Technical Papers
Aug 12, 2024

Novel Optical-Inspired Rain Forest for the Explainable Prediction of Geopolymer Concrete Compressive Strength

Publication: Journal of Computing in Civil Engineering
Volume 38, Issue 6

Abstract

Geopolymer concrete (GPC) is an extraordinary material for promoting sustainable development in the construction industry and reducing environmental risk. However, material properties, such as compressive strength, are commonly determined using laboratory experiments, which are costly and time-consuming to run. Therefore, optical-inspired rain forest (ORF), a sophisticated predictive model, was developed to offer an alternative mathematical solution. The developed model uses a novel mechanism that grows an operation tree into multiple operation forests and employs an optical microscope algorithm to optimize the weight and forest topology. The experimental results indicate that the proposed model outperformed several other popular artificial intelligence approaches, achieving the highest evaluation criteria of RI=0.973 and RI=0.979, respectively, for training and testing data sets. Hence, ORF is recommended as a viable tool to assist material engineers to significantly increase the utilization of GPC in construction projects.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abdallah, I., K. Tatsis, and E. Chatzi. 2020. “Unsupervised local cluster-weighted bootstrap aggregating the output from multiple stochastic simulators.” Reliab. Eng. Syst. Saf. 199 (Jul): 106876. https://doi.org/10.1016/j.ress.2020.106876.
Ahmad, A., W. Ahmad, F. Aslam, and P. Joyklad. 2022. “Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques.” Case Stud. Constr. Mater. 16 (Jun): e00840. https://doi.org/10.1016/j.cscm.2021.e00840.
Ahmad, A., W. Ahmad, K. Chaiyasarn, K. A. Ostrowski, F. Aslam, P. Zajdel, and P. Joyklad. 2021a. “Prediction of geopolymer concrete compressive strength using novel machine learning algorithms.” Polym. J. 13 (19): 3389. https://doi.org/10.3390/polym13193389.
Ahmad, A., F. Farooq, P. Niewiadomski, K. Ostrowski, A. Akbar, F. Aslam, and R. Alyousef. 2021b. “Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm.” Mater. J. 14 (4): 794. https://doi.org/10.3390/ma14040794.
Ahmad, A., K. A. Ostrowski, M. Maślak, F. Farooq, I. Mehmood, and A. Nafees. 2021c. “Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature.” Mater. J. 14 (15): 4222. https://doi.org/10.3390/ma14154222.
Ahmed, H. U., A. S. Mohammed, A. A. Mohammed, and R. H. Faraj. 2021. “Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.” PLoS One 16 (6): e0253006. https://doi.org/10.1371/journal.pone.0253006.
Albitar, M., M. S. Mohamed Ali, P. Visintin, and M. Drechsler. 2017. “Durability evaluation of geopolymer and conventional concretes.” Constr. Build. Mater. 136 (Apr): 374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056.
Ali Khan, M., A. Zafar, A. Akbar, M. F. Javed, and A. Mosavi. 2021. “Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete.” Mater. J. 14 (5): 1106. https://doi.org/10.3390/ma14051106.
Aljuaid, T., and S. Sasi. 2016. “Proper imputation techniques for missing values in data sets.” In Proc., 2016 ICDSE Int. Conf. on Data Science and Engineering, 1–5. New York: IEEE.
Almutairi, A. L., B. A. Tayeh, A. Adesina, H. F. Isleem, and A. M. Zeyad. 2021. “Potential applications of geopolymer concrete in construction: A review.” Case Stud. Constr. Mater. 15 (Dec): e00733. https://doi.org/10.1016/j.cscm.2021.e00733.
Alsattar, H. A., A. A. Zaidan, and B. B. Zaidan. 2020. “Novel meta-heuristic bald eagle search optimisation algorithm.” Artif. Intell. Rev. 53 (3): 2237–2264. https://doi.org/10.1007/s10462-019-09732-5.
Ariffin, M. A. M., R. Bhutta, M. W. Hussin, M. Mohd Tahir, and N. Aziah. 2013. “Sulfuric acid resistance of blended ash geopolymer concrete.” Constr. Build. Mater. 43 (Jun): 80–86. https://doi.org/10.1016/j.conbuildmat.2013.01.018.
Azimi-Pour, M., H. Eskandari-Naddaf, and A. Pakzad. 2020. “Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete.” Constr. Build. Mater. 230 (Jan): 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021.
Breiman, L. 1996. “Bagging predictors.” Mach. Learn. 24 (2): 123–140. https://doi.org/10.1007/BF00058655.
Cheng, M.-Y., P. M. Firdausi, and D. Prayogo. 2014. “High-performance concrete compressive strength prediction using genetic weighted pyramid operation tree (GWPOT).” Eng. Appl. Artif. Intell. 29 (Mar): 104–113. https://doi.org/10.1016/j.engappai.2013.11.014.
Cheng, M.-Y., and R. A. Gosno. 2021. “Symbiotic polyhedron operation tree (SPOT) for elastic modulus formulation of recycled aggregate concrete.” Eng. Comput. 37 (4): 3205–3220. https://doi.org/10.1007/s00366-020-00988-y.
Cheng, M.-Y., and D. Prayogo. 2014. “Symbiotic organisms search: A new metaheuristic optimization algorithm.” Comput. Struct. 139 (Jul): 98–112. https://doi.org/10.1016/j.compstruc.2014.03.007.
Cheng, M.-Y., and M. N. Sholeh. 2023. “Optical microscope algorithm: A new metaheuristic inspired by microscope magnification for solving engineering optimization problems.” Knowledge-Based Syst. 279 (Nov): 110939. https://doi.org/10.1016/j.knosys.2023.110939.
Chindaprasirt, P., and W. Chalee. 2014. “Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site.” Constr. Build. Mater. 63 (Jul): 303–310. https://doi.org/10.1016/j.conbuildmat.2014.04.010.
Chou, J.-S., and N.-M. Nguyen. 2020. “FBI inspired meta-optimization.” Appl. Soft Comput. 93 (Aug): 106339. https://doi.org/10.1016/j.asoc.2020.106339.
Chou, J.-S., and D.-N. Truong. 2021. “A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean.” Appl. Math. Comput. 389 (Jan): 125535. https://doi.org/10.1016/j.amc.2020.125535.
Chou, J.-S., C.-F. Tsai, A.-D. Pham, and Y.-H. Lu. 2014. “Machine learning in concrete strength simulations: Multi-nation data analytics.” Constr. Build. Mater. 73 (Dec): 771–780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
Chu, H.-H., M. A. Khan, M. Javed, A. Zafar, M. Ijaz Khan, H. Alabduljabbar, and S. Qayyum. 2021. “Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete.” Ain Shams Eng. J. 12 (4): 3603–3617. https://doi.org/10.1016/j.asej.2021.03.018.
de Myttenaere, A., B. Golden, B. Le Grand, and F. Rossi. 2016. “Mean Absolute Percentage Error for regression models.” Neurocomputing 192 (Jun): 38–48. https://doi.org/10.1016/j.neucom.2015.12.114.
DeRose, J. A., and M. Doppler. 2018. “Guidelines for understanding magnification in the modern digital microscope era.” Microsc. Today 26 (4): 20–33. https://doi.org/10.1017/S1551929518000688.
Diaz-Loya, E. I., E. N. Allouche, and S. Vaidya. 2011. “Mechanical properties of fly-ash-based geopolymer concrete.” ACI Mater. J. 108 (3): 300. https://doi.org/10.14359/51682495.
Divvala, S., and M. S. Rani. 2021. “Early strength properties of geopolymer concrete composites: An experimental study.” Mater. Today Proc. 47 (Mar): 3770–3777. https://doi.org/10.1016/j.matpr.2021.03.002.
Egerton, R. F. 2005. Physical principles of electron microscopy. New York: Springer.
Embong, R., A. Kusbiantoro, N. Shafiq, and M. F. Nuruddin. 2016. “Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate.” J. Cleaner Prod. 112 (Jan): 816–822. https://doi.org/10.1016/j.jclepro.2015.06.058.
Farhan, N. A., M. N. Sheikh, and M. N. S. Hadi. 2019. “Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete.” Constr. Build. Mater. 196 (Jan): 26–42. https://doi.org/10.1016/j.conbuildmat.2018.11.083.
Ganesh, A. C., and M. Muthukannan. 2021. “Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength.” J. Cleaner Prod. 282 (Feb): 124543. https://doi.org/10.1016/j.jclepro.2020.124543.
Ghosh, R., S. P. Sagar, A. Kumar, S. K. Gupta, and S. Kumar. 2018. “Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser.” J. Build. Eng. 16 (Mar): 39–44. https://doi.org/10.1016/j.jobe.2017.12.009.
González Perea, R., E. Camacho Poyato, P. Montesinos, and J. A. Rodríguez Díaz. 2019. “Prediction of irrigation event occurrence at farm level using optimal decision trees.” Comput. Electron. Agric. 157 (Feb): 173–180. https://doi.org/10.1016/j.compag.2018.12.043.
Gunasekara, C., P. Atzarakis, W. Lokuge, D. W. Law, and S. Setunge. 2021. “Novel analytical method for mix design and performance prediction of high calcium fly ash geopolymer concrete.” Polym. J. 13 (6): 900. https://doi.org/10.3390/polym13060900.
Gupta, T., and M. C. Rao. 2022. “Prediction of compressive strength of geopolymer concrete using machine learning techniques.” Struct. Concr. 23 (5): 3073–3090. https://doi.org/10.1002/suco.202100354.
Habert, G., J. B. d’Espinose de Lacaillerie, and N. Roussel. 2011. “An environmental evaluation of geopolymer based concrete production: Reviewing current research trends.” J. Cleaner Prod. 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012.
Haddad, R. H., and O. Alshbuol. 2016. “Production of geopolymer concrete using natural pozzolan: A parametric study.” Constr. Build. Mater. 114 (Jul): 699–707. https://doi.org/10.1016/j.conbuildmat.2016.04.011.
Hamada, H. M., B. Skariah Thomas, B. Tayeh, F. M. Yahaya, K. Muthusamy, and J. Yang. 2020. “Use of oil palm shell as an aggregate in cement concrete: A review.” Constr. Build. Mater. 265 (Dec): 120357. https://doi.org/10.1016/j.conbuildmat.2020.120357.
He, J., Y. Jie, J. Zhang, Y. Yu, and G. Zhang. 2013. “Synthesis and characterization of red mud and rice husk ash-based geopolymer composites.” Cem. Concr. Compos. 37 (Mar): 108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010.
Holland, J. H. 1992. “Genetic algorithms.” Sci. Am. 267 (1): 66–72. https://doi.org/10.1038/scientificamerican0792-66.
Huang, J., Y. Sun, and J. Zhang. 2022. “Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm.” Eng. Comput. 38 (4): 3151–3168. https://doi.org/10.1007/s00366-021-01305-x.
Karaboga, D., and B. Basturk. 2007. “A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm.” J. Glob. Optim. 39 (3): 459–471. https://doi.org/10.1007/s10898-007-9149-x.
Karunasingha, D. S. K. 2022. “Root mean square error or mean absolute error? Use their ratio as well.” Inf. Sci. 585 (Mar): 609–629. https://doi.org/10.1016/j.ins.2021.11.036.
Kasuya, E. 2019. “On the use of r and r squared in correlation and regression.” Ecol. Res. 34 (1): 235–236. https://doi.org/10.1111/1440-1703.1011.
Kennedy, J., and R. Eberhart. 1995. “Particle swarm optimization.” In Proc., ICNN′95 Int. Conf. on Neural Networks, 1942–1948. New York: IEEE.
Kim, J.-H. 2009. “Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap.” Comput. Stat. Data Anal. 53 (11): 3735–3745. https://doi.org/10.1016/j.csda.2009.04.009.
Kong, D. L. Y., J. G. Sanjayan, and K. Sagoe-Crentsil. 2008. “Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures.” J. Mater. Sci. 43 (3): 824–831. https://doi.org/10.1007/s10853-007-2205-6.
Kupwade-Patil, K., and N. Allouche Erez. 2013. “Impact of alkali silica reaction on fly ash-based geopolymer concrete.” J. Mater. Civ. Eng. 25 (1): 131–139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000579.
Kusbiantoro, A., M. F. Nuruddin, N. Shafiq, and S. A. Qazi. 2012. “The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete.” Constr. Build. Mater. 36 (Nov): 695–703. https://doi.org/10.1016/j.conbuildmat.2012.06.064.
Lavanya, G., and J. Jegan. 2015. “Durability study on high calcium fly ash based geopolymer concrete.” Adv. Mater. Sci. Eng. 2015 (Nov): 731056. https://doi.org/10.1155/2015/731056.
Lokuge, W., A. Wilson, C. Gunasekara, D. W. Law, and S. Setunge. 2018. “Design of fly ash geopolymer concrete mix proportions using multivariate adaptive regression spline model.” Constr. Build. Mater. 166 (Mar): 472–481. https://doi.org/10.1016/j.conbuildmat.2018.01.175.
Mehta, A., and R. Siddique. 2017. “Sulfuric acid resistance of fly ash based geopolymer concrete.” Constr. Build. Mater. 146 (Aug): 136–143. https://doi.org/10.1016/j.conbuildmat.2017.04.077.
Mernik, M., S.-H. Liu, D. Karaboga, and M. Črepinšek. 2015. “On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation.” Inf. Sci. 291 (Jan): 115–127. https://doi.org/10.1016/j.ins.2014.08.040.
Mohammed, A., S. Rafiq, P. Sihag, R. Kurda, W. Mahmood, K. Ghafor, and W. Sarwar. 2020. “ANN, M5P-tree and nonlinear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash.” J. Mater. Res. Technol. 9 (6): 12416–12427. https://doi.org/10.1016/j.jmrt.2020.08.083.
Monteiro, P. J. M., S. A. Miller, and A. Horvath. 2017. “Towards sustainable concrete.” Nat. Mater. 16 (7): 698–699. https://doi.org/10.1038/nmat4930.
Muthadhi, A., and V. Dhivya. 2017. “Investigating strength properties of geopolymer concrete with quarry dust.” ACI Mater. J. 114 (3): 355–363. https://doi.org/10.14359/51689674.
Nagajothi, S., and S. Elavenil. 2020. “Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete–Artificial neural network.” Silicon 12 (5): 1011–1021. https://doi.org/10.1007/s12633-019-00203-8.
Nath, P., and P. K. Sarker. 2014. “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition.” Constr. Build. Mater. 66 (Sep): 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.
Nguyen, K. T., Q. D. Nguyen, T. A. Le, J. Shin, and K. Lee. 2020. “Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches.” Constr. Build. Mater. 247 (Jun): 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581.
Nuaklong, P., V. Sata, A. Wongsa, K. Srinavin, and P. Chindaprasirt. 2018. “Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2.” Constr. Build. Mater. 174 (Jun): 244–252. https://doi.org/10.1016/j.conbuildmat.2018.04.123.
Olivetti de França, F. 2018. “A greedy search tree heuristic for symbolic regression.” Inf. Sci. 442–443 (May): 18–32. https://doi.org/10.1016/j.ins.2018.02.040.
Pane, I., I. Imran, and B. Budiono. 2018. “Compressive strength of fly ash-based geopolymer concrete with a variable of sodium hydroxide (NaOH) solution molarity.” In Proc., 3rd Int. Conf. on Sustainable Infrastructure and Built Environment (SIBE), 01004. Les Ulis, France: EDP Sciences.
Part, W. K., M. Ramli, and C. B. Cheah. 2015. “An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products.” Constr. Build. Mater. 77 (Feb): 370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065.
Peng, C.-H., I. C. Yeh, and L.-C. Lien. 2010. “Building strength models for high-performance concrete at different ages using genetic operation trees, nonlinear regression, and neural networks.” Eng. Comput. 26 (1): 61–73. https://doi.org/10.1007/s00366-009-0142-5.
Phoo-ngernkham, T., C. Phiangphimai, N. Damrongwiriyanupap, S. Hanjitsuwan, J. Thumrongvut, and P. Chindaprasirt. 2018. “A mix design procedure for alkali-activated high-calcium fly ash concrete cured at ambient temperature.” Adv. Mater. Sci. Eng. 2018 (Apr): 2460403. https://doi.org/10.1155/2018/2460403.
Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi. 2009. “GSA: A gravitational search algorithm.” Inf. Sci. 179 (13): 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004.
Ravber, M., S.-H. Liu, M. Mernik, and M. Črepinšek. 2022. “Maximum number of generations as a stopping criterion considered harmful.” Appl. Soft Comput. 128 (Oct): 109478. https://doi.org/10.1016/j.asoc.2022.109478.
Ryu, G. S., Y. B. Lee, K. T. Koh, and Y. S. Chung. 2013. “The mechanical properties of fly ash-based geopolymer concrete with alkaline activators.” Constr. Build. Mater. 47 (Oct): 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069.
Saraswathy, V., S. Muralidharan, K. Thangavel, and S. Srinivasan. 2003. “Influence of activated fly ash on corrosion-resistance and strength of concrete.” Cem. Concr. Compos. 25 (7): 673–680. https://doi.org/10.1016/S0958-9465(02)00068-9.
Semugaza, G., T. Mielke, M. E. Castillo, A. Z. Gierth, J. X. Tam, S. Nawrath, and D. C. Lupascu. 2023. “Reactivation of hydrated cement powder by thermal treatment for partial replacement of ordinary portland cement.” Mater. Struct. 56 (3): 48. https://doi.org/10.1617/s11527-023-02133-9.
Shahmansouri, A. A., H. Akbarzadeh Bengar, and S. Ghanbari. 2020. “Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method.” J. Build. Eng. 31 (Sep): 101326. https://doi.org/10.1016/j.jobe.2020.101326.
Silva, P. D., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
Singh, N. B. 2018. “Fly ash-based geopolymer binder: A future construction material.” Minerals 8 (7): 299. https://doi.org/10.3390/min8070299.
Smith, T. C., and E. Frank. 2016. Introducing machine learning concepts with WEKA. New York: Springer.
Song, H., A. Ahmad, F. Farooq, K. A. Ostrowski, M. Maślak, S. Czarnecki, and F. Aslam. 2021. “Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms.” Constr. Build. Mater. 308 (Nov): 125021. https://doi.org/10.1016/j.conbuildmat.2021.125021.
Storn, R., and K. Price. 1997. “Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces.” J. Glob. Optim. 11 (4): 341–359. https://doi.org/10.1023/A:1008202821328.
Talakokula, V., and S. Bhalla. 2016. “Non-destructive Strength evaluation of fly ash based geopolymer concrete using piezo sensors.” Procedia Eng. 145 (2016): 1029–1035. https://doi.org/10.1016/j.proeng.2016.04.133.
Tayeh, B. A., M. W. Hasaniyah, A. M. Zeyad, M. M. Awad, A. Alaskar, A. M. Mohamed, and R. Alyousef. 2020. “Durability and mechanical properties of seashell partially-replaced cement.” J. Build. Eng. 31 (Sep): 101328. https://doi.org/10.1016/j.jobe.2020.101328.
Temuujin, J., W. Rickard, M. Lee, and A. van Riessen. 2011. “Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings.” J. Non-Cryst. Solids 357 (5): 1399–1404. https://doi.org/10.1016/j.jnoncrysol.2010.09.063.
Topark-Ngarm, P., P. Chindaprasirt, and V. Sata. 2015. “Setting time, strength, and bond of high-calcium fly ash geopolymer concrete.” J. Mater. Civ. Eng. 27 (7): 04014198. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157.
Toufigh, V., and A. Jafari. 2021. “Developing a comprehensive prediction model for compressive strength of fly ash-based geopolymer concrete (FAGC).” Constr. Build. Mater. 277 (Mar): 122241. https://doi.org/10.1016/j.conbuildmat.2021.122241.
Tsai, H.-C. 2011. “Weighted operation structures to program strengths of concrete-typed specimens using genetic algorithm.” Expert Syst. Appl. 38 (1): 161–168. https://doi.org/10.1016/j.eswa.2010.06.034.
Turner, L. K., and F. G. Collins. 2013. “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater. 43 (Jun): 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
Verma, N. K., C. R. Meesala, and S. Kumar. 2023. “Developing an ANN prediction model for compressive strength of fly ash-based geopolymer concrete with experimental investigation.” Neural Comput. Appl. 35 (14): 10329–10345. https://doi.org/10.1007/s00521-023-08237-1.
Xiao, R., Y. Ma, X. Jiang, M. Zhang, Y. Zhang, Y. Wang, B. Huang, and Q. He. 2020. “Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature.” J. Cleaner Prod. 252 (Apr): 119610. https://doi.org/10.1016/j.jclepro.2019.119610.

Information & Authors

Information

Published In

Go to Journal of Computing in Civil Engineering
Journal of Computing in Civil Engineering
Volume 38Issue 6November 2024

History

Received: Jan 16, 2024
Accepted: May 17, 2024
Published online: Aug 12, 2024
Published in print: Nov 1, 2024
Discussion open until: Jan 12, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Dept. of Civil and Construction Engineering, National Taiwan Univ. of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 106, Taiwan (corresponding author). ORCID: https://orcid.org/0000-0003-1312-4822. Email: [email protected]
Akhmad F. K. Khitam [email protected]
Ph.D. Candidate, Dept. of Civil and Construction Engineering, National Taiwan Univ. of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 106, Taiwan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share