Technical Papers
Sep 25, 2024

Local FRP Cracking and Global Structural Behavior of Stub Concrete-Filled FRP Tubes under Concentric and Eccentric Compression

Publication: Journal of Composites for Construction
Volume 28, Issue 6

Abstract

This paper examines experimental data from 22 large-scale concrete-filled FRP tubes (CFFTs), each 900 mm in length and 300 mm in diameter, subjected to either concentric or eccentric compression. The study encompasses CFFTs composed of normal-strength concrete (NSC) and high-strength concrete (HSC), employing glass fiber–reinforced polymer (GFRP) tubes with fiber angles of 60° and 80°. A primary focus of this study is investigating the cracking behavior of GFRP tubes in CFFTs during loading, a durability/serviceability-related issue that has received limited attention in existing literature. Based on the test data, the study identifies two distinct types of cracking: tension-induced cracking under eccentric compression and hoop crushing under either concentric or eccentric compression. The paper delves into the underlying mechanisms behind these cracking phenomena and thoroughly explores the influence of variables such as fiber-reinforced polymer (FRP) tube thickness, fiber angle, and the type of concrete core on the observed cracking behavior. Meanwhile, the paper provides an in-depth analysis of the structural behavior of CFFTs, with a focus on aspects such as GFRP tube thickness, fiber angle, and the differences between NSC and HSC cores. These experimental results not only enhance the understanding of the behavior of large-scale CFFTs under concentric or eccentric compressions but also offer crucial insights into the differences in the compressive behavior of FRP-confined NSC columns and FRP-confined HSC columns. Additionally, the comparative analyses of local cracking behavior with the global behavior of CFFTs contribute vital information toward the development of a design method of CFFT columns in practice, with different considerations of the issues in the ultimate limit state and serviceability limit state (e.g., the corrosion protection capabilities of the GFRP tube in CFFTs).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors are grateful for the financial support received from the National Natural Science Foundation of China (Project Nos. 51978281 and 52378156), Guangdong Basic and Applied Basic Research Foundation (Project No. 2024A1515012614), and the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (Project No. 2021B1212040003).

References

Abdallah, M. H., H. M. Mohamed, and R. Masmoudi. 2018. “Experimental assessment and theoretical evaluation of axial behavior of short and slender CFFT columns reinforced with steel and CFRP bars.” Constr. Build. Mater. 181: 535–550. https://doi.org/10.1016/j.conbuildmat.2018.06.014.
Ahmed, A. A., M. Hassan, H. Mohamed, A. Abouzied, and R. Masmoudi. 2018. “Axial behavior of circular CFFT long columns internally reinforced with steel or carbon and glass FRP longitudinal bars.” Eng. Struct. 155: 267–278. https://doi.org/10.1016/j.engstruct.2017.11.037.
Alelaimat, R. A., M. N. Sheikh, and M. N. S. Hadi. 2021. “Behaviour of square concrete filled FRP tube columns under concentric, uniaxial eccentric, biaxial eccentric and four-point bending loads.” Thin-Walled Struct. 168: 108252. https://doi.org/10.1016/j.tws.2021.108252.
Al-saadi, A. U., T. Aravinthan, and W. Lokuge. 2018. “Structural applications of fibre reinforced polymer (FRP) composite tubes: A review of columns members.” Compos. Struct. 204: 513–524. https://doi.org/10.1016/j.compstruct.2018.07.109.
ASTM. 2016. Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe. ASTM D2290-16. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M-21. West Conshohocken, PA: ASTM.
ASTM. 2022a. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM C469/C469M-22. West Conshohocken, PA: ASTM.
ASTM. 2022b. Standard test method for transverse compressive properties of hoop wound polymer matrix composite cylinders. ASTM D5449/D544M-22. West Conshohocken, PA: ASTM.
Betts, D., P. Sadeghian, and A. Fam. 2019. “Investigation of the stress-strain constitutive behavior of ±55° filament wound GFRP pipes in compression and tension.” Composites, Part B 172: 243–252. https://doi.org/10.1016/j.compositesb.2019.05.077.
Bisby, L., and M. Ranger. 2010. “Axial-flexural interaction in circular FRP-confined reinforced concrete columns.” Constr. Build. Mater. 24 (9): 1672–1681. https://doi.org/10.1016/j.conbuildmat.2010.02.024.
Cao, Q., J. J. Tao, Z. M. Wu, and Z. J. Ma. 2017. “Behavior of FRP-steel confined concrete tubular columns made of expansive self-consolidating concrete under axial compression.” J. Compos. Constr. 21 (5): 04017037. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000818.
CEN (European Committee for Standardization). 2019. Metallic materials—Tensile testing—Part 1: Method of test at room temperature. BS EN ISO 6892-1:2019. Brussels, Belgium: CEN.
Chen, G. M., Y. C. Lu, P. Xie, J. G. Teng, T. Yu, Y. Xiang, T. Cheng, Z. B. Li, F. N. Hu, and W. N. Liu. 2022. “Analysis and design methods for FRP-concrete-steel double-skin tubular bridge piers.” China J. Highway Transp. 35 (2): 12–38.
Chen, G. M., J. J. Zhang, Y. F. Wu, G. Lin, and T. Jiang. 2021. “Stress-strain behavior of FRP-confined recycled aggregate concrete in square columns of different sizes.” J. Compos. Constr. 25 (5): 04021040. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001150.
Chen, J. F., S. Q. Li, L. A. Bisby, and J. Ai. 2011. “FRP rupture strains in the split-disk test.” Composites, Part B 42 (4): 962–972. https://doi.org/10.1016/j.compositesb.2010.12.015.
Dong, Z. Q., Y. Sun, H. Zhu, G. Wu, Z. Y. Yan, and F. Lu. 2022. “Behavior and modeling of seawater sea-sand coral aggregate concrete-filled BFRP tubular columns under eccentric compression.” Compos. Struct. 288: 115392. https://doi.org/10.1016/j.compstruct.2022.115392.
El Chabib, H., M. Nehdi, and M.-H. El Naggar. 2005. “Behavior of SCC confined in short GFRP tubes.” Cem. Concr. Compos. 27 (1): 55–64. https://doi.org/10.1016/j.cemconcomp.2004.02.045.
Fam, A., B. Flisak, and S. Rizkalla. 2003. “Experimental and analytical modeling of concrete-filled fiber-reinforced polymer tubes subjected to combined bending and axial loads.” ACI Struct. J. 100 (4): 499–509.
Fam, A., and S. Rizkalla. 2003. “Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications.” Constr. Build. Mater. 17 (6–7): 507–516. https://doi.org/10.1016/S0950-0618(03)00048-5.
Fam, A. Z., and S. H. Rizkalla. 2001a. “Behavior of axially loaded concrete-filled circular fiber-reinforced polymer tubes.” ACI Struct. J. 98: 280–289.
Fam, A. Z., and S. H. Rizkalla. 2001b. “Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes.” ACI Struct. J. 98 (4): 451–461.
Feng, P., Y. H. Zhang, Y. Bai, and L. P. Ye. 2013. “Strengthening of steel members in compression by mortar-filled FRP tubes.” Thin-Walled Struct. 64: 1–12. https://doi.org/10.1016/j.tws.2012.11.001.
Gao, C., L. Huang, L. B. Yan, B. Kasal, and W. G. Li. 2016. “Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate.” Compos. Struct. 155: 245–254. https://doi.org/10.1016/j.compstruct.2016.08.021.
Guan, H., Y. Xia, J. Wang, and A. H. Mbonyintege. 2021. “Influences of slenderness and eccentricity on the mechanical properties of concrete-filled GFRP tube columns.” Polymers 13 (17): 2968. https://doi.org/10.3390/polym13172968.
Hadi, M. N. S. 2006. “Behaviour of FRP wrapped normal strength concrete columns under eccentric loading.” Compos. Struct. 72 (4): 503–511. https://doi.org/10.1016/j.compstruct.2005.01.018.
Hadi, M. N. S. 2007. “The behaviour of FRP wrapped HSC columns under different eccentric loads.” Compos. Struct. 78 (4): 560–566. https://doi.org/10.1016/j.compstruct.2005.11.018.
Hadi, M. N. S. 2009. “Behaviour of eccentric loading of FRP confined fibre steel reinforced concrete columns.” Constr. Build. Mater. 23 (2): 1102–1108. https://doi.org/10.1016/j.conbuildmat.2008.05.024.
Hollaway, L. C., and J. G. Teng. 2008. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Cambridge, UK: Woodhead.
Huang, D. M., Z. Z. Liu, P. Liu, Y. Y. Lu, and S. Li. 2022. “Research on eccentric compressive behavior of steel fiber reinforced recycled concrete-filled GFRP tube columns.” Compos. Struct. 301: 116179. https://doi.org/10.1016/j.compstruct.2022.116179.
Huang, L., T. Yu, S.-S. Zhang, and Z.-Y. Wang. 2017. “FRP-confined concrete-encased cross-shaped steel columns: Concept and behaviour.” Eng. Struct. 152: 348–358. https://doi.org/10.1016/j.engstruct.2017.09.011.
Huang, L., S. S. Zhang, T. Yu, and Z. Y. Wang. 2018. “Compressive behaviour of large rupture strain FRP-confined concrete-encased steel columns.” Constr. Build. Mater. 183: 513–522. https://doi.org/10.1016/j.conbuildmat.2018.06.074.
Ji, G. F., G. Q. Li, X. G. Li, S.-S. Pang, and R. Jones. 2008. “Experimental study of FRP tube encased concrete cylinders exposed to fire.” Compos. Struct. 85 (2): 149–154. https://doi.org/10.1016/j.compstruct.2007.10.013.
Jiang, C., and Y.-F. Wu. 2020. “Axial strength of eccentrically loaded FRP-confined short concrete columns.” Polymers 12: 1261. https://doi.org/10.3390/polym12061261.
Jiang, T., X. M. Wang, G. M. Chen, J. J. Zhang, and W. P. Zhang. 2019. “Behavior of recycled brick block concrete-filled FRP tubes under axial compression.” Eng. Struct. 198: 109498. https://doi.org/10.1016/j.engstruct.2019.109498.
Jiang, T., X. Q. Zhang, J. Yao, and Y. Z. Luo. 2014. “Stress-strain behaviour of FRP-confined concrete subjected to eccentric compression.” In Proc., 13th Int. Symp. on Structural Engineering, 441–449. Beijing: Science Press.
Karimi, K., M. J. Tait, and W. W. El-Dakhakhni. 2012. “Influence of slenderness on the behavior of a FRP-encased steel-concrete composite column.” J. Compos. Constr. 16 (1): 100–109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000235.
Kaynak, C., E. S. Erdiller, L. Parnas, and F. Senel. 2005. “Use of split-disk tests for the process parameters of filament wound epoxy composite tubes.” Polym. Test. 24 (5): 648–655. https://doi.org/10.1016/j.polymertesting.2005.03.012.
Khan, Q. S., M. N. Sheikh, and M. N. S. Hadi. 2020. “Experimental results of circular FRP tube confined concrete (CFFT) and comparison with analytical models.” J. Build. Eng. 29: 101157. https://doi.org/10.1016/j.jobe.2019.101157.
Lam, L., and J. G. Teng. 2004. “Ultimate condition of fiber reinforced polymer-confined concrete.” J. Compos. Constr. 8 (6): 539–548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
Leng, F. G., Y. H. Wang, Y. X. Zhou, and Q. D. Wei. 2011. “Research application and development trend of high-strength concrete.” Beton Chinese Edition—Ready-Mixed Concrete 2: 25–27.
Li, J., and M. N. S. Hadi. 2003. “Behaviour of externally confined high-strength concrete columns under eccentric loading.” Compos. Struct. 62 (2): 145–153. https://doi.org/10.1016/S0263-8223(03)00109-0.
Li, Y. L., X. L. Zhao, R. K. R. Singh, and S. Al-Saadi. 2016a. “Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns.” Thin-Walled Struct. 106: 390–406. https://doi.org/10.1016/j.tws.2016.05.014.
Li, Y. L., X. L. Zhao, R. K. R. Singh, and S. Al-Saadi. 2016b. “Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns.” Thin-Walled Struct. 108: 163–184. https://doi.org/10.1016/j.tws.2016.08.016.
Lim, J. C., and T. Ozbakkaloglu. 2014. “Confinement model for FRP-confined high-strength concrete.” J. Compos. Constr. 18 (4): 04013058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000376.
Lin, C. J. 2017. “Experimental study on the packing density and its effects on the compressive behavior of recycled aggregate concrete.” M.S. thesis, School of Civil and Transportation Engineering, Guangdong Univ. of Technology.
Lin, G., J. J. Zeng, J. G. Teng, and L. J. Li. 2020. “Behavior of large-scale FRP-confined rectangular RC columns under eccentric compression.” Eng. Struct. 216: 110759. https://doi.org/10.1016/j.engstruct.2020.110759.
Mandavi, H. R., G. H. Rahimi, and A. Farrokhabadi. 2018. “Failure analysis of glass-reinforced epoxy pipes under internal hydrostatic pressure: A comparison with the split disk test method.” J. Pressure Vessel Technol. 140 (1): 014501. https://doi.org/10.1115/1.4038484.
Meijer, G., and F. Ellyin. 2008. “A failure envelope for ±60° filament wound glass fibre reinforced epoxy tubulars.” Composites, Part A 39 (3): 555–564. https://doi.org/10.1016/j.compositesa.2007.11.002.
Mirmiran, A. 2003. “Stay-in-place FRP form for concrete columns.” Adv. Struct. Eng. 6 (3): 231–241. https://doi.org/10.1260/136943303322419241.
Mirmiran, A., and M. Shahawy. 1995. “A novel FRP-concrete composite construction for the infrastructure.” In Restructuring: America and Beyond, edited by S. Masoud, 1663–1666. New York: ASCE.
Mirmiran, A., and M. Shahawy. 1997. “Behavior of concrete columns confined by fiber composites.” J. Struct. Eng. 123 (5): 583–590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583).
Nishiyama, M. 2009. “Mechanical properties of concrete and reinforcement—state-of-the-art report on HSC and HSS in Japan.” J. Adv. Concr. Technol. 7 (2): 157–182. https://doi.org/10.3151/jact.7.157.
Ozbakkaloglu, T. 2013. “Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression.” Composites, Part B 54: 97–111. https://doi.org/10.1016/j.compositesb.2013.05.007.
Ozbakkaloglu, T., and E. Akin. 2012. “Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression.” J. Compos. Constr. 16 (4): 451–463. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000273.
Ozbakkaloglu, T., and J. C. Lim. 2013. “Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model.” Composites, Part B 55: 607–634. https://doi.org/10.1016/j.compositesb.2013.07.025.
Ozbakkaloglu, T., and D. J. Oehlers. 2008. “Concrete-filled square and rectangular FRP tubes under axial compression.” J. Compos. Constr. 12 (4): 469–477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469).
Ozbakkaloglu, T., and T. Vincent. 2014. “Axial compressive behavior of circular high-strength concrete-filled FRP tubes.” J. Compos. Constr. 18 (2): 04013037. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000410.
Parvin, A., and W. Wang. 2001. “Behavior of FRP jacketed concrete columns under eccentric loading.” J. Compos. Constr. 5 (3): 146–152. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(146).
Pour, A. F., A. Gholampour, J. N. Zhen, and T. Ozbakkaloglu. 2019. “Behavior of FRP-confined high-strength concrete under eccentric compression: Tests on concrete-filled FRP tube columns.” Compos. Struct. 220: 261–272. https://doi.org/10.1016/j.compstruct.2019.03.031.
Pour, A. F., T. Ozbakkaloglu, and T. Vincent. 2021. “Axial compressive behavior of ultra-high-strength steel fiber-reinforced concrete-filled fiber reinforced polymer (FRP) tube columns.” Compos. Struct. 266: 113777. https://doi.org/10.1016/j.compstruct.2021.113777.
Saafi, M., H. A. Toutanji, and Z. J. Li. 1999. “Behavior of concrete columns confined with fiber reinforced polymer tubes.” ACI Mater. J. 96 (4): 500–509.
Soden, P. D., R. Kitching, P. C. Tse, Y. Tsavalas, and M. J. Hinton. 1993. “Influence of winding angle on the strength and deformation of filament-wound composite tubes subjected to uniaxial and biaxial loads.” Compos. Sci. Technol. 46 (4): 363–378. https://doi.org/10.1016/0266-3538(93)90182-G.
Tao, Z., J. G. Teng, L. H. Han, and L. Lam. 2004. “Experimental behaviour of FRP-confined slender RC columns under eccentric loading.” In Advanced polymer composites for structural applications in construction, edited by L. C. Hollaway, M. K. Chryssanthopoulos, and S. S. J. Moy, 203–212. Sawston, UK: Woodhead.
Teng, J. G., J. F. Chen, S. Smith, and L. Lam. 2002. FRP-strengthened RC structures. Hoboken, NJ: Wiley.
Teng, J. G., and L. Lam. 2004. “Behavior and modeling of fiber reinforced polymer-confined concrete.” J. Struct. Eng. 130 (11): 1713–1723. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713).
Teng, J. G., J. L. Zhao, T. Yu, L. J. Li, and Y. C. Guo. 2016. “Behavior of FRP-confined compound concrete containing recycled concrete lumps.” J. Compos. Constr. 20 (1): 04015038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000602.
Tian, H. W., Z. Zhou, Y. Wei, Y. Q. Wang, and J. P. Lu. 2019. “Experimental investigation on axial compressive behavior of ultra-high performance concrete (UHPC) filled glass FRP tubes.” Constr. Build. Mater. 225: 678–691. https://doi.org/10.1016/j.conbuildmat.2019.07.204.
Vincent, T., and T. Ozbakkaloglu. 2013a. “Axial compressive behavior of high- and ultra high-strength concrete-filled AFRP tubes.” In Proc., Int. Conf. on Structures and Building Materials, 626–631. Stafa-Zurich, Switzerland: Trans Tech Publications.
Vincent, T., and T. Ozbakkaloglu. 2013b. “Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete.” Composites, Part B 50: 413–428. https://doi.org/10.1016/j.compositesb.2013.02.017.
Vincent, T., and T. Ozbakkaloglu. 2013c. “Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete.” Constr. Build. Mater. 47: 814–826. https://doi.org/10.1016/j.conbuildmat.2013.05.085.
Vincent, T., and T. Ozbakkaloglu. 2015a. “Compressive behavior of prestressed high-strength concrete-filled aramid FRP tube columns: Experimental observations.” J. Compos. Constr. 19 (6): 04015003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000556.
Vincent, T., and T. Ozbakkaloglu. 2015b. “Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect.” Constr. Build. Mater. 75: 144–156. https://doi.org/10.1016/j.conbuildmat.2014.10.038.
Vincent, T., and T. Ozbakkaloglu. 2017. “An experimental study on shrinkage strains of normal-and high-strength concrete-filled FRP tubes.” In Proc., Int. Conf. on Materials Sciences and Nanomaterials. Bristol, UK: IOP Publishing.
Wang, J., P. Feng, T. Y. Hao, and Q. R. Yue. 2017. “Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes.” Constr. Build. Mater. 147: 272–285. https://doi.org/10.1016/j.conbuildmat.2017.04.169.
Wang, L.-G., H.-f. Han, and P. Liu. 2016. “Behavior of reinforced concrete-filled GFRP tubes under eccentric compression loading.” Mater. Struct. 49 (7): 2819–2827. https://doi.org/10.1617/s11527-015-0688-1.
Wang, W. Q., P. R. Martin, M. N. Sheikh, and M. N. S. Hadi. 2018. “Eccentrically loaded FRP confined concrete with different wrapping schemes.” J. Compos. Constr. 22 (6): 04018056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000898.
Xia, Y. Y., G. J. Xian, Z. Y. Wang, and H. Li. 2016. “Static and cyclic compressive properties of self-compacting concrete-filled flax fiber-reinforced polymer tubes.” J. Compos. Constr. 20 (6): 04016046. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000706.
Xiao, Q. G., J. G. Teng, and T. Yu. 2010. “Behavior and modeling of confined high-strength concrete.” J. Compos. Constr. 14 (3): 249–259. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070.
Xie, P. 2018. “Behaviour of large-scale hybrid FRP-concrete-steel double-skin tubular columns subjected to concentric and eccentric compression.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic Univ.
Xie, T. Y., and T. Ozbakkaloglu. 2016. “Behavior of recycled aggregate concrete-filled basalt and carbon FRP tubes.” Constr. Build. Mater. 105: 132–143. https://doi.org/10.1016/j.conbuildmat.2015.12.068.
Xing, L., G. Lin, and J. F. Chen. 2020. “Behavior of FRP-confined circular RC columns under eccentric compression.” J. Compos. Constr. 24 (4): 04020030. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001036.
Xiong, M. X., Z. H. Lan, G. M. Chen, Y. C. Lu, and Z. Xu. 2021. “Behavior of FRP-HSC-steel tubular columns under axial compression: A comparative study.” Compos. Struct. 261: 113566. https://doi.org/10.1016/j.compstruct.2021.113566.
Yu, T., X. L. Fang, and J. G. Teng. 2014. “FRP-confined self-compacting concrete under axial compression.” J. Mater. Civ. Eng. 26 (11): 04014082. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000993.
Yu, T., and J. G. Teng. 2011. “Design of concrete-filled FRP tubular columns: Provisions in the Chinese technical code for infrastructure application of FRP composites.” J. Compos. Constr. 15 (3): 451–461. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000159.
Zeng, J.-J., Y.-Y. Ye, Y.-C. Guo, J.-F. Lv, Y. Ouyang, and C. Jiang. 2020. “PET FRP-concrete-high strength steel hybrid solid columns with strain-hardening and ductile performance: Cyclic axial compressive behavior.” Composites, Part B 190: 107903. https://doi.org/10.1016/j.compositesb.2020.107903.
Zhang, B., X.-M. Hu, Q. Zhao, T. Huang, N.-Y. Zhang, and Q.-B. Zhang. 2020. “Effect of fiber angles on normal- and high-strength concrete-filled fiber-reinforced polymer tubes under monotonic axial compression.” Adv. Struct. Eng. 23 (5): 924–940. https://doi.org/10.1177/1369433219886082.
Zhang, B., Y.-J. Qi, T. Huang, Q.-B. Zhang, Y. Hu, and X.-M. Hu. 2019. “Effect of fiber angles on hybrid double-tube concrete columns under monotonic axial compression.” Adv. Civ Eng. 2019: 2363185. https://doi.org/10.1155/2019/2363185.
Zhou, L., L. G. Wang, L. Zong, G. Shi, Y. H. Bai, and X. M. Nie. 2017. “Mechanical performance of glass fiber-reinforced polymer tubes filled with steel-reinforced high-strength concrete subjected to eccentric compression.” Adv. Struct. Eng. 20 (3): 374–393. https://doi.org/10.1177/1369433216651765.
Zhu, Z., I. Ahmad, and A. Mirmiran. 2005. “Effect of column parameters on axial compression behavior of concrete-filled FRP tubes.” Adv. Struct. Eng. 8 (4): 443–449. https://doi.org/10.1260/136943305774353098.
Zohrevand, P., and A. Mirmiran. 2011. “Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers.” J. Mater. Civ. Eng. 23 (12): 1727–1734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000324.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 28Issue 6December 2024

History

Received: Feb 27, 2024
Accepted: Aug 6, 2024
Published online: Sep 25, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 25, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Guang-Ming Chen [email protected]
Professor, State Key Laboratory of Subtropical Building and Urban Science, South China Univ. of Technology, Guangzhou 510641, China. Email: [email protected]
Ph.D. Candidate, State Key Laboratory of Subtropical Building and Urban Science, South China Univ. of Technology, Guangzhou 510641, China. Email: [email protected]
Research Assistant Professor, Sonny Astani Dept. of Civil and Environmental Engineering, Univ. of Southern California, 1042 Downey Way, Los Angeles, CA 90089 (corresponding author). ORCID: https://orcid.org/0000-0001-7719-1501. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share