State-of-the-Art Reviews
Feb 23, 2023

The System Dynamics of Engineer-to-Order Construction Projects: Past, Present, and Future

Publication: Journal of Construction Engineering and Management
Volume 149, Issue 5

Abstract

System dynamics (SD) applications in high-volume production operations are widely used, helping to define decision rules to reduce costs associated with the variance in planning orders and inventory. The exploitation of SD in engineer-to-order (ETO) project-oriented supply chains—e.g., in construction, shipbuilding, and capital goods—is less well established. Hence, this research reviews the literature that takes a systematic ETO perspective in modeling construction projects, exploiting SD approaches. To comprehensively identify and filter previously published works, we used a keyword searching method using Web of Science and Scopus databases. After applying relevant exclusion criteria, 143 papers were selected. Although previous reviews of ETO literature, more generally, have been done, this work contributes to the body of knowledge by specifically reviewing SD applications in ETO industries and providing insights by creating a categorization system by which to determine existing gaps. Articles are categorized into the classic four phases of a project: aggregated planning, preproject planning, project execution, and postdelivery. Analyses of the methods, attributes, and applications of SD were undertaken for each phase. Findings indicate that SD research covers the range of ETO industries, of which construction is the most dominant, demonstrating SD’s high applicability. The wealth of case-orientated research in the construction field provides a solid foundation for further SD studies in the ETO field. Further research should focus on (1) developing a general ETO archetype for performance benchmarking and strategy development in construction projects; (2) introducing analytical tools, such as control theoretic approaches as found in manufacturing production planning and control design, to improve understanding of the ETO systems’ dynamic behaviors; (3) developing cross-phase, cross-project, design–production integrated, aggregated planning models via hybrid techniques modeling, which can improve understanding of an ETO system’s performance; and (4) improving model fidelity. We also provide a research agenda for each phase of the ETO production.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

Adrodegari, F., A. Bacchetti, R. Pinto, F. Pirola, and M. Zanardini. 2015. “Engineer-to-order (ETO) production planning and control: An empirical framework for machinery-building companies.” Prod. Plann. Control 26 (11): 910–932. https://doi.org/10.1080/09537287.2014.1001808.
Aiyetan, O. A., and D. Dillip. 2018. “System dynamics approach to mitigating skilled labour shortages in the construction industry: A South African context.” Constr. Econ. Build. 18 (4): 45–63. https://doi.org/10.5130/AJCEB.v18i4.6041.
Ajayi, B. O., and T. Chinda. 2022a. “Dynamics of pertinent project delay variables in the Thai construction sector: Mathematical analysis.” Eng. Manage. Prod. Serv. 14 (2): 26–45. https://doi.org/10.2478/emj-2022-0014.
Ajayi, B. O., and T. Chinda. 2022b. “Impact of construction delay-controlling parameters on project schedule: DEMATEL-system dynamics modeling approach.” Front. Built Environ. 8 (Feb): 9. https://doi.org/10.3389/fbuil.2022.799314.
Alfnes, E., J. Gosling, M. Naim, and H. C. Dreyer. 2021. “Exploring systemic factors creating uncertainty in complex engineer-to-order supply chains: Case studies from Norwegian shipbuilding first tier suppliers.” Int. J. Prod. Econ. 240 (Oct): 108211. https://doi.org/10.1016/j.ijpe.2021.108211.
Alvanchi, A., S. Lee, and S. AbouRizk. 2011. “Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction.” Comput.-Aided Civ. Infrastruct. Eng. 26 (2): 77–91. https://doi.org/10.1111/j.1467-8667.2010.00650.x.
Alzraiee, H., T. Zayed, and O. Moselhi. 2015. “Dynamic planning of construction activities using hybrid simulation.” Autom. Constr. 49 (Jan): 176–192. https://doi.org/10.1016/j.autcon.2014.08.011.
Ansari, R., M. Khalilzadeh, R. Taherkhani, J. Antucheviciene, D. Migilinskas, and S. Moradi. 2022. “Performance prediction of construction projects based on the causes of claims: A system dynamics approach.” Sustainability (Switzerland) 14 (7): 1–19. https://doi.org/10.3390/su14074138.
Asiedu, R. O., and C. Ameyaw. 2021. “A system dynamics approach to conceptualise causes of cost overrun of construction projects in developing countries.” Int. J. Build. Pathol. Adapt. 39 (5): 831–851. https://doi.org/10.1108/IJBPA-05-2020-0043.
Bajomo, M., A. Ogbeyemi, and W. Zhang. 2022. “A systems dynamics approach to the management of material procurement for engineering, procurement and construction industry.” Int. J. Prod. Econ. 244 (Feb): 108390. https://doi.org/10.1016/j.ijpe.2021.108390.
Bajracharya, A., S. Ogunlana, H. C. Tan, and G. C. Siew. 2021. “Understanding the performance of construction business: A simulation-based experimental study.” Constr. Econ. Build. 21 (4): 60–88. https://doi.org/10.5130/AJCEB.v21i4.7559.
Bajracharya, A., S. O. Ogunlana, and N. L. Bach. 2000. “Effective organizational infrastructure for training activities: A case study of the Nepalese construction sector.” Syst. Dyn. Rev. 16 (2): 91–112. https://doi.org/10.1002/1099-1727(200022)16:2%3C91::AID-SDR190%3E3.0.CO;2-D.
Barbosa, C., and A. Azevedo. 2019. “Assessing the impact of performance determinants in complex MTO/ETO supply chains through an extended hybrid modelling approach.” Int. J. Prod. Res. 57 (11): 3577–3597. https://doi.org/10.1080/00207543.2018.1543970.
Batista, L., M. Bourlakis, P. Smart, and R. Maull. 2018. “In search of a circular supply chain archetype–a content-analysis-based literature review.” Prod. Plann. Control 29 (6): 438–451. https://doi.org/10.1080/09537287.2017.1343502.
Bertrand, J. W. M., and D. R. Muntslag. 1993. “Production control in engineer-to-order firms.” Int. J. Prod. Econ. 30–31 (Jul): 3–22. https://doi.org/10.1016/0925-5273(93)90077-X.
Birkie, S. E., P. Trucco, and M. Kaulio. 2017. “Sustaining performance under operational turbulence: The role of lean in engineer-to-order operations.” Int. J. Lean Six Sigma 8 (4): 457–481. https://doi.org/10.1108/IJLSS-12-2016-0077.
Cannas, V. G., and J. Gosling. 2021. “A decade of engineering-to-order (2010–2020): Progress and emerging themes.” Int. J. Prod. Econ. 241 (Nov): 108274. https://doi.org/10.1016/j.ijpe.2021.108274.
Chapman, R. J. 1998. “The role of system dynamics in understanding the impact of changes to key project personnel on design production within construction projects.” Int. J. Project Manage. 16 (4): 235–247. https://doi.org/10.1016/S0263-7863(97)00043-4.
Chen, L., and P. S. W. Fong. 2013. “Visualizing evolution of knowledge management capability in construction firms.” J. Constr. Eng. Manage. 139 (7): 839–851. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000649.
Cheng, B., J. Huang, J. Li, S. Chen, and H. Chen. 2022. “Improving contractors’ participation of resource utilization in construction and demolition waste through government incentives and punishments.” Environ. Manage. 70 (4): 666–680. https://doi.org/10.1007/s00267-022-01617-8.
Choi, M., M. Park, H.-S. Lee, and S. Hwang. 2017. “Dynamic modeling for apartment brand management in the housing market.” Int. J. Strategic Property Manage. 21 (4): 357–370. https://doi.org/10.3846/1648715X.2017.1315347.
Cui, Q., M. Hastak, and D. Halpin. 2010. “Systems analysis of project cash flow management strategies.” Construct. Manage. Econ. 28 (4): 361–376. https://doi.org/10.1080/01446191003702484.
Dangerfield, B., S. Green, and S. Austin. 2010. “Understanding construction competitiveness: The contribution of system dynamics.” Constr. Innovation 10 (4): 408–420. https://doi.org/10.1108/14714171011083579.
Ding, Z., Y. Wang, and P. X. W. Zou. 2016a. “An agent based environmental impact assessment of building demolition waste management: Conventional versus green management.” J. Cleaner Prod. 133 (Oct): 1136–1153. https://doi.org/10.1016/j.jclepro.2016.06.054.
Ding, Z., G. Yi, V. W. Y. Tam, and T. Huang. 2016b. “A system dynamics-based environmental performance simulation of construction waste reduction management in China.” Waste Manage. 51 (May): 130–141. https://doi.org/10.1016/j.wasman.2016.03.001.
Disney, S. M., D. R. Towill, and W. Van De Velde. 2004. “Variance amplification and the golden ratio in production and inventory control.” Int. J. Prod. Econ. 90 (3): 295–309. https://doi.org/10.1016/j.ijpe.2003.10.009.
Du, Q., L. Shao, J. Zhou, N. Huang, T. Bao, and C. Hao. 2019. “Dynamics and scenarios of carbon emissions in China’s construction industry.” Sustainable Cities Soc. 48 (J): 101556. https://doi.org/10.1016/j.scs.2019.101556.
Ecem Yildiz, A., I. Dikmen, and M. Talat Birgonul. 2020. “Using system dynamics for strategic performance management in construction.” J. Manage. Eng. 36 (2): 04019051. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000744.
Forrester, J. W. 1958. “A major breakthrough for decision makers.” Harvard Bus. Rev. 36 (4): 37–66.
GAO (US Government Accountability Office). 2013. Additional actions needed to decrease delays and lower costs of major medical-facility projects. Washington, DC: GAO.
Gerami Seresht, N., and A. R. Fayek. 2018. “Dynamic modeling of multifactor construction productivity for equipment-intensive activities.” J. Constr. Eng. Manage. 144 (9): 04018091. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001549.
Ghufran, M., K. I. A. Khan, F. Ullah, A. R. Nasir, A. A. Al Alahmadi, A. N. Alzaed, and M. Alwetaishi. 2022. “Circular economy in the construction industry: A step towards sustainable development.” Buildings 12 (7): 1004. https://doi.org/10.3390/buildings12071004.
Giada, V., and J. Gosling. 2021. “A decade of engineering-to-order (2010–2020): Progress and emerging themes.” Int. J. Prod. Econ. 241 (Nov): 108274. https://doi.org/10.1016/j.ijpe.2021.108274.
Gilkinson, N., and B. Dangerfield. 2013. “Some results from a system dynamics model of construction sector competitiveness.” Math. Comput. Modell. 57 (9–10): 2032–2043. https://doi.org/10.1016/j.mcm.2011.09.011.
Goh, Y. M., and M. J. Askar Ali. 2016. “A hybrid simulation approach for integrating safety behavior into construction planning: An earthmoving case study.” Accid. Anal. Prev. 93 (Aug): 310–318. https://doi.org/10.1016/j.aap.2015.09.015.
Gosling, J., B. Hewlett, and M. M. Naim. 2017. “Extending customer order penetration concepts to engineering designs.” Int. J. Oper. Prod. Manage. 37 (4): 402–422. https://doi.org/10.1108/IJOPM-07-2015-0453.
Gosling, J., and M. M. Naim. 2009. “Engineer-to-order supply chain management: A literature review and research agenda.” Int. J. Prod. Econ. 122 (2): 741–754. https://doi.org/10.1016/j.ijpe.2009.07.002.
Gosling, J., M. Pero, M. Schoenwitz, D. Towill, and R. Cigolini. 2016. “Defining and categorizing modules in building projects: An international perspective.” J. Constr. Eng. Manage. 142 (11): 04016062. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001181.
Gosling, J., P. Sassi, M. Naim, and R. Lark. 2013. “Adaptable buildings: A systems approach.” Sustainable Cities Soc. 7 (Jul): 44–51. https://doi.org/10.1016/j.scs.2012.11.002.
Grössler, A., T. Löpsinger, M. Stotz, and H. Wörner. 2008. “Analyzing price and product strategies with a comprehensive system dynamics model—A case study from the capital goods industry.” J. Bus. Res. 61 (11): 1136–1142. https://doi.org/10.1016/j.jbusres.2007.11.006.
Guo, B. H. W., Y. M. Goh, and K. Le Xin Wong. 2018. “A system dynamics view of a behavior-based safety program in the construction industry.” Saf. Sci. 104 (Apr): 202–215. https://doi.org/10.1016/j.ssci.2018.01.014.
Guo, B. H. W., T. W. Yiu, and V. A. González. 2015. “Identifying behaviour patterns of construction safety using system archetypes.” Accid. Anal. Prev. 80 (Jul): 125–141. https://doi.org/10.1016/j.aap.2015.04.008.
Hafeez, K., et al. 2020. “Low carbon building performance in the construction industry: A multi-method approach of project management operations and building energy use applied in a UK public office building.” J. Constr. Eng. Manage. 57 (3): 201–216. https://doi.org/10.1016/j.enbuild.2019.109609.
Han, S., S. Lee, and F. Peña-Mora. 2012. “Identification and quantification of non-value-adding effort from errors and changes in design and construction projects.” J. Constr. Eng. Manage. 138 (1): 98–109. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000406.
Han, S., P. Love, and F. Peña-Mora. 2013. “A system dynamics model for assessing the impacts of design errors in construction projects.” Math. Comput. Modell. 57 (9–10): 2044–2053. https://doi.org/10.1016/j.mcm.2011.06.039.
Han, S., F. Saba, S. Lee, Y. Mohamed, and F. Peña-Mora. 2014. “Toward an understanding of the impact of production pressure on safety performance in construction operations.” Accid. Anal. Prev. 68 (Jul): 106–116. https://doi.org/10.1016/j.aap.2013.10.007.
Handa, V. K., and R. M. Barcia. 1986. “Construction production planning.” J. Constr. Eng. Manage. 112 (2): 163–177. https://doi.org/10.1061/(ASCE)0733-9364(1986)112:2(163).
Handa, V. K., R. M. Barcia, B. V. K. Handa, and R. M. Barcia. 1986. “Linear scheduling using optimal control theory.” J. Constr. Eng. Manage. 112 (3): 387–393. https://doi.org/10.1061/(ASCE)0733-9364(1986)112:3(387).
Hao, J. L., M. J. Hill, and L. Yin Shen. 2008. “Managing construction waste on-site through system dynamics modelling: The case of Hong Kong.” Eng. Constr. Archit. Manage. 15 (2): 103–113. https://doi.org/10.1108/09699980810852646.
Hao, J. L., M. J. Hills, and T. Huang. 2007. “A simulation model using system dynamic method for construction and demolition waste management in Hong Kong.” Constr. Innovation 7 (1): 7–21. https://doi.org/10.1108/14714170710721269.
Hessami, A. R., V. Faghihi, A. Kim, and D. N. Ford. 2020. “Evaluating planning strategies for prioritizing projects in sustainability improvement programs.” Construct. Manage. Econ. 38 (8): 726–738. https://doi.org/10.1080/01446193.2019.1608369.
Hua, C., C. Liu, J. Chen, C. Yang, and L. Chen. 2022. “Promoting construction and demolition waste recycling by using incentive policies in China.” Environ. Sci. Pollut. Res. 29 (35): 53844–53859. https://doi.org/10.1007/s11356-022-19536-w.
Huang, F., and F. Wang. 2005. “A system for early-warning and forecasting of real estate development.” Autom. Constr. 14 (3): 333–342. https://doi.org/10.1016/j.autcon.2004.08.015.
Huang, J., Y. Wu, Y. Han, Y. Yin, G. Gao, and H. Chen. 2022. “An evolutionary game-theoretic analysis of construction workers’ unsafe behavior: Considering incentive and risk loss.” Front. Public Health 10 (2): 991994. https://doi.org/10.3389/fpubh.2022.991994.
Hwang, S., M. Park, H.-S. Lee, S. Lee, and H. Kim. 2013. “Dynamic feasibility analysis of the housing supply strategies in a recession: Korean housing market.” J. Constr. Eng. Manage. 139 (2): 148–160. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000577.
Jalal, M. P., and S. Shoar. 2017. “A hybrid SD-DEMATEL approach to develop a delay model for construction projects.” Eng. Constr. Archit. Manage. 24 (4): 629–651. https://doi.org/10.1108/ECAM-02-2016-0056.
Javed, A. A., W. Pan, L. Chen, and W. Zhan. 2018. “A systemic exploration of drivers for and constraints on construction productivity enhancement.” Built Environ. Project Asset Manage. 8 (3): 239–252. https://doi.org/10.1108/BEPAM-10-2017-0099.
Jing, W., H. I. Naji, R. N. Zehawi, Z. H. Ali, N. Al-Ansari, and Z. M. Yaseen. 2019. “System dynamics modeling strategy for civil construction projects: The concept of successive legislation periods.” Symmetry 11 (5): 677. https://doi.org/10.3390/sym11050677.
Kaufmann, C., and A. Kock. 2022. “Does project management matter? The relationship between project management effort, complexity, and profitability.” Int. J. Project Manage. 40 (6): 624–633. https://doi.org/10.1016/j.ijproman.2022.05.007.
Khan, K. I. A., R. Flanagan, and S.-L. Lu. 2016. “Managing information complexity using system dynamics on construction projects.” Construct. Manage. Econ. 34 (3): 192–204. https://doi.org/10.1080/01446193.2016.1190026.
Khanzadi, M., F. Nasirzadeh, M. Mir, and P. Nojedehi. 2018. “Prediction and improvement of labor productivity using hybrid system dynamics and agent-based modeling approach.” Constr. Innovation 18 (1): 2–19. https://doi.org/10.1108/CI-06-2015-0034.
Kim, J. M., K. Son, J. Jang, and S. Son. 2021a. “Development of an income and cost simulation model for studio apartment using probabilistic estimation.” J. Asian Archit. Build. Eng. 20 (5): 546–555. https://doi.org/10.1080/13467581.2020.1800474.
Kim, K. B., J. H. Cho, and S. B. Kim. 2021b. “Model-based dynamic forecasting for residential construction market demand: A systemic approach.” Appl. Sci. (Switzerland) 11 (8): 3681. https://doi.org/10.3390/app11083681.
Kim, S., S. Lee, Y. J. Na, and J. T. Kim. 2013. “Conceptual model for LCC-based LCCO2 analysis of apartment buildings.” Energy Build. 64 (Sep): 285–291. https://doi.org/10.1016/j.enbuild.2013.05.016.
Ko, C.-H., and N.-F. Chung. 2014. “Lean design process.” J. Constr. Eng. Manage. 140 (6): 04014011. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000824.
Laursen, R. P., C. Ørum-Hansen, and E. Trostmann. 1998. “The concept of state within one-of-a-kind real-time production control systems.” Prod. Plann. Control 9 (6): 542–552. https://doi.org/10.1080/095372898233795.
Lê, M. A. T., and K. H. Law. 2009. “System dynamic approach for simulation of experience transfer in the AEC industry.” J. Manage. Eng. 25 (4): 195–203. https://doi.org/10.1061/(asce)0742-597x(2009)25:4(195).
Lee, S. 2006. “Dynamic planning and control methodology: Understanding and managing iterative error and change cycles in large-scale concurrent design and construction projects.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology.
Lee, S., S. Han, and F. Peña-Mora. 2009. “Integrating construction operation and context in large-scale construction using hybrid computer simulation.” J. Comput. Civ. Eng. 23 (2): 75–83. https://doi.org/10.1061/(ASCE)0887-3801(2009)23:2(75).
Lee, S., F. Peña-Mora, and M. Park. 2005. “Quality and change management model for large scale concurrent design and construction projects.” J. Constr. Eng. Manage. 131 (8): 890–902. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:8(890).
Lee, S., F. Peña-Mora, and M. Park. 2006a. “Web-enabled system dynamics model for error and change management on concurrent design and construction projects.” J. Comput. Civ. Eng. 20 (4): 290–300. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:4(290).
Lee, S. H., and F. Peña-Mora. 2007. “Understanding and managing iterative error and change cycles in construction.” Syst. Dyn. Rev. 23 (1): 35–60. https://doi.org/10.1002/sdr.359.
Lee, S. H., F. Peña-Mora, and M. Park. 2006b. “Dynamic planning and control methodology for strategic and operational construction project management.” Autom. Constr. 15 (1): 84–97. https://doi.org/10.1016/j.autcon.2005.02.008.
Li, C. Z., X. Xu, G. Q. Shen, C. Fan, X. Li, and J. Hong. 2018. “A model for simulating schedule risks in prefabrication housing production: A case study of six-day cycle assembly activities in Hong Kong.” J. Cleaner Prod. 185 (Jun): 366–381. https://doi.org/10.1016/j.jclepro.2018.02.308.
Li, M., G. Li, Y. Huang, and L. Deng. 2017. “Research on investment risk management of Chinese prefabricated construction projects based on a system dynamics model.” Buildings 7 (3): 83. https://doi.org/10.3390/buildings7030083.
Li, T., Z. Li, and Y. Dou. 2022a. “Diffusion prediction of prefabricated construction technology under multi-factor coupling.” Build. Res. Inf. 1–21. https://doi.org/10.1080/09613218.2022.2126343.
Li, X., C. Wang, M. A. Kassem, Y. Liu, and K. N. Ali. 2022b. “Study on green building promotion incentive strategy based on evolutionary game between government and construction unit.” Sustainability (Switzerland) 14 (16): 10155. https://doi.org/10.3390/su141610155.
Li, Z., G. Q. Shen, and M. Alshawi. 2014. “Measuring the impact of prefabrication on construction waste reduction: An empirical study in China.” Resour. Conserv. Recycl. 91 (Sep): 27–39. https://doi.org/10.1016/j.resconrec.2014.07.013.
Liang, H., K. Y. Lin, and S. Zhang. 2018. “Understanding the social contagion effect of safety violations within a construction crew: A hybrid approach using system dynamics and agent-based modeling.” Int. J. Environ. Res. Public Health 15 (12): 2696. https://doi.org/10.3390/ijerph15122696.
Lin, J., M. M. Naim, L. Purvis, and J. Gosling. 2017. “The extension and exploitation of the inventory and order based production control system archetype from 1982 to 2015.” Int. J. Prod. Econ. 194 (Dec): 135–152. https://doi.org/10.1016/j.ijpe.2016.12.003.
Lin, J., M. M. Naim, and V. L. M. Spiegler. 2020. “Delivery time dynamics in an assemble-to-order inventory and order based production control system.” Int. J. Prod. Econ. 223 (May): 107531. https://doi.org/10.1016/j.ijpe.2019.107531.
Lingard, H., and M. Turner. 2017. “Promoting construction workers’ health: A multi-level system perspective.” Construct. Manage. Econ. 35 (5): 239–253. https://doi.org/10.1080/01446193.2016.1274828.
Liu, J., Y. Teng, D. Wang, and E. Gong. 2020. “System dynamic analysis of construction waste recycling industry chain in China.” Environ. Sci. Pollut. Res. 27 (30): 37260–37277. https://doi.org/10.1007/s11356-019-06739-x.
Liu, J., Y. Yi, C. Z. Li, Y. Zhao, and Y. Xiao. 2021. “A model for analyzing compensation for the treatment costs of construction waste.” Sustainable Energy Technol. Assess. 46 (Aug): 101214. https://doi.org/10.1016/j.seta.2021.101214.
Liu, S., Z. Li, Y. Teng, and L. Dai. 2022. “A dynamic simulation study on the sustainability of prefabricated buildings.” Sustainable Cities Soc. 77 (Feb): 103551. https://doi.org/10.1016/j.scs.2021.103551.
Lou, N., and J. Guo. 2020. “Study on key cost drivers of prefabricated buildings based on system dynamics.” Adv. Civ. Eng. 2020 (Oct): 1–12. https://doi.org/10.1155/2020/8896435.
Love, P. E. D., G. D. Holt, L. Y. Shen, H. Li, and Z. Irani. 2002. “Using systems dynamics to better understand change and rework in construction project management systems.” Int. J. Project Manage. 20 (6): 425–436. https://doi.org/10.1016/S0263-7863(01)00039-4.
Love, P. E. D., P. Mandal, and H. Li. 1999. “Determining the causal structure of rework influences in construction.” Construct. Manage. Econ. 17 (4): 505–517. https://doi.org/10.1080/014461999371420.
Luo, X., H. Liu, X. Zhao, and P. Mao. 2022. “Managing the additional cost of passive buildings from the supply chain perspective: A case of Nanjing, China.” Build. Environ. 222 (Aug): 109351. https://doi.org/10.1016/j.buildenv.2022.109351.
Lyneis, J. M., K. G. Cooper, and S. A. ELS. 2001. “Strategic management of complex projects: A case study using system dynamics.” Syst. Dyn. Rev. 17 (3): 237–260. https://doi.org/10.1002/sdr.213.
Marzouk, M., and K. M. Fattouh. 2022. “Modeling investment policies effect on environmental indicators in Egyptian construction sector using system dynamics.” Cleaner Eng. Technol. 6 (Feb): 100368. https://doi.org/10.1016/j.clet.2021.100368.
Mawdesley, M. J., and S. Al-Jibouri. 2009. “Modelling construction project productivity using systems dynamics approach.” Int. J. Prod. Perform. Manage. 59 (1): 18–36. https://doi.org/10.1108/17410401011006095.
Mello, M. H., J. O. Strandhagen, and E. Alfnes. 2015. “Analyzing the factors affecting coordination in engineer-to-order supply chain.” Int. J. Oper. Prod. Manage. 35 (7): 1005–1031. https://doi.org/10.1108/IJOPM-12-2013-0545.
Menassa, C., and F. Peña Mora. 2010. “Hybrid model incorporating real options with process centric and system dynamics modeling to assess value of investments in alternative dispute resolution techniques.” J. Comput. Civ. Eng. 24 (5): 414–429. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000044.
Mhatre, T. N., J. J. Thakkar, and J. Maiti. 2017. “Modelling critical risk factors for Indian construction project using interpretive ranking process (IRP) and system dynamics (SD).” Int. J. Qual. Reliab. Manage. 34 (9): 1451–1473. https://doi.org/10.1108/IJQRM-09-2015-0140.
Middleton, B. D., and M. W. Golay. 2008. “Use of information theory with discrete models of continuous systems.” Int. J. Gen. Syst. 37 (3): 347–371. https://doi.org/10.1080/03081070701250937.
Minami, N. A., L. L. Soto, and D. H. Rhodes. 2010. “Dynamic lean management of the naval construction process.” Eng. Manage. J. 22 (2): 36–43. https://doi.org/10.1080/10429247.2010.11431862.
Mohamed, S., and T. Chinda. 2011. “System dynamics modelling of construction safety culture.” Eng. Constr. Archit. Manage. 18 (3): 266–281. https://doi.org/10.1108/09699981111126179.
Mohammadi, A., and M. Tavakolan. 2019. “Modeling the effects of production pressure on safety performance in construction projects using system dynamics.” J. Saf. Res. 71 (Dec): 273–284. https://doi.org/10.1016/j.jsr.2019.10.004.
Mohammadi, A., and M. Tavakolan. 2020. “Identifying safety archetypes of construction workers using system dynamics and content analysis.” Saf. Sci. 129 (Sep): 104831. https://doi.org/10.1016/j.ssci.2020.104831.
Mohammadi, A., M. Tavakolan, and Y. Khosravi. 2018. “Developing safety archetypes of construction industry at project level using system dynamics.” J. Saf. Res. 67 (Dec): 17–26. https://doi.org/10.1016/j.jsr.2018.09.010.
Mohammadrezaytayebi, S., M. H. Sebt, and M. R. Afshar. 2021. “Introducing a system dynamic–based model of quality estimation for construction industry subcontractors’ works.” Int. J. Construct. Manage. 1–15. https://doi.org/10.1080/15623599.2021.1899592.
Mostert, C., C. Weber, and S. Bringezu. 2022. “Modelling and simulation of building material flows: Assessing the potential for concrete recycling in the German construction sector.” Recycling 7 (2): 13. https://doi.org/10.3390/recycling7020013.
Motawa, I. A., C. J. Anumba, S. Lee, and F. Peña-Mora. 2007. “An integrated system for change management in construction.” Autom. Constr. 16 (3): 368–377. https://doi.org/10.1016/j.autcon.2006.07.005.
Naim, M. M., and J. Gosling. 2023. “Revisiting the whole systems approach: Designing supply chains in a turbulent world.” Int. J. Logist. Manage. 34 (1): 5–33. https://doi.org/10.1108/IJLM-02-2021-0121.
Naim, M. M., J. Gosling, and B. Hewlett. 2022. “Rethinking infrastructure supply chain management—A manifesto for change.” Int. J. Logist. Res. Appl. 25 (10): 1359–1380. https://doi.org/10.1080/13675567.2021.1908523.
Nasirzadeh, F., A. Afshar, and M. Khanzadi. 2008. “Dynamic risk analysis in construction projects.” Can. J. Civ. Eng. 35 (8): 820–831. https://doi.org/10.1139/L08-035.
Ng, H. S., F. Peña-Mora, and T. Tamaki. 2007. “Dynamic conflict management in large-scale design and construction projects.” J. Manage. Eng. 23 (2): 52–66. https://doi.org/10.1061/(ASCE)0742-597X(2007)23:2(52).
Nguyen, L. D., and S. O. Ogunlana. 2005. “Modeling the dynamics of an infrastructure project.” Comput.-Aided Civ. Infrastruct. Eng. 20 (4): 265–279. https://doi.org/10.1111/j.1467-8667.2005.00392.
Ni, G., L. Lv, S. Wang, X. Miao, Y. Fang, and Q. Liu. 2022. “Formation mechanism and dynamic evolution laws about unsafe behavior of new generation of construction workers based on China’s construction industry: Application of grounded theory and system dynamics.” Front. Psychol. 13 (Apr): 1–19. https://doi.org/10.3389/fpsyg.2022.888060.
Nordin, R. M., N. A. Jasni, N. A. A. Aziz, N. Hashim, Z. Ismail, and J. Yunus. 2021. “Construction safety management system at project level using system dynamic model (SDM).” Eng. J. 25 (1): 221–232. https://doi.org/10.4186/ej.2021.25.1.221.
Ogunlana, S. O., H. Li, and F. A. Sukhera. 2003. “System dynamics approach to exploring performance enhancement in a construction organization.” J. Constr. Eng. Manage. 129 (5): 528–536. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:5(528).
Palikhe, S., S. Kim, and J. J. Kim. 2019. “Critical success factors and dynamic modeling of construction labour productivity.” Int. J. Civ. Eng. 17 (3): 427–442. https://doi.org/10.1007/s40999-018-0282-3.
Papachristos, G. 2014. “Transition inertia due to competition in supply chains with remanufacturing and recycling: A systems dynamics model.” Environ. Innov. Soc. Transit. 12 (Sep): 47–65. https://doi.org/10.1016/j.eist.2014.01.005.
Papachristos, G., et al. 2020a. “Low carbon building performance in the construction industry: A multi-method approach of system dynamics and building performance modelling.” Construct. Manage. Econ. 38 (9): 856–876. https://doi.org/10.1080/01446193.2020.1748212.
Papachristos, G., N. Jain, E. Burman, N. Zimmermann, D. Mumovic, M. Davies, and A. Edkins. 2020b. “Low carbon building performance in the construction industry: A multi-method approach of project management operations and building energy use applied in a UK public office building.” Energy Build. 206 (Jan): 109609. https://doi.org/10.1016/j.enbuild.2019.109609.
Parchami Jalal, M., and S. Shoar. 2019. “A hybrid framework to model factors affecting construction labour productivity: Case study of Iran.” J. Financ. Manage. Property Constr. 24 (3): 630–654. https://doi.org/10.1108/JFMPC-10-2018-0061.
Park, M. 2005. “Model-based dynamic resource management for construction projects.” Autom. Constr. 14 (5): 585–598. https://doi.org/10.1016/j.autcon.2004.11.001.
Park, M., Y. Ingawale-Verma, W. Kim, and Y. Ham. 2011. “Construction policymaking: With an example of Singaporean government’s policy to diffuse prefabrication to private sector.” KSCE J. Civ. Eng. 15 (5): 771–779. https://doi.org/10.1007/s12205-011-1243-4.
Park, M., S.-H. S.-H. Ji, H.-S. H.-S. Lee, and W. Kim. 2009. “Strategies for design-build in Korea using system dynamics modeling.” J. Constr. Eng. Manage. 135 (11): 1125–1137. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000095.
Park, M., M. Lee, H. Lee, and S. Hwang. 2010. “Boost, control, or both of Korean housing market: 831 countermeasures.” J. Constr. Eng. Manage. 136 (6): 693–701. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000159.
Park, M., M. P. Nepal, and M. F. Dulaimi. 2004. “Dynamic modeling for construction innovation.” J. Manage. Eng. 20 (4): 170–177. https://doi.org/10.1061/(ASCE)0742-597X(2004)20:4(170).
Parvan, K., H. Rahmandad, and A. Haghani. 2015. “Inter-phase feedbacks in construction projects.” J. Oper. Manage. 39–40 (Nov): 48–62. https://doi.org/10.1016/j.jom.2015.07.005.
Pasqualino, R., M. Demartini, and F. Bagheri. 2021. “Digital transformation and sustainable oriented innovation: A system transition model for socio-economic scenario analysis.” Sustainability (Switzerland) 13 (21): 11564. https://doi.org/10.3390/su132111564.
Pena-Mora, F., and M. Park. 2001. “Dynamic planning for fast-tracking building construction projects.” J. Constr. Eng. Manage. 127 (6): 445–456. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:6(445).
Peña-Mora, F., S. Han, S. Lee, and M. Park. 2008. “Strategic-operational construction management: Hybrid system dynamics and discrete event approach.” J. Constr. Eng. Manage. 134 (9): 701–710. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:9(701).
Peña-Mora, F., and M. Li. 2001. “Dynamic planning and control methodology for design/build fast-track construction projects.” J. Constr. Eng. Manage. 127 (1): 1–17. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:1(1).
Prasertrungruang, T., and B. H. W. Hadikusumo. 2008. “System dynamics modelling of machine downtime for small to medium highway contractors.” Eng. Constr. Archit. Manage. 15 (6): 540–561. https://doi.org/10.1108/09699980810916988.
Prasertrungruang, T., and B. H. W. Hadikusumo. 2009. “Modeling the dynamics of heavy equipment management practices and downtime in large highway contractors.” J. Constr. Eng. Manage. 135 (10): 939–947. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000076.
Purushothaman, M. B., and S. Kumar. 2022. “Environment, resources, and surroundings based dynamic project schedule model for the road construction industry in New Zealand.” Smart Sustainable Built Environ. 11 (2): 294–312. https://doi.org/10.1108/SASBE-08-2021-0145.
Rachmawati, F., M. Mudjahidin, and E. Dewi Widowati. 2022. “Work rate modeling of building construction projects using system dynamic to optimize project cost and time performance.” Int. J. Construct. Manage. 1–13. https://doi.org/10.1080/15623599.2022.2122265.
Riaz, H., K. Iqbal Ahmad Khan, F. Ullah, M. Bilal Tahir, M. Alqurashi, and T. Badr Alsulami. 2023. “Key factors for implementation of total quality management in construction Sector: A system dynamics approach.” Ain Shams Eng. J. 14 (3): 101903. https://doi.org/10.1016/j.asej.2022.101903.
Sahin, O., D. Miller, and S. Mohamed. 2018. “Value-based modelling: An Australian case of off-site manufactured buildings.” Int. J. Construct. Manage. 18 (1): 34–52. https://doi.org/10.1080/15623599.2016.1247774.
Sarimveis, H., P. Patrinos, C. D. Tarantilis, and C. T. Kiranoudis. 2008. “Dynamic modeling and control of supply chain systems: A review.” Comput. Oper. Res. 35 (11): 3530–3561. https://doi.org/10.1016/j.cor.2007.01.017.
Seuring, S., and S. Gold. 2012. “Conducting content-analysis based literature reviews in supply chain management.” Supply Chain Manage. 17 (5): 544–555. https://doi.org/10.1108/13598541211258609.
Shafieezadeh, M., M. Kalantar Hormozi, E. Hassannayebi, L. Ahmadi, M. Soleymani, and A. Gholizad. 2020. “A system dynamics simulation model to evaluate project planning policies.” Int. J. Modell. Simul. 40 (3): 201–216. https://doi.org/10.1080/02286203.2019.1596779.
Shafiei, I., E. Eshtehardian, F. Nasirzadeh, and S. Arabi. 2020. “Dynamic modeling to reduce the cost of quality in construction projects.” Int. J. Construct. Manage. 23 (1): 1–14. https://doi.org/10.1080/15623599.2020.1845425.
Shevchenko, A., M. Pagell, M. Lévesque, and D. Johnston. 2020. “Preventing supplier non-conformance: Extending the agency theory perspective.” Int. J. Oper. Prod. Manage. 40 (3): 315–340. https://doi.org/10.1108/IJOPM-08-2019-0601.
Shin, M., H. S. Lee, M. Park, M. Moon, and S. Han. 2014. “A system dynamics approach for modeling construction workers’ safety attitudes and behaviors.” Accid. Anal. Prev. 68 (Jul): 95–105. https://doi.org/10.1016/j.aap.2013.09.019.
Smets, L. P. M., K. E. Van Oorschot, and F. Langerak. 2013. “Don’t trust: A dynamic approach to controlling supplier involvement in new product development.” J. Prod. Innov. Manag. 30 (6): 1145–1158. https://doi.org/10.1111/jpim.12051.
Soewin, E., and T. Chinda. 2022. “Development of a construction performance index in the construction industry: System dynamics modelling approach.” Int. J. Construct. Manage. 22 (10): 1806–1817. https://doi.org/10.1080/15623599.2020.1742633.
Spiegler, V. L. M., M. M. Naim, and J. Wikner. 2012. “A control engineering approach to the assessment of supply chain resilience.” Int. J. Prod. Res. 50 (21): 6162–6187. https://doi.org/10.1080/00207543.2012.710764.
Suciati, H., T. J. W. Adi, and I. P. A. Wiguna. 2018. “A dynamic model for assessing the effects of construction workers’ waste behavior to reduce material waste.” Int. J. Adv. Sci. Eng. Inf. Technol. 8 (2): 444–452. https://doi.org/10.18517/ijaseit.8.2.4315.
Suprun, E., O. Sahin, R. A. Stewart, and K. Panuwatwanich. 2022. “Examining transition pathways to construction innovation in Russia: A system dynamics approach.” Int. J. Construct. Manage. 22 (4): 556–578. https://doi.org/10.1080/15623599.2019.1637628.
Suprun, E., O. Sahin, R. A. Stewart, K. Panuwatwanich, and Y. Shcherbachenko. 2018. “An integrated participatory systems modelling approach: Application to construction innovation.” Systems 6 (3): 33. https://doi.org/10.3390/systems6030033.
Tam, V. W., J. Li, and H. Cai. 2014. “System dynamic modeling on construction waste management in Shenzhen, China.” Waste Manage. Res. 32 (5): 441–453. https://doi.org/10.1177/0734242X14527636.
Tang, Y. H., and S. O. Ogunlana. 2003a. “Modelling the dynamic performance of a construction organization.” Construct. Manage. Econ. 21 (2): 127–136. https://doi.org/10.1080/0144619032000079699.
Tang, Y. H., and S. O. Ogunlana. 2003b. “Selecting superior performance improvement policies.” Construct. Manage. Econ. 21 (3): 247–256. https://doi.org/10.1080/0144619032000093765.
Tatari, O., D. Castro-Lacouture, and M. J. Skibniewski. 2008. “Performance evaluation of construction enterprise resource planning systems.” J. Manage. Eng. 24 (4): 198–206. https://doi.org/10.1061/(ASCE)0742-597X(2008)24:4(198).
Tavakolan, M., and H. Etemadinia. 2017. “Fuzzy weighted interpretive structural modeling: Improved method for identification of risk interactions in construction projects.” J. Constr. Eng. Manage. 143 (11): 04017084. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001395.
Taylor, T. R. B., and D. N. Ford. 2008. “Managing tipping point dynamics in complex construction projects.” J. Constr. Eng. Manage. 134 (6): 421–431. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:6(421).
Tomiyama, K. 1985. “Two-stage optimal control problems and optimality conditions.” J. Econ. Dyn. Control 9 (3): 317–337. https://doi.org/10.1016/0165-1889(85)90010-7.
Towill, D. R. 1982. “Dynamic analysis of an inventory and order based production control system.” Int. J. Prod. Res. 20 (6): 671–687. https://doi.org/10.1080/00207548208947797.
Ullah, F., M. J. Thaheem, S. Q. Siddiqui, and M. B. Khurshid. 2017. “Influence of Six Sigma on project success in construction industry of Pakistan.” TQM J. 29 (2): 276–309. https://doi.org/10.1108/TQM-11-2015-0136.
Van Eck, N. J., F. Frasincar, and D. Chang. 2008. “Cluster-based visualization of concept associations.” In Proc. Int. Conf. on Information Visualisation, 409–414. New York: IEEE. https://doi.org/10.1109/IV.2008.54.
Vitharana, V. H. P., and T. Chinda. 2021. “Development of a lower back pain prevention index for heavy equipment operators in the construction industry: System dynamics modelling.” Int. J. Construct. Manage. 21 (7): 677–693. https://doi.org/10.1080/15623599.2019.1579969.
Wada, Y., K. Hamada, and N. Hirata. 2022. “Shipbuilding capacity optimization using shipbuilding demand forecasting model.” J. Mar. Sci. Technol. 27 (1): 522–540. https://doi.org/10.1007/s00773-021-00852-8.
Wada, Y., K. Hamada, N. Hirata, K. Seki, and S. Yamada. 2018. “A system dynamics model for shipbuilding demand forecasting.” J. Mar. Sci. Technol. 23 (2): 236–252. https://doi.org/10.1007/s00773-017-0466-6.
Wan, S. K. M., M. Kumaraswamy, and D. T. C. Liu. 2013. “Dynamic modelling of building services projects: A simulation model for real-life projects in the Hong Kong construction industry.” Math. Comput. Modell. 57 (9–10): 2054–2066. https://doi.org/10.1016/j.mcm.2011.06.070.
Wang, X., and S. M. Disney. 2016. “The bullwhip effect: Progress, trends and directions.” Eur. J. Oper. Res. 250 (3): 691–701. https://doi.org/10.1016/j.ejor.2015.07.022.
Wang, X., Q. Du, C. Lu, and J. Li. 2022. “Exploration in carbon emission reduction effect of low-carbon practices in prefabricated building supply chain.” J. Cleaner Prod. 368 (Sep): 133153. https://doi.org/10.1016/j.jclepro.2022.133153.
Wang, Y., H. Yi, and M. Fang. 2014. “Developing a sustainability performance assessment tool for public funded projects according to policies and stakeholders’ perceptions.” Open Constr. Build. Technol. J. 8 (1): 52–62. https://doi.org/10.2174/1874836801408010052.
Wesz, J. G. B., C. T. Formoso, and P. Tzortzopoulos. 2018. “Planning and controlling design in engineered-to-order prefabricated building systems.” Eng. Constr. Archit. Manage. 25 (2): 134–152. https://doi.org/10.1108/ECAM-02-2016-0045.
Wikner, J. 2003. “Continuous-time dynamic modelling of variable lead times.” Int. J. Prod. Res. 41 (12): 2787–2798. https://doi.org/10.1080/0020754031000093178.
Wikner, J., M. M. Naim, and M. Rudberg. 2007. “Exploiting the order book for mass customized manufacturing control systems with capacity limitations.” IEEE Trans. Eng. Manage. 54 (1): 145–155. https://doi.org/10.1109/TEM.2006.889073.
Wikner, J., M. M. Naim, V. L. M. Spiegler, and J. Lin. 2017. “IOBPCS based models and decoupling thinking.” Int. J. Prod. Econ. 194 (Dec): 153–166. https://doi.org/10.1016/j.ijpe.2017.05.009.
Woolley, M., N. Goode, P. Salmon, and G. Read. 2020. “Who is responsible for construction safety in Australia? A STAMP analysis.” Saf. Sci. 132 (Dec): 104984. https://doi.org/10.1016/j.ssci.2020.104984.
Wrzaczek, S., and P. M. Kort. 2012. “Anticipation in innovative investment under oligopolistic competition.” Automatica 48 (11): 2812–2823. https://doi.org/10.1016/j.automatica.2012.08.007.
Wu, G., K. Duan, J. Zuo, J. Yang, and S. Wen. 2016. “System dynamics model and simulation of employee work-family conflict in the construction industry.” Int. J. Environ. Res. Public Health 13 (11): 1059. https://doi.org/10.3390/ijerph13111059.
Wu, X., H. Yuan, G. Wang, S. Li, and G. Wu. 2019. “Impacts of lean construction on safety systems: A system dynamics approach.” Int. J. Environ. Res. Public Health 16 (2): 221. https://doi.org/10.3390/ijerph16020221.
Wu, Z., K. Yang, X. Lai, and M. F. Antwi-afari. 2020. “A scientometric review of system dynamics applications in construction management research.” Sustainability 12 (18): 7474. https://doi.org/10.3390/su12187474.
Yang, B., X. Song, H. Yuan, and J. Zuo. 2020. “A model for investigating construction workers’ waste reduction behaviors.” J. Cleaner Prod. 265 (Aug): 121841. https://doi.org/10.1016/j.jclepro.2020.121841.
Yang, L. R. 2013. “Key practices, manufacturing capability and attainment of manufacturing goals: The perspective of project/engineer-to-order manufacturing.” Int. J. Project Manage. 31 (1): 109–125. https://doi.org/10.1016/j.ijproman.2012.03.005.
Yao, H., L. Shen, Y. Tan, and J. Hao. 2011. “Simulating the impacts of policy scenarios on the sustainability performance of infrastructure projects.” Autom. Constr. 20 (8): 1060–1069. https://doi.org/10.1016/j.autcon.2011.04.007.
Ye, G., H. Yuan, L. Shen, and H. Wang. 2012. “Simulating effects of management measures on the improvement of the environmental performance of construction waste management.” Resour. Conserv. Recycl. 62 (May): 56–63. https://doi.org/10.1016/j.resconrec.2012.01.010.
Yuan, H. 2012. “A model for evaluating the social performance of construction waste management.” Waste Manage. 32 (6): 1218–1228. https://doi.org/10.1016/j.wasman.2012.01.028.
Yuan, H., A. R. Chini, Y. Lu, and L. Shen. 2012. “A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste.” Waste Manage. 32 (3): 521–531. https://doi.org/10.1016/j.wasman.2011.11.006.
Yuan, H., and J. Wang. 2014. “A system dynamics model for determining the waste disposal charging fee in construction.” Eur. J. Oper. Res. 237 (3): 988–996. https://doi.org/10.1016/j.ejor.2014.02.034.
Yuan, H. P., L. Y. Shen, J. J. L. Hao, and W. S. Lu. 2011. “A model for cost-benefit analysis of construction and demolition waste management throughout the waste chain.” Resour. Conserv. Recycl. 55 (6): 604–612. https://doi.org/10.1016/j.resconrec.2010.06.004.
Yuan, R., F. Guo, Y. Qian, B. Cheng, J. Li, X. Tang, and X. Peng. 2022. “A system dynamic model for simulating the potential of prefabrication on construction waste reduction.” Environ. Sci. Pollut. Res. 29 (9): 12589–12600. https://doi.org/10.1007/s11356-021-14370-y.
Zhang, J., K. Schmidt, H. Xie, and H. Li. 2016. “A new mixed approach for modelling and assessing environmental influences to value co-creation in the construction industry.” Int. J. Prod. Res. 54 (21): 6548–6562. https://doi.org/10.1080/00207543.2016.1145818.
Zhang, Y., X. Yi, H. Qiu, and J. Chen. 2022. “An evolutionary game analysis of contractor’s green construction behavior with government supervision and WeMedia’s influence.” Math. Probl. Eng. 2022: 12. https://doi.org/10.1155/2022/6722223.
Zhou, Y., X. Wang, M. M. Naim, and J. Gosling. 2022. “A system dynamics archetype to mitigate rework effects in engineer-to-order supply chains.” Int. J. Prod. Econ. 250 (Aug): 108620. https://doi.org/10.1016/j.ijpe.2022.108620.

Information & Authors

Information

Published In

Go to Journal of Construction Engineering and Management
Journal of Construction Engineering and Management
Volume 149Issue 5May 2023

History

Published online: Feb 23, 2023
Published in print: May 1, 2023
Discussion open until: Jul 23, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate in Logistics Systems Dynamics Group, Logistics and Operations Management Section, Cardiff Business School, Cardiff Univ., Aberconway Bldg., Colum Rd., Cathays, Cardiff CF10 3EU, UK (corresponding author). ORCID: https://orcid.org/0000-0002-5645-0903. Email: [email protected]
Xun Wang
Senior Lecturer in Logistics Systems Dynamics Group, Logistics and Operations Management Section, Cardiff Business School, Cardiff Univ., Aberconway Bldg., Colum Rd., Cathays, Cardiff CF10 3EU, UK.
Jonathan Gosling
Professor in Logistics Systems Dynamics Group, Logistics and Operations Management Section, Cardiff Business School, Cardiff Univ., Aberconway Bldg., Colum Rd., Cathays, Cardiff CF10 3EU, UK.
Professor in Logistics Systems Dynamics Group, Logistics and Operations Management Section, Cardiff Business School, Cardiff Univ., Aberconway Bldg., Colum Rd., Cathays, Cardiff CF10 3EU, UK. ORCID: https://orcid.org/0000-0003-3361-9400

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Evolutionary Game Analysis of Optimal Strategies for Construction Stakeholders in Promoting the Adoption of Green Building Technology Innovation, Journal of Construction Engineering and Management, 10.1061/JCEMD4.COENG-14071, 150, 5, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share