viscosity and extensional viscosity.” J. Food Eng. 173 (Mar): 8–14. https://doi.org/10.1016/j.jfoodeng.2015.10.028.
Bhattacharya, S., and K. E. Gubbins. 2006. “Fast method for computing pore size distributions of model materials.” Langmuir 22 (18): 7726–7731. https://doi.org/10.1021/la052651k.
Boehm-Courjault, E., S. Barbotin, A. Leemann, and K. Scrivener. 2020. “Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy.” Cem. Concr. Res. 130 (Apr): 105988. https://doi.org/10.1016/j.cemconres.2020.105988.
Bonnaud, P. A., C. Labbez, R. Miura, A. Suzuki, N. Miyamoto, N. Hatakeyama, A. Miyamoto, and K. J. V. Vliet. 2016. “Interaction grand potential between calcium–silicate–hydrate nanoparticles at the molecular level.” Nanoscale 8 (7): 4160–4172. https://doi.org/10.1039/C5NR08142D.
Cygan, R. T., J.-J. Liang, and A. G. Kalinichev. 2004. “Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field.” J. Phys. Chem. B 108 (4): 1255–1266. https://doi.org/10.1021/jp0363287.
Del Gado, E., L. D. Arcangelis, and A. Coniglio. 2002. “A study of viscoelasticity in gelling systems.” J. Phys.: Condens. Matter 14 (9): 2133–2139. https://doi.org/10.1088/0953-8984/14/9/302.
Dupuis, R., and R. J.-M. Pellenq. 2022. “Alkali silica reaction: A view from the nanoscale.” Cem. Concr. Res. 152 (Feb): 106652. https://doi.org/10.1016/j.cemconres.2021.106652.
Duque-Redondo, E., P. A. Bonnaud, and H. Manzano. 2022. “A comprehensive review of C-S-H empirical and computational models, their applications, and practical aspects.” Cem. Concr. Res. 156 (Jun): 106784. https://doi.org/10.1016/j.cemconres.2022.106784.
Everett, D. H. 2007. Basic principles of colloid science. London: Royal Society of Chemistry.
Frenkel, D., and B. Smit. 2002. Understanding molecular simulation. 2nd ed. Amsterdam, Netherlands: Academic Press.
Gaboriaud, F., A. Nonat, D. Chaumont, A. Craievich, and B. Hanquet. 1999. “29Si NMR and small-angle X-ray scattering studies of the effect of alkaline ions (Li+, Na+, and K+) in silico-alkaline sols.” J. Phys. Chem. B 103 (12): 2091–2099. https://doi.org/10.1021/jp984074x.
Gado, E. D., A. Fierro, L. D. Arcangelis, and A. Coniglio. 2004. “Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses.” Phys. Rev. E 69 (5): 051103. https://doi.org/10.1103/PhysRevE.69.051103.
Geng, G., S. Barbotin, M. Shakoorioskooie, Z. Shi, A. Leemann, D. F. Sanchez, D. Grolimund, E. Wieland, and R. Dähn. 2021. “An in-situ 3D micro-XRD investigation of water uptake by alkali-silica-reaction (ASR) product.” Cem. Concr. Res. 141 (Mar): 106331. https://doi.org/10.1016/j.cemconres.2020.106331.
Gholizadeh Vayghan, A., F. Rajabipour, and J. L. Rosenberger. 2016. “Composition–rheology relationships in alkali–silica reaction gels and the impact on the gel’s deleterious behavior.” Cem. Concr. Res. 83 (May): 45–56. https://doi.org/10.1016/j.cemconres.2016.01.011.
Gómez-Díaz, D., J. M. Navaza, and L. C. Quintáns-Riveiro. 2009. “Effect of temperature on the viscosity of honey.” Int. J. Food Prop. 12 (2): 396–404. https://doi.org/10.1080/10942910701813925.
Goyal, A., K. Ioannidou, C. Tiede, P. Levitz, R. J.-M. Pellenq, and E. Del Gado. 2020. “Heterogeneous surface growth and gelation of cement hydrates.” J. Phys. Chem. C 124 (28): 15500–15510. https://doi.org/10.1021/acs.jpcc.0c02944.
Hill, R. 1965. “A self-consistent mechanics of composite materials.” J. Mech. Phys. Solids 13 (4): 213–222. https://doi.org/10.1016/0022-5096(65)90010-4.
Honorio, T. 2019. “Monte Carlo molecular modeling of temperature and pressure effects on the interactions between crystalline calcium silicate hydrate layers.” Langmuir 35 (11): 3907–3916. https://doi.org/10.1021/acs.langmuir.8b04156.
Honorio, T. 2021. “Shear deformations in crystalline alkali-silica reaction products at the molecular scale: Anisotropy and role of specific ion effects.” Mater. Struct. 54 (2): 86. https://doi.org/10.1617/s11527-021-01671-4.
Honorio, T., L. Brochard, and M. Vandamme. 2017. “Hydration phase diagram of clay particles from molecular simulations.” Langmuir 33 (44): 12766–12776. https://doi.org/10.1021/acs.langmuir.7b03198.
Honorio, T., O. M. Chemgne Tamouya, Z. Shi, and A. Bourdot. 2020a. “Intermolecular interactions of nanocrystalline alkali-silica reaction products under sorption.” Cem. Concr. Res. 136 (Oct): 106155. https://doi.org/10.1016/j.cemconres.2020.106155.
Honorio, T., O. M. C. Tamouya, and Z. Shi. 2020b. “Specific ion effects control the thermoelastic behavior of nanolayered materials: The case of crystalline alkali-silica reaction products.” Phys. Chem. Chem. Phys. 22 (47): 27800–27810. https://doi.org/10.1039/D0CP04955G.
Hou, D., W. Zhang, P. Wang, M. Wang, and H. Zhang. 2021. “Mesoscale insights on the structure, mechanical performances and the damage process of calcium-silicate-hydrate.” Constr. Build. Mater. 287 (Jun): 123031. https://doi.org/10.1016/j.conbuildmat.2021.123031.
Hu, C., B. P. Gautam, and D. K. Panesar. 2018. “Nano-mechanical properties of alkali-silica reaction (ASR) products in concrete measured by nano-indentation.” Constr. Build. Mater. 158 (Jan): 75–83. https://doi.org/10.1016/j.conbuildmat.2017.10.006.
Ichikawa, T., and M. Miura. 2007. “Modified model of alkali-silica reaction.” Cem. Concr. Res. 37 (9): 1291–1297. https://doi.org/10.1016/j.cemconres.2007.06.008.
Ioannidou, K., B. Carrier, M. Vandamme, and R. Pellenq. 2017a. “The potential of mean force concept for bridging (length and time) scales in the modeling of complex porous materials.” In Vol. 140 of Proc., Powders and Grains 2017—8th Int. Conf. on Micromechanics on Granular Media. Les Ulis, France: EDP Sciences. https://doi.org/10.1051/epjconf/201714001009.
Ioannidou, K., E. Del Gado, F.-J. Ulm, and R. J.-M. Pellenq. 2017b. “Inhomogeneity in cement hydrates: Linking local packing to local pressure.” J. Nanomech. Micromech. 7 (2): 04017003. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000120.
Ioannidou, K., M. Kanduč, L. Li, D. Frenkel, J. Dobnikar, and E. Del Gado. 2016a. “The crucial effect of early-stage gelation on the mechanical properties of cement hydrates.” Nat. Commun. 7 (1): 12106. https://doi.org/10.1038/ncomms12106.
Ioannidou, K., K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero, S. Yip, F.-J. Ulm, P. Levitz, R. J.-M. Pellenq, and E. D. Gado. 2016b. “Mesoscale texture of cement hydrates.” Proc. Natl. Acad. Sci. U.S.A. 113 (8): 2029–2034. https://doi.org/10.1073/pnas.1520487113.
Ioannidou, K., C. Labbez, and E. Masoero. 2022. “A review of coarse grained and mesoscale simulations of C–S–H.” Cem. Concr. Res. 159 (Sep): 106857. https://doi.org/10.1016/j.cemconres.2022.106857.
Ioannidou, K., R. J.-M. Pellenq, and E. D. Gado. 2014. “Controlling local packing and growth in calcium–silicate–hydrate gels.” Soft Matter 10 (8): 1121–1133. https://doi.org/10.1039/C3SM52232F.
IUPAC. 1997. “Compendium of Chemical Terminology—The “Gold Book”. 2nd Edition, McNaught, A.D. and Wilkinson, A., Compiled, Blackwell Scientific Publications, Oxford. (2006-) Created by Nic, M., Jirat, J. and Kosata, B., Updates Compiled by Jenkins, A. http://goldbook.iupac.org.” Accessed January 3, 2024. https://goldbook.iupac.org/terms/view/M03906.
Jennings, H. M. 2000. “A model for the microstructure of calcium silicate hydrate in cement paste.” Cem. Concr. Res. 30 (1): 101–116. https://doi.org/10.1016/S0008-8846(99)00209-4.
Kirkpatrick, R. J., A. G. Kalinichev, X. Hou, and L. Struble. 2005. “Experimental and molecular dynamics modeling studies of interlayer swelling: Water incorporation in kanemite and ASR gel.” Mater. Struct. 38 (4): 449–458. https://doi.org/10.1007/BF02482141.
Leemann, A., T. Katayama, I. Fernandes, and M. A. T. M. Broekmans. 2016. “Types of alkali–aggregate reactions and the products formed.” Proc. Inst. Civ. Eng. Constr. Mater. 169 (3): 128–135. https://doi.org/10.1680/jcoma.15.00059.
Leemann, A., and P. Lura. 2013. “E-modulus of the alkali–silica-reaction product determined by micro-indentation.” Constr. Build. Mater. 44 (Jul): 221–227. https://doi.org/10.1016/j.conbuildmat.2013.03.018.
Leemann, A., Z. Shi, and J. Lindgård. 2020. “Characterization of amorphous and crystalline ASR products formed in concrete aggregates.” Cem. Concr. Res. 137 (Nov): 106190. https://doi.org/10.1016/j.cemconres.2020.106190.
Lolli, F., H. Manzano, J. L. Provis, M. C. Bignozzi, and E. Masoero. 2018. “Atomistic simulations of geopolymer models: The impact of disorder on structure and mechanics.” ACS Appl. Mater. Interfaces 10 (26): 22809–22820. https://doi.org/10.1021/acsami.8b03873.
Maginn, E. J., R. A. Messerly, D. J. Carlson, D. R. Roe, and J. R. Elliot. 2019. “Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [article v1.0].” Living J. Comput. Mol. Sci. 1 (1): 6324. https://doi.org/10.33011/livecoms.1.1.6324.
Maruyama, I., T. Fujimaki, R. Kurihara, G. Igarashi, and T. Ohkubo. 2022. “Surface area changes in C3S paste during the first drying analyzed by 1H NMR relaxometry.” Cem. Concr. Res. 156 (Jun): 106762. https://doi.org/10.1016/j.cemconres.2022.106762.
Masara, F., T. Honorio, and F. Benboudjema. 2023. “Sorption in C–S–H at the molecular level: Disjoining pressures, effective interactions, hysteresis, and cavitation.” Cem. Concr. Res. 164 (Feb): 107047. https://doi.org/10.1016/j.cemconres.2022.107047.
Masoero, E., E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S. Yip. 2012. “Nanostructure and nanomechanics of cement: Polydisperse colloidal packing.” Phys. Rev. Lett. 109 (15): 155503. https://doi.org/10.1103/PhysRevLett.109.155503.
Medina, J. S., R. Prosmiti, P. Villarreal, G. Delgado-Barrio, G. Winter, B. González, J. V. Alemán, and C. Collado. 2011. “Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity.” Chem. Phys. 388 (1): 9–18. https://doi.org/10.1016/j.chemphys.2011.07.001.
Nishiyama, N., and T. Yokoyama. 2017. “Permeability of porous media: Role of the critical pore size.” J. Geophys. Res. Solid Earth 122 (9): 6955–6971. https://doi.org/10.1002/2016JB013793.
Plimpton, S. 1995. “Fast parallel algorithms for short-range molecular dynamics.” J. Comput. Phys. 117 (1): 1–19. https://doi.org/10.1006/jcph.1995.1039.
Shi, Z., G. Geng, A. Leemann, and B. Lothenbach. 2019. “Synthesis, characterization, and water uptake property of alkali-silica reaction products.” Cem. Concr. Res. 121 (Jul): 58–71. https://doi.org/10.1016/j.cemconres.2019.04.009.
Shi, Z., S. Park, B. Lothenbach, and A. Leemann. 2020. “Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80 °C.” Cem. Concr. Res. 137 (Nov): 106213. https://doi.org/10.1016/j.cemconres.2020.106213.
Shvab, I., L. Brochard, H. Manzano, and E. Masoero. 2017. “Precipitation mechanisms of mesoporous nanoparticle aggregates: Off-lattice, coarse-grained, kinetic simulations.” Cryst. Growth Des. 17 (3): 1316–1327. https://doi.org/10.1021/acs.cgd.6b01712.
Struble, L., and S. Diamond. 1981. “Unstable swelling behaviour of alkali silica gels.” Cem. Concr. Res. 11 (4): 611–617. https://doi.org/10.1016/0008-8846(81)90091-0.
Stukowski, A. 2014. “Computational analysis methods in atomistic modeling of crystals.” JOM 66 (3): 399–407. https://doi.org/10.1007/s11837-013-0827-5.
Thomas, J. J., H. M. Jennings, and A. J. Allen. 1998. “The surface area of cement paste as measured by neutron scattering: Evidence for two C-S-H morphologies.” Cem. Concr. Res. 28 (6): 897–905. https://doi.org/10.1016/S0008-8846(98)00049-0.
Torquato, S. 2002. Random heterogeneous materials: Microstructure and macroscopic properties. New York: Springer.
Urhan, S. 1987. “Alkali silica and pozzolanic reaction in concrete. Part I: Interpretation of results and an hypothesis concerning the mechanism.” Cem. Concr. Res. 17 (1): 141–152. https://doi.org/10.1016/0008-8846(87)90068-8.
Wojdyr, M. 2015. “Debyer.” Accessed January 3, 2024. https://debyer.readthedocs.io.
Yang, X., W. Zhu, and Q. Yang. 2008. “The viscosity properties of sodium silicate solutions.” J. Solution Chem. 37 (1): 73–83. https://doi.org/10.1007/s10953-007-9214-6.
Zhang, C., L. Sorelli, B. Fournier, J. Duchesne, J. Bastien, and Z. Chen. 2017. “Stress-relaxation of crystalline alkali-silica reaction products: Characterization by micro- and nanoindentation and simplified modeling.” Constr. Build. Mater. 148 (Sep): 455–464. https://doi.org/10.1016/j.conbuildmat.2017.05.069.
Zhang, Z., G. W. Scherer, and A. Bauer. 2018. “Morphology of cementitious material during early hydration.” Cem. Concr. Res. 107 (May): 85–100. https://doi.org/10.1016/j.cemconres.2018.02.004.
Zubkova, N. V., Y. E. Filinchuk, I. V. Pekov, D. Y. Pushcharovsky, and E. R. Gobechiya. 2010. “Crystal structures of shlykovite and cryptophyllite: Comparative crystal chemistry of phyllosilicate minerals of the mountainite family.” Eur. J. Mineral. 22 (4): 547–555. https://doi.org/10.1127/0935-1221/2010/0022-2041.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 3March 2024

History

Received: Aug 23, 2022
Accepted: Oct 9, 2023
Published online: Jan 16, 2024
Published in print: Mar 1, 2024
Discussion open until: Jun 16, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette 91190, France. ORCID: https://orcid.org/0000-0002-1494-2504. Email: [email protected]
Associate Professor, ENS Paris-Saclay, CNRS, LMPS—Laboratoire de Mécanique Paris-Saclay, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette 91190, France (corresponding author). ORCID: https://orcid.org/0000-0003-0281-4502. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share