Abstract

Damage quantification in terms of engineering demand parameters (EDPs) is a critical element of the performance-based design (PBD) approach. A widely used EDP for reinforced-concrete (RC) bridge columns is the drift ratio. This study establishes drift ratio limit states, and corresponding strengths for hybrid GFRP–steel RC circular bridge columns. The adopted reinforcement layout in this study consists of two layers of reinforcement, exterior with GFRP and interior with steel. Such coupling between the two materials in concrete bridge columns improves their corrosion resistance while maintaining their stiffness and ductility. Here, a validated fiber-based model is utilized to predict global as well as local responses of hybrid RC columns under monotonic displacement-controlled loading. A full factorial analysis was first adopted to screen parameters potentially influencing drift ratio limit states and corresponding strengths for their significance. The resulting data were then fitted to mathematical expressions using machine learning-based symbolic regression. Lateral load–deformation responses predicted based on the proposed expressions were validated against existing data from the literature. A complete example demonstrating how the proposed expressions could be utilized to design a hybrid bridge column within the context of PBD is also presented.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdallah, A. E., and E. F. El-Salakawy. 2021. “Seismic behavior of high-strength concrete circular columns reinforced with glass fiber-reinforced polymer bars.” ACI Struct. J. 118 (5): 221–234.
Abdallah, A. E., Y. M. Selmy, and E. F. El-Salakawy. 2022. “Confinement characteristics of GFRP–RC circular columns under simulated earthquake loading: A numerical study.” J. Compos. Constr. 26 (2): 04022007. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001195.
Abdelrahman, A. A., G. Tadros, and S. H. Rizkalla. 1995. “Test model for first Canadian smart highway bridge.” ACI Struct. J. 92 (4): 451–458.
ACI (American Concrete Institute). 2015. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymers (FRP) bars. ACI 440.1R-15. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2019. Building code requirements for reinforced concrete. ACI 318. Farmington Hills, MI: ACI.
Afifi, M. Z., H. M. Mohamed, and B. Benmokrane. 2014a. “Axial capacity of circular concrete columns reinforced with GFRP bars and spirals.” J. Compos. Constr. 18 (1): 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
Afifi, M. Z., H. M. Mohamed, and B. Benmokrane. 2014b. “Strength and axial behavior of circular concrete columns reinforced with CFRP bars and spirals.” J. Compos. Constr. 18 (2): 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430.
Afifi, M. Z., H. M. Mohamed, and B. Benmokrane. 2015. “Theoretical stress–strain model for circular concrete columns confined by GFRP spirals and hoops.” Eng. Struct. 102: 202–213. https://doi.org/10.1016/j.engstruct.2015.08.020.
Aiello, M. A., and L. Ombres. 2002. “Structural performances of concrete beams with hybrid (fiber reinforced polymer-steel) reinforcements.” J. Compos. Constr. 6 (2): 133–140. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(133).
Aldabagh, S., F. Hossain, and M. S. Alam. 2022. “Simplified predictive expressions of drift limit states for reinforced concrete circular bridge columns.” J. Struct. Eng. 148 (3): 04021285. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003270.
Ali, A. H., H. M. Mohamed, and B. Benmokrane. 2016. “Shear behavior of circular concrete members reinforced with GFRP bars and spirals at shear span-to-depth ratios between 1.5 and 3.0.” J. Compos. Constr. 20 (6): 04016055. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000707.
Ali, A. H., H. M. Mohamed, and B. Benmokrane. 2017. “Strength and behavior of circular FRP-reinforced concrete sections without web reinforcement in shear.” J. Struct. Eng. 143 (3): 04016196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001684.
Ali, M. A., and E. El-Salakawy. 2016. “Seismic performance of GFRP-reinforced concrete rectangular columns.” J. Compos. Constr. 20 (3): 04015074. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000637.
Bae, S., and O. Bayrak. 2008. “Plastic hinge length of reinforced concrete columns.” ACI Struct. J. 105 (3): 290.
Baena, M., L. Torres, A. Turon, and C. Barris. 2009. “Experimental study of bond behaviour between concrete and FRP bars using a pull-out test.” Composites, Part B 40 (8): 784–797. https://doi.org/10.1016/j.compositesb.2009.07.003.
Bakis, C. E., L. C. Bank, V. L. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla, and T. C. Triantafillou. 2002. “Fiber-reinforced polymer composites for construction—state-of-the-art review.” J. Compos. Constr. 6 (2): 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
Barcley, L., and M. Kowalsky. 2020. “Seismic performance of circular concrete columns reinforced with high-strength steel.” J. Struct. Eng. 146 (2): 04019198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002452.
Benmokrane, B., E. El-Salakawy, S. El-Gamal, and S. Goulet. 2007. “Construction and testing of an innovative concrete bridge deck totally reinforced with glass FRP bars: Val-Alain Bridge on Highway 20 East.” J. Bridge Eng. 12 (5): 632–645. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:5(632).
Benzecry, V., A. F. Al-Khafaji, R. T. Haluza, C. E. Bakis, J. J. Myers, and A. Nanni. 2021. “Durability assessment of 15- to 20-year-Old GFRP bars extracted from bridges in the US. I: Selected bridges, Bar extraction, and concrete assessment.” J. Compos. Constr. 25 (2): 04021007. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001110.
Berry, M. P., and M. O. Eberhard. 2003. Performance models for flexural damage in reinforced concrete columns. Pacific Earthquake Engineering Research Center Report 2003. Berkeley, CA: Univ. of California.
Bhuiyan, S., D. Law, and T. Molyneux. 2014. “The impact of the interruption of impressed current cathodic protection on the steel/concrete interface.” Concr. Solutions 153. https://doi.org/10.1201/b17394-26.
Billah, A. H. M. M., and M. S. Alam. 2012. “Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber reinforced polymer (FRP) bars.” Constr. Build. Mater. 28 (1): 730–742. https://doi.org/10.1016/j.conbuildmat.2011.10.020.
Billah, A. H. M. M., and M. S. Alam. 2016. “Performance-based seismic design of shape memory Alloy–Reinforced concrete bridge piers. I: Development of performance-based damage states.” J. Struct. Eng. 142 (12): 4016140–4011-13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001458.
Bruun, E. 2014. “GFRP bars in structural design: Determining the compressive strength versus unbraced length interaction curve.” Can. Young. Sci. J. 2014 (10): 22–29.
Bruun, E., and S. A. Sheikh. 2014. “GFRP bars as compressive reinforcement in exposed structures.” In Proc., 9th Int. Conf., on Short and Medium Span Bridges. Montreal: Canadian Society for Civil Engineering (CSCE).
Calabrese, A., J. P. Almeida, and R. Pinho. 2010. “Numerical issues in distributed inelasticity modeling of RC frame elements for seismic analysis.” J. Earthquake Eng. 14 (S1): 38–68. https://doi.org/10.1080/13632461003651869.
Calvi, G. M., M. J. N. Priestley, and M. J. Kowalsky. 2007. “Displacement–based seismic design of structures.” Earthquake Spectra 24 (2): 1–24.
Ceroni, F., E. Cosenza, M. Gaetano, and M. Pecce. 2006. “Durability issues of FRP rebars in reinforced concrete members.” Cem. Concr. Compos. 28 (10): 857–868. https://doi.org/10.1016/j.cemconcomp.2006.07.004.
CSA (Canadian Standard Association). 2012. Design and construction of building structures with fibre-reinforced polymers. CAN/CSAS802-12-R2017. Toronto, ON, Canada: CSA.
CSA (Canadian Standard Association). 2019a. Canadian highway bridge design code. CSA S6. Rexdale, ON, Canada: CSA.
CSA (Canadian Standard Association). 2019b. Specification for fibre-reinforced polymers. CSA S807. Toronto, ON, Canada: CSA.
Dasgupta, A. 2018. “Retrofitting of concrete structure with fiber reinforced polymer.” Int. J. 4 (9): 42–49.
De Lorenzis, L., and J. G. Teng. 2007. “Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures.” Composites, Part B 38 (2): 119–143. https://doi.org/10.1016/j.compositesb.2006.08.003.
De Luca, A., F. Matta, and A. Nanni. 2010. “Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load.” ACI Struct. J. 107 (5): 589.
Di, J., J. Fan, X. Zhou, L. Zhao, B. Han, F. Qin, and Z. Zhang. 2022. “Hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance.” Eng. Struct. 251: 113532. https://doi.org/10.1016/j.engstruct.2021.113532.
Elgabbas, F., E. A. Ahmed, and B. Benmokrane. 2017. “Flexural behavior of concrete beams reinforced with ribbed basalt-FRP bars under static loads.” J. Compos. Constr. 21 (3): 04016098. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000752.
Elmessalami, N., A. El Refai, and F. Abed. 2019. “Fiber-reinforced polymers bars for compression reinforcement: A promising alternative to steel bars.” Constr. Build. Mater. 209: 725–737. https://doi.org/10.1016/j.conbuildmat.2019.03.105.
El-Salakawy, E., B. Benmokrane, A. El-Ragaby, and D. Nadeau. 2005. “Field investigation on the first bridge deck slab reinforced with glass FRP bars constructed in Canada.” J. Compos. Constr. 9 (6): 470–479. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(470).
Elshamandy, M. G., A. S. Farghaly, and B. Benmokrane. 2018. “Experimental behavior of glass fiber-reinforced polymer-reinforced concrete columns under lateral cyclic load.” ACI Struct. J. 115 (2): 337–349.
Fan, X., and M. Zhang. 2016. “Behaviour of inorganic polymer concrete columns reinforced with basalt FRP bars under eccentric compression: An experimental study.” Composites, Part B 104: 44–56. https://doi.org/10.1016/j.compositesb.2016.08.020.
FEMA. 2003. Hazus-MH software. Washington, DC: FEMA.
Foroughi, S., and S. B. Yüksel. 2021. “Investigation of moment-curvature and effective section stiffness of reinforced concrete columns.” Challenge 7 (3): 135–150.
Ge, W.-J., A. F. Ashour, J. Yu, P. Gao, D.-F. Cao, C. Cai, and X. Ji. 2019. “Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars.” J. Compos. Constr. 23 (1): 04018069. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000910.
Gokhan, D. O. K., H. Ozturk, and A. Demir. 2017. “Determining moment-curvature relationship of reinforced concrete columns.” In Vol. 1 of Proc., Eurasia of Science Technology Engineering and Mathematics, 52–58. Ames, IA: ISRES Publishing.
Goodnight, J. C., M. J. Kowalsky, and J. M. Nau. 2016. “Strain limit states for circular RC bridge columns.” Earthquake Spectra 32 (3): 1627–1652. https://doi.org/10.1193/030315EQS036M.
Gravina, R. J., and S. T. Smith. 2008. “Flexural behaviour of indeterminate concrete beams reinforced with FRP bars.” Steel Constr. 30 (9): 2370–2380.
Guérin, M., H. M. Mohamed, B. Benmokrane, A. Nanni, and C. K. Shield. 2018a. “Eccentric behavior of full-scale reinforced concrete columns with glass fiber-reinforced polymer bars and ties.” ACI Struct. J. 115 (2): 489–499. https://doi.org/10.14359/51701107.
Guérin, M., H. M. Mohamed, B. Benmokrane, C. K. Shield, and A. Nanni. 2018b. “Effect of glass fiber-reinforced polymer reinforcement ratio on the axial–flexural strength of reinforced concrete columns.” ACI Struct. J. 115 (4): 1049–1043. https://doi.org/10.14359/51701279.
Hadhood, A., H. M. Mohamed, and B. Benmokrane. 2016. “Behavior of circular FRP-reinforced concrete columns under eccentric loading.” In Proc., 5th Specialty Conf., on FRP Structures. London: Canadian Society for Civil Engineering.
Hadhood, A., H. M. Mohamed, and B. Benmokrane. 2017a. “Axial load–moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations.” J. Compos. Constr. 21 (2): 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748.
Hadhood, A., H. M. Mohamed, F. Ghrib, and B. Benmokrane. 2017b. “Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads.” Composites, Part B 114: 223–236. https://doi.org/10.1016/j.compositesb.2017.01.063.
Hadi, M. N. S., H. A. Hasan, and M. N. Sheikh. 2017. “Experimental investigation of circular high-strength concrete columns reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions.” J. Compos. Constr. 21 (4): 04017005. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000784.
Hadi, M. N. S., H. Karim, and M. N. Sheikh. 2016. “Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions.” J. Compos. Constr. 20 (4): 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
Hadi, M. N. S., and J. Youssef. 2016. “Experimental investigation of GFRP-reinforced and GFRP-encased square concrete specimens under axial and eccentric load, and four-point bending test.” J. Compos. Constr. 20 (5): 04016020. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000675.
Hajiloo, H., M. F. Green, and J. Gales. 2018. “Mechanical properties of GFRP reinforcing bars at high temperatures.” Constr. Build. Mater. 162: 142–154. https://doi.org/10.1016/j.conbuildmat.2017.12.025.
Hales, T. A., C. P. Pantelides, and L. D. Reaveley. 2017. “Analytical buckling model for slender FRP-reinforced concrete columns.” Compos. Struct. 176: 33–42. https://doi.org/10.1016/j.compstruct.2017.05.034.
Hayter, A. 2012. Probability and statistics for engineers and scientists. Pacific Grove, CA: Duxbury Press.
Hollaway, L. C. 2003. “The evolution of and the way forward for advanced polymer composites in the civil infrastructure.” Constr. Build. Mater. 17 (6–7): 365–378. https://doi.org/10.1016/S0950-0618(03)00038-2.
Hoang, P. H., H. N. Phan, D. T. Nguyen, and F. Paolacci. 2021. “Kriging metamodel-based seismic fragility analysis of single-bent reinforced concrete highway bridges.” Buildings 11 (6): 238. https://doi.org/10.3390/buildings11060238.
Hose, Y., P. Silva, and F. Seible. 2000. “Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads.” Earthquake Spectra 16 (2): 413–442. https://doi.org/10.1193/1.1586119.
Huang, H., C. Xue, W. Zhang, and M. Guo. 2022. “Torsion design of CFRP-CFST columns using a data-driven optimization approach.” Eng. Struct. 251: 113479. https://doi.org/10.1016/j.engstruct.2021.113479.
Ibrahim, A. M. A., Z. Wu, M. F. M. Fahmy, and D. Kamal. 2016. “Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements.” J. Compos. Constr. 20 (3): 04015062. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000614.
Jawaheri Zadeh, H., and A. Nanni. 2013. “Design of RC columns using glass FRP reinforcement.” J. Compos. Constr. 17 (3): 294–304. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000354.
Jawaheri Zadeh, H., and A. Nanni. 2017. “Flexural stiffness and second-order effects in fiber-reinforced polymer-reinforced concrete frames.” ACI Struct. J. 114 (2): 533–543.
Jia, D., J. Mao, Q. Guo, Z. Yang, and N. Xiang. 2020. “A flexure-capacity design method and seismic fragility assessment of FRP/steel double-reinforced bridge piers.” Struct. Infrastruct. Eng. 16 (9): 1311–1325. https://doi.org/10.1080/15732479.2019.1703762.
Jia, D., J. Mao, J. Lv, W. Zhang, and J. Sun. 2023. “Seismic performance of fibre-reinforced polymer and steel double-reinforced bridge piers.” Struct. Infrastruct. Eng. 19 (3): 291–301. https://doi.org/10.1080/15732479.2021.1944225.
Kara, I. F., A. F. Ashour, and M. A. Köroğlu. 2015. “Flexural behavior of hybrid FRP/steel reinforced concrete beams.” Compos. Struct. 129: 111–121. https://doi.org/10.1016/j.compstruct.2015.03.073.
Karim, H., B. Noel-Gough, M. N. Sheikh, and M. N. Hadi. 2015. “Strength and ductility behavior of circular concrete columns reinforced with GFRP bars and helices.” In Proc., Joint Conf., of the 12th Int. Symp. on Fiber Reinforced Polymers for Reinforced Concrete Structures and the 5th Asia-Pacific Conf., on Fiber Reinforced Polymers in Structures. Nanjing: Southeast University.
Karim, H., M. N. Sheikh, and M. N. S. Hadi. 2016. “Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices.” Constr. Build. Mater. 112: 1147–1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
Kashani, M. M., C. Málaga-Chuquitaype, S. Yang, and N. A. Alexander. 2017. “Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers.” Bull. Earthquake Eng. 15 (9): 3897–3918. https://doi.org/10.1007/s10518-017-0116-8.
Kassem, C., A. S. Farghaly, and B. Benmokrane. 2011. “Evaluation of flexural behavior and serviceability performance of concrete beams reinforced with FRP bars.” J. Compos. Constr. 15 (5): 682–695. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000216.
Kharal, Z., J. K. Carrette, and S. A. Sheikh. 2021. “Large concrete columns internally reinforced with GFRP spirals subjected to seismic loads.” J. Compos. Constr. 25 (3): 04021014. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001121.
Kim, D.-J., J. Lee, and Y. H. Lee. 2014. “Effectiveness factor of strut-and-tie model for concrete deep beams reinforced with FRP rebars.” Composites, Part B 56: 117–125. https://doi.org/10.1016/j.compositesb.2013.08.009.
Kim, T.-H., Y.-J. Kim, and H. M. Shin. 2007. “Seismic performance assessment of reinforced concrete bridge columns under variable axial load.” Mag. Concr. Res. 59 (2): 87–96. https://doi.org/10.1680/macr.2007.59.2.87.
Kowalsky, M. J., M. J. N. Priestley, and G. A. Macrae. 1995. “Displacement-based design of RC bridge columns in seismic regions.” Earthquake Eng. Struct. Dyn. 24 (12): 1623–1643. https://doi.org/10.1002/eqe.4290241206.
Lau, D. 2013. “Hybrid fiber-reinforced polymer (FRP) composites for structural applications.” In Developments in fiber-reinforced polymer (FRP) composites for civil engineering, edited by N. Uddin, 205–225. Philadelphia: Woodhead Publishing.
Lau, D., and H. J. Pam. 2010. “Experimental study of hybrid FRP reinforced concrete beams.” Eng. Struct. 32 (12): 3857–3865. https://doi.org/10.1016/j.engstruct.2010.08.028.
Lehman, D., J. Moehle, S. Mahin, A. Calderone, and L. Henry. 2004. “Experimental evaluation of the seismic performance of reinforced concrete bridge columns.” J. Struct. Eng. 130 (6): 869–879. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(869).
Leung, H. Y., and R. V. Balendran. 2003. “Flexural behaviour of concrete beams internally reinforced with GFRP rods and steel rebars.” Struct. Surv. 21 (4): 146–157. https://doi.org/10.1108/02630800310507159.
Li, W., L. Sun, J. Zhao, P. Lu, and F. Yang. 2018. “Seismic performance of reinforced concrete columns confined with two layers of stirrups.” Struct. Des. Tall Spec. Build. 27 (12): e1484. https://doi.org/10.1002/tal.1484.
Liu, J., Z. Huajie, L. Ping, and D. Xiuli. 2022. “Size effect of axially-loaded CFRP ring-confined circular concrete columns: 3D Mesoscale simulation.” Compos. Struct. 288: 115403. https://doi.org/10.1016/j.compstruct.2022.115403.
Liu, J., S. Sheikh, and Z. Kharal. 2021. “Steel-confined circular columns under simulated seismic loads.” ACI Struct. J. 118 (1): 189–201.
Loo, K. Y. M., S. J. Foster, and S. T. Smith. 2012. “Fatigue behavior of carbon fiber-reinforced polymer-repaired corroded reinforced concrete beams.” ACI Struct. J. 109 (6): 795–803.
Mallick, P. K. 1988. Fiber reinforced composites, materials, manufacturing, and design. New York: Marcell Dekker.
Mander, J. B., M. J. N. Priestley, and R. Park. 1988. “Theoretical stress-strain model for confined concrete.” J. Struct. Eng. 114 (8): 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Maranan, G. B., A. C. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis. 2016. “Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars.” Eng. Struct. 117: 422–436. https://doi.org/10.1016/j.engstruct.2016.03.036.
Marsh, M. L., and S. J. Stringer. 2013. Performance-based seismic bridge design (No. 400). Washington, DC: Transportation Research Board.
Mohamed, H. M., M. Z. Afifi, and B. Benmokrane. 2014. “Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load.” J. Bridge Eng. 19 (7): 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
Mohamed, H. M., A. H. Ali, and B. Benmokrane. 2017. “Behavior of circular concrete members reinforced with carbon-FRP bars and spirals under shear.” J. Compos. Constr. 21 (2): 04016090. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000746.
Montgomery, D. C. 2017. Design and analysis of experiments. Chichester, UK: Wiley.
Mao, J., D. Jia, Z. Yang, and N. Xiang. 2020. “Seismic performance of concrete bridge piers reinforced with hybrid shape memory alloy (SMA) and steel bars.” J. Earthq. Tsunami 14 (1): 2050001. https://doi.org/10.1142/S1793431120500013.
Mortezaei, A., and H. R. Ronagh. 2012. “Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions.” Sci. Iran. 19 (6): 1365–1378. https://doi.org/10.1016/j.scient.2012.10.010.
Mufti, A. A., and K. W. Neale. 2007. State-of-the-art of FRP and SHM applications in bridge structures in Canada. Composites & Polycon. Tampa, FL: The American Composites Manufacturers Association.
Mufti, A. A., J. P. Newhook, and G. Tadros. 1996. “Deformability versus ductility in concrete beams with FRP reinforcement.” In Proc., 2nd Int. Conf., on Advanced Composite Materials in Bridges and Structures II. Washington, DC: The National Academies of Sciences, Engineering, and Medicine.
Murphy, T. P., M. L. Marsh, S. J. Stringer, I. G. Buckle, L. Nicolas, D. Anderson, M. Kowalsky, and J. Restrepo. 2020. Proposed AASHTO guidelines for performance-based seismic bridge design. NCHRP Research Rep. 949. Washington, DC: Transportation Research Board.
Nanni, A., A. De Luca, and H. Zadeh. 2014. “Reinforced concrete with FRP bars.” Mechanics and Design. Boca Raton, FL: CRC Press.
NRC (Natural Resources Canada). 2015. “Determine 2015 national building code of Canada seismic hazard values.” Natural Resources Canada. Accessed June 12, 2017. http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index_2015-en.php.
Nehdi, M., M. S. Alam, and M. A. Youssef. 2010. “Development of corrosion-free concrete beam–column joint with adequate seismic energy dissipation.” Eng. Struct. 32 (9): 2518–2528. https://doi.org/10.1016/j.engstruct.2010.04.020.
Osman, S. M. S., M. S. Alam, and S. A. Sheikh. 2019. “Evaluation the seismic behavior of bridge piers utilizing hybrid reinforcements.” In Proc., 7th Int. Conf., on Engineering Mechanics and Materials. Rotterdam, Netherlands: Balkema.
Osman, S. M. S., S. Aldabagh, M. S. Alam, and S. A. Sheikh. 2021. “Seismic design guideline for hybrid GFRP-steel RC bridge pier considering performance-based design.” In Proc., Int. Conf., on Fibre-Reinforced Polymer Composites in Civil Engineering, 1005–1019.
Pang, L., W. Qu, P. Zhu, and J. Xu. 2016. “Design propositions for hybrid FRP-steel reinforced concrete beams.” J. Compos. Constr. 20 (4): 04015086. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000654.
Pantelides, C. P., M. E. Gibbons, and L. D. Reaveley. 2013. “Axial load behavior of concrete columns confined with GFRP spirals.” J. Compos. Constr. 17 (3): 305–313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357.
Parghi, A., and M. S. Alam. 2016. “Seismic behavior of deficient reinforced concrete bridge piers confined with FRP–A fractional factorial analysis.” Eng. Struct. 126: 531–546. https://doi.org/10.1016/j.engstruct.2016.08.011.
Paulay, T., and M. N. Priestley. 1992. Seismic design of reinforced concrete and masonry buildings. Vol. 768. New York: Wiley.
Pecce, M., G. Manfredi, and E. Cosenza. 2000. “Experimental response and code modelsof GFRP RC beams in bending.” J. Compos. Constr. 4 (4): 182–190. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(182).
Priestley, M. J. N. 2000. “Performance based seismic design.” In Proc., 12th World Conf. on Earthquake Engineering. New Zealand: New Zealand Society for Earthquake Engineering.
Priestley, M. J. N., and M. J. Kowalsky. 2000. “Direct displacement-based seismic design of concrete buildings.” Bull. N.Z. Soc. Earthquake Eng. 33 (4): 421–444. https://doi.org/10.5459/bnzsee.33.4.421-444.
Qi, Y.-l., X.-l. Han, and J. Ji. 2013. “Failure mode classification of reinforced concrete column using fisher method.” J. Central South Univ. 20 (10): 2863–2869. https://doi.org/10.1007/s11771-013-1807-1.
Reza, S. M., M. S. Alam, and S. Tesfamariam. 2014. “Lateral load resistance of bridge piers under flexure and shear using factorial analysis.” Eng. Struct. 59: 821–835. https://doi.org/10.1016/j.engstruct.2013.12.009.
Salehi, M., P. Sideris, and A. B. Liel. 2020. “Assessing damage and collapse capacity of reinforced concrete structures using the gradient inelastic beam element formulation.” Eng. Struct. 225 (Dec): 111290. https://doi.org/10.1016/j.engstruct.2020.111290.
Sheikh, S. A., and M. T. Toklucu. 1993. “Reinforced concrete columns confined by circular spirals and hoops.” ACI Struct. J. 90: 542–542.
Shen, D., H. Shi, Y. Ji, and F. Yin. 2015. “Strain rate effect on effective bond length of basalt FRP sheet bonded to concrete.” Constr. Build. Mater. 82: 206–218. https://doi.org/10.1016/j.conbuildmat.2015.02.016.
Shen, D., C. Wen, P. Zhu, M. Li, B. Ojha, and C. Li. 2020. “Bond behavior between basalt fiber-reinforced polymer bars and concrete under cyclic loading.” Constr. Build. Mater. 258: 119518. https://doi.org/10.1016/j.conbuildmat.2020.119518.
Soric, Z., T. Kisicek, and J. Galic. 2010. “Deflections of concrete beams reinforced with FRP bars.” Mater. Struct. 43 (S1): 73–90. https://doi.org/10.1617/s11527-010-9600-1.
Sun, L.-Z., D.-Y. Wu, J.-L. Zhao, F. Yang, and W. Li. 2017a. “Behavior of circular RC columns with two layers of spirals.” KSCE J. Civ. Eng. 21 (3): 955–963. https://doi.org/10.1007/s12205-016-0928-0.
Sun, Z., G. Wu, J. Zhang, Y. Zeng, and W. Xiao. 2017b. “Experimental study on concrete columns reinforced by hybrid steel-fiber reinforced polymer (FRP) bars under horizontal cyclic loading.” Constr. Build. Mater. 130: 202–211. https://doi.org/10.1016/j.conbuildmat.2016.10.001.
Sun, L., and W. Li. 2019. “Cyclic behavior of reinforced concrete columns confined with two layers of stirrups.” Struct. Concr. 20 (4): 1279–1291. https://doi.org/10.1002/suco.201800229.
Tavassoli, A., J. Liu, and S. Sheikh. 2015. “Glass fiber-reinforced polymer-reinforced circular columns under simulated seismic loads.” ACI Struct. J. 112 (1): 103. https://doi.org/10.14359/51687227.
Tavassoli, A., and S. A. Sheikh. 2017. “Seismic resistance of circular columns reinforced with steel and GFRP.” J. Compos. Constr. 21 (4): 04017002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000774.
Tobbi, H., A. S. Farghaly, and B. Benmokrane. 2012. “Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars.” ACI Struct. J. 109 (4): 1–8. https://doi.org/10.14359/51686630.
Tobbi, H., A. S. Farghaly, and B. Benmokrane. 2014. “Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios.” ACI Struct. J. 111 (2): 375–386. https://doi.org/10.14359/51686528.
Tu, Y., J. Zhang, and Y. Qian. 2009. “Experimental and theoretical investigation of flexural load-carrying capacity of concrete beams reinforced with AFRP tendons.” J. Southeast Univ. (Nat. Sci.) 39 (3): 563–568.
Wakjira, T. G., M. L. Nehdi, and U. Ebead. 2020. “Fractional factorial design model for seismic performance of RC bridge piers retrofitted with steel-reinforced polymer composites.” Eng. Struct. 221: 111100. https://doi.org/10.1016/j.engstruct.2020.111100.
Wu, D.-Y., L.-Z. Sun, F. Yang, J.-L. Zhao, and W. Li. 2016. “Axial compressive behavior of square reinforced concrete columns confined using two layers of stirrups.” Adv. Struct. Eng. 19 (8): 1345–1356. https://doi.org/10.1177/1369433216643897.
Xu, S.-Y., and J. Zhang. 2011. “Hysteretic shear–flexure interaction model of reinforced concrete columns for seismic response assessment of bridges.” Earthquake Eng. Struct. Dyn. 40 (3): 315–337. https://doi.org/10.1002/eqe.1030.
Xue, W., X. Hu, and Z. Fang. 2014. “Experimental studies of GFRP reinforced concrete columns under static eccentric loading.” In Proc., 7th Int. Conf., on Fiber Reinforced Polymer Composites in Civil Engineering, 236–242. Kingston, ON: International Institute for FRP in Construction.
Xue, W., F. Peng, and Z. Fang. 2018. “Behavior and design of slender rectangular concrete columns longitudinally reinforced with fiber-reinforced polymer bars.” ACI Struct. J. 115 (2): 311–322.
Yang, F., L. Sun, J. Zhao, D. Wu, and W. Li. 2015. “Behavior of a novel circular HSC column with double high strength spirals.” Adv. Struct. Eng. 18 (9): 1371–1382. https://doi.org/10.1260/1369-4332.18.9.1371.
Ye, Y. Y., J. J. Zeng, and P. L. Li. 2022. “A state-of-the-art review of FRP-confined steel-reinforced concrete (FCSRC).” Struct. Memb. Polym. 14 (4): 677.
Yoo, D.-Y., K.-Y. Kwon, J.-J. Park, and Y.-S. Yoon. 2015. “Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete.” Compos. Struct. 120: 53–64. https://doi.org/10.1016/j.compstruct.2014.09.055.
Youssef, J., and M. N. S. Hadi. 2017. “Axial load-bending moment diagrams of GFRP reinforced columns and GFRP encased square columns.” Constr. Build. Mater. 135: 550–564. https://doi.org/10.1016/j.conbuildmat.2016.12.125.
Yuan, F., L. Chen, M. Chen, and K. Xu. 2018. “Behaviour of hybrid steel and FRP-reinforced concrete—ECC composite columns under reversed cyclic loading.” Sensors 18 (12): 4231. https://doi.org/10.3390/s18124231.
Zadeh, H. J., and A. Nanni. 2013. “Design of RC columns using glass FRP reinforcement.” J. Compos. Constr. 17 (3): 294–304. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000354.
Zadeh, H. J., and A. Nanni. 2017. “Flexural stiffness and second-order effects in fiber-reinforced polymer-reinforced concrete frames.” ACI Struct. J. 114 (2): 533. https://doi.org/10.14359/51689257.
Zhao, J., G. Li, Z. Wang, and X.-L. Zhao. 2019. “Fatigue behavior of concrete beams reinforced with glass- and carbon-fiber reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures.” Compos. Struct. 229: 111427. https://doi.org/10.1016/j.compstruct.2019.111427.
Zhao, J., and S. Sritharan. 2007. “Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures.” ACI Struct. J. 104 (2): 133–141.
Zhou, Z., J. P. Ou, and B. Wang. 2003. “Smart FRP-OFGB bars and their application in reinforced concrete beams.” In Proc., 1st Int. Conf., on Structural Health Monitoring and Intelligent Structure. Rotterdam, Netherlands: Balkema.
Zhu, C. 2019. “Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading.” Comput. Concr. Int. J. 24 (1): 73–83.
Zou, X., H. Lin, P. Feng, Y. Bao, and J. Wang. 2021. “A review on FRP-concrete hybrid sections for bridge applications.” Compos. Struct. 262: 113336. https://doi.org/10.1016/j.compstruct.2020.113336.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 27Issue 2April 2023

History

Received: Apr 12, 2022
Accepted: Nov 4, 2022
Published online: Jan 24, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 24, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, Applied Laboratory for Advanced Materials & Structures (ALAMS), School of Engineering, The Univ. of British Columbia, Canada. ORCID: https://orcid.org/0000-0002-5489-0139. Email: [email protected]
Saif Aldabagh, A.M.ASCE [email protected]
Postdoctoral Fellow, Applied Laboratory for Advanced Materials & Structures (ALAMS), School of Engineering, The Univ. of British Columbia, Canada. Email: [email protected]
Professor and Tier-1 Principal’s Research Chair in Resilient and Green Infrastructure, School of Engineering, The Univ. of British Columbia, Canada (corresponding author). ORCID: https://orcid.org/0000-0002-9092-1473. Email: [email protected]
Shamim A. Sheikh, M.ASCE [email protected]
Professor, Dept. of Civil and Mineral Engineering, Univ. of Toronto, Toronto, ON, Canada. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share