Technical Papers
Aug 22, 2023

Tension Control Law for Three-Dimensional Deployment of a Geostationary Space Solar Power Station

Publication: Journal of Aerospace Engineering
Volume 36, Issue 6

Abstract

To collect solar energy in outer space, Tethered Collecting Solar Power Satellite Systems have been proposed by several authors in the last years. A geostationary orbit would be the best location for a space-based solar power. However, a geostationary satellite occupies a single ring in the equatorial plane of the Earth. For this reason, out-of-plane configurations for solar panel systems have been studied by various authors to increase the number of slots over a particular longitude. In this paper, we assume a two-body tethered satellite system, where the microwave transmitting satellite is placed on a geostationary orbit and the tethered solar panel is deployed from the microwave transmitter. A tension control law is derived in conjunction with thruster forces by linearization of the dynamics of the tethered satellite system around an out-of-plane configuration. The stability analysis carried out in this paper shows that the linear motion is asymptotically stable. Results of numerical simulation show that the linear control strategy performs well for the nonlinear system, so that the solar panel achieves a nonplanar configuration.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank the financial support of the CAPES (Coordination for the Improvement of Higher Education Personnel, Brazil), Grant 88887.478205 /2020-00, CNPq (National Council for Scientific and Technological Development), Grant 309089/2021-2, and Fapesp (São Paulo Research Foundation, Brazil), Grant 2016/ 24561-0. This paper has been supported by the RUDN University Scientific Projects Grant System, Project No. 202235-2-000.

References

Arya, M., N. Lee, and S. Pellegrino. 2016. “Ultralight structures for space solar power satellites.” In Proc., 3rd AIAA Spacecraft Structures Conf., 1–18. San Diego.
Baig, S., and C. McInnes. 2010. “Light-levitated geostationary cylindrical orbits are feasible.” J. Guidance Control. Dyn. 33 (3): 782–793. https://doi.org/10.2514/1.46681.
Bainum, P. M., and V. K. Kumar. 1980. “Optimal-control of the shuttle-tethered system.” Acta Astronaut. 7 (12): 1333–1348. https://doi.org/10.1016/0094-5765(80)90010-7.
Baker, P. W., J. A. Dunkin, Z. J. Galaboff, K. D. Johnston, R. R. Kissel, M. H. Rheinfurth, and M. P. L. Siebel. 1976. A tether tension control law for tethered subsatellites deployed along local vertical. Huntsville, AL: Marshall Space Hight Center.
Barkow, B., A. Steindl, H. Troger, and G. Wiedermann. 2003. “Various methods of controlling the deployment of a tethered satellite.” J. Vib. Control 9 (1–2): 187–208. https://doi.org/10.1177/107754603030747.
Belvin, W. K., J. T. Dorsey, and J. J. Watson. 2009. “Technology challenges and opportunities for very large in-space structural systems.” In Proc., Int. Symp. on Solar Energy from Space, International Academy of Astronautics, 1–18. Toronto: Solar Power Alternative for Clean Energy.
Belvin, W. K., J. T. Dorsey, and J. J. Watson. 2021. “Solar power satellite development: Advances in modularity and mechanical systems.” J. Space Commun. 9 (16): 15.
Bonetti, F., and C. McInnes. 2019. “Space-enhanced terrestrial solar power for equatorial regions.” J. Spacecraft Rockets 56 (1): 33–43. https://doi.org/10.2514/1.A34032.
Canady, J. E. J., and J. L. J. Allen. 1982. Illumination from space with orbiting solar-reflector spacecraft, nasa-tp-2065 19820025545. Hampton, VA: Langley Research Center.
Carrington, C., and H. Feingold. 2002. “Space solar power concepts: Demonstrations to pilot plants.” In Proc., 53rd Int. Astronautical Congress, IAC-02-R.P.12. Paris: International Astronautical Federation.
Dhakal, S., et al. 2022. “Mitigation pathways compatible with long-term goals.” In Proc., IPCC 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by P. R. Shukla, et al. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781009157926.004.
DOE and NASA (National Aeronautics and Space Administration). 1980. Program assessment report statement of finding-satellite power systems, concept development and evaluation program. Washington, DC: US DOE.
Drexler, K. E. 1979. “High performance solar sails and related reflecting devices.” In Proc., 4th Princeton/AIAA Conf. on Space Manufacturing Facilities, AIAA-79-1418, Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1979-1418.
Ehricke, K. A. 1979. “Space light: Space industrial enhancement of the solar option.” Acta Astronaut. 6 (12): 1515–1633. https://doi.org/10.1016/0094-5765(79)90003-1.
Fischer, H., and A. Haerting. 1992. “Why light-levitated geostationary cylindrical orbits are not feasible.” J. Astronaut. Sci. 40 (3): 329–333.
Fraas, L., A. Palisoc, and B. Derbes. 2013. “Mirrors in dawn dusk orbit for low-cost terrestrial solar electric power in the evening.” In Proc., 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2013-1191, Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-1191.
Fraas, L. M. 2012. “Mirrors in space for low-cost terrestrial solar electric power at night.” In Proc., 38th IEEE Photovoltaic Specialists Conf. New York: IEEE.
Fu, B., E. Sperber, and F. Eke. 2016. “Solar sail technology-a state of the art review.” Prog. Aerosp. Sci. 86 (May): 1–19. https://doi.org/10.1016/j.paerosci.2016.07.001.
Fujii, H., and S. Ishijima. 1989. “Mission function control for deployment and retrieval of a subsatellite.” J. Guidance Control Dyn. 12 (2): 243–247. https://doi.org/10.2514/3.20397.
Fujii, H., K. Uchiyama, and K. Kokubun. 1991. “Mission function control of tethered subsatellite deployment/retrieval: In-plane and out-of-plane motion.” J. Guidance Control Dyn. 14 (2): 471–473. https://doi.org/10.2514/3.20663.
Garcia, M. 2021. “International space station facts and figures.” Accessed August 22, 2022. https://www.nasa.gov/feature/facts-and-figures.
Glaser, P. E. 1968. “Power from the sun: Its future.” Science 162 (3856): 857–861. https://doi.org/10.1126/science.162.3856.857.
Goh, S. T., and S. A. Zekavat. 2013. “Space-based solar power via LEO satellite networks: Synchronization efficiency analysis.” In Proc., IEEE Aerospace Conf., 1–9. New York: IEEE.
Govindasamy, B., and K. Caldeira. 2000. “Geoengineering earth’s radiation balance to mitigate CO2-induced climate change.” Geophys. Res. Lett. 27 (14): 2141–2144. https://doi.org/10.1029/1999GL006086.
Heiligers, J., C. R. McInnes, J. D. Biggs, and M. Ceriotti. 2012. “Displaced geostationary orbits using hybrid low-thrust propulsion.” Acta Astronaut. 71 (Feb): 51–67. https://doi.org/10.1016/j.actaastro.2011.08.012.
Hempsell, M. 2006. “Space power as a response to global catastrophes.” Acta Astronaut. 59 (7): 524–530. https://doi.org/10.1016/j.actaastro.2006.04.001.
Hu, W., and Z. Deng. 2022. “A review of dynamic analysis on space solar power station.” Astrodynamics 7 (2): 115–130. https://doi.org/10.1007/s42064-022-0144-2.
Huang, P., F. Zhang, L. Chen, Z. Meng, Y. Zhang, Z. Liu, and Y. Hu. 2018. “A review of space tether in new applications.” Nonlinear Dyn. 94 (1): 1–19. https://doi.org/10.1007/s11071-018-4389-5.
Jin, D. P., Z. J. Pang, H. Wen, and B. S. Yu. 2016. “Chaotic motions of a tethered satellite system in circular orbit.” J. Phys.: Conf. Ser. 744 (May): 012116. https://doi.org/10.1088/1742-6596/744/1/012116.
Kumar, K., and S. Pradeep. 1998. “Strategies for three dimensional deployment of tethered satellites.” Mech. Res. Commun. 25 (5): 543–550. https://doi.org/10.1016/S0093-6413(98)00071-8.
Li, X., and Z. Cai. 2018. “Dynamic modeling and simulations of a tethered space solar power station.” J. Aerosp. Eng. 31 (4): 04018026. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000850.
Li, X., B. Duan, L. Song, Y. Yang, Y. Zhang, and D. Wang. 2017. “A new concept of space solar power satellite.” Acta Astronaut. 136 (Jun): 182–189. https://doi.org/10.1016/j.actaastro.2017.03.017.
Mankala, K. K., and S. K. Agrawal. 2005. “Dynamic modeling and simulation of satellite tethered systems.” J. Vib. Acoust. 127 (2): 144–156. https://doi.org/10.1115/1.1891811.
Mankins, J. C. 1997. “A fresh look at space solar power: New architectures, concepts and technologies.” Acta Astronaut. 41 (4–10): 347–359. https://doi.org/10.1016/S0094-5765(98)00075-7.
McInnes, C. R. 2006. “Planetary macro-engineering using orbiting solar reflectors.” In Vol. 54 of Macro-engineering. Water science and technology library, edited by V. Badescu, R. B. Cathcart, and R. D. Schuiling. Dordrecht, Netherlands: Springer.
McInnes, C. R. 2010. “Space-based geoengineering: Challenges and requirements.” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 224 (3): 571–580. https://doi.org/10.1243/09544062JMES1439.
Misra, A. K. 2008. “Dynamics and control of tethered satellite systems.” Acta Astronaut. 63 (11–12): 1169–1177. https://doi.org/10.1016/j.actaastro.2008.06.020.
Misra, A. K., M. S. Nixon, and V. J. Modi. 2001. “Nonlinear dynamics of two-body tethered satellite systems: Constant length case.” J. Astronaut. Sci. 49 (2): 219–236. https://doi.org/10.1007/BF03546319.
Modi, V. J., G. Chang-Fu, A. K. Misra, and D. M. Xu. 1982. “On the control of the space shuttle based tethered systems.” Acta Astronaut. 9 (6–7): 437–443. https://doi.org/10.1016/0094-5765(82)90074-1.
Modi, V. J., and A. K. Misra. 1979. “On the deployment dynamics of tether connected two-body systems.” Acta Astronaut. 6 (9): 1183–1197. https://doi.org/10.1016/0094-5765(79)90064-X.
Molly, K. M., and J. Shih. 2007. “Satellite solar power: Renewed interest in an age of climate change?” Space Policy 23 (2): 108–120. https://doi.org/10.1016/j.spacepol.2007.02.010.
Moore, T. 2000. “Renewed interest in space solar power.” EPRI J. 25 (1): 6.
Nagatomo, N., and I. Kiyohiko. 1991. “An evolutionary satellite power system for international demonstration in developing nations.” In Proc., SPS 91: Power from Space Symp., B1.4, Gif-sur-Yvette, 356–363. Paris: Société des ingénieurs et scientifiques de France.
Nixon, M. S., and A. K. Misra. 1993. “Nonlinear dynamics and chaos of two-body tethered satellite systems.” Adv. Astronaut. Sci. 85 (Jun): 775–794.
Oda, M., H. Ueno, and M. Mori. 2003. “Study of the solar power satellite in Nasda.” In Proc., 7th Int. Symp. on Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS, Tokyo: Japanese Aerospace Exploration Agency.
Peng, J. H., and Y. Z. Liu. 1996. “Chaotic motion of the tethered satellite system.” Tech. Mech. 16 (4): 327–331.
Potter, S., and D. Davis. 2009. “Orbital reflectors for space solar power demonstration and use in the near term.” In Proc., AIAA SPACE 2009 Conf. & Exposition, AIAA 2009-6675, Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-6675.
Pradeep, S. 1997. “A new tension control law for deployment of tethered satellites.” Mech. Res. Commun. 24 (3): 247–254. https://doi.org/10.1016/S0093-6413(97)00021-9.
Riahi, K. 2022. “Mitigation pathways compatible with long-term goals.” In IPCC, 2022: Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change, edited by P. R. Shukla, et al. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781009157926.005.
Rupp, C. C. 1975. A tether tension control law for tethered subsatellites deployed along local vertical. Huntsville, AL: Marshall Space Hight Center.
Salazar, F., and O. Winter. 2017. “Solar power satellite system in formation on a common geostationary orbit.” J. Phys.: Conf. Ser. 911 (Feb): 012066. https://doi.org/10.1088/1742-6596/911/1/012006.
Salazar, F., O. Winter, and C. McInnes. 2018. “Collecting solar power by formation flying systems around a geostationary point.” Comput. Appl. Math. 37 (Jan): 84–95. https://doi.org/10.1007/s40314-017-0473-6.
Salazar, F. J. T., C. R. McInnes, and O. C. Winter. 2016. “Intervening in Earth’s climate system through space-based solar reflectors.” Adv. Space Res. 58 (1): 17–29. https://doi.org/10.1016/j.asr.2016.04.007.
Salazar, F. J. T., C. R. McInnes, and O. C. Winter. 2017. “Periodic orbits for space-based reflectors in the circular restricted three-body problem.” Celestial Mech. Dyn. Astron. 128 (1): 95–113. https://doi.org/10.1007/s10569-016-9739-3.
Salazar, F. J. T., and A. F. B. A. Prado. 2021. “Suppression of chaotic motion of tethered satellite systems using tether length control.” J. Guidance Control Dyn. 45 (3): 580–586. https://doi.org/10.2514/1.G006364.
Salazar, F. J. T., and A. F. B. A. Prado. 2022. “Deployment and retrieval missions from quasi-periodic and chaotic states under a non-linear control law.” Symmetry 14 (7): 1381. https://doi.org/10.3390/sym14071381.
Salazar, F. J. T., and O. C. Winter. 2019. “Sun-synchronous solar reflector orbits designed to warm Mars.” Astrophys. Space Sci. 364 (9): 147. https://doi.org/10.1007/s10509-019-3633-x.
Sanchez, J. P., and C. McInnes. 2011. “Asteroid resource map for near-earth space.” J. Spacecraft Rockets 48 (1): 153–165. https://doi.org/10.2514/1.49851.
Sasaki, S., K. Tanaka, K. Higuchi, N. Okuizumi, S. Kawasaki, N. Shinohara, K. Senda, and K. Ishimura. 2007. “A new concept of solar power satellite: Tethered-SPS.” Acta Astronaut. 60 (3): 153–165. https://doi.org/10.1016/j.actaastro.2006.07.010.
Sasaki, S., K. Tanaka, and K. Maki. 2013. “Microwave power transmission technologies for solar power satellites.” Proc. IEEE 101 (6): 1438–1447. https://doi.org/10.1109/JPROC.2013.2246851.
Seboldt, W., M. Klimke, M. Leipold, and N. Hanowski. 2001. “European sail tower SPS concept.” Acta Astronaut. 48 (5–12): 785–792. https://doi.org/10.1016/S0094-5765(01)00046-7.
Steindl, A., and H. Troger. 2003. “Optimal control of deployment of a tethered subsatellite.” Nonlinear Dyn. 31 (3): 257–274. https://doi.org/10.1023/A:1022956002484.
Steiner, W. 1998. “Transient chaotic oscillations of a tethered satellite system.” Acta Mech. 127 (1–4): 155–163. https://doi.org/10.1007/BF01170370.
Sudhakar, K. 2020. “Solar space power: An overview.” Int. J. Ambient Energy 41 (5): 600–607. https://doi.org/10.1080/01430750.2018.1472642.
Sun, G., and Z. H. Zhu. 2014. “Fractional-order tension control law for deployment of space tether system.” J. Guidance Control Dyn. 37 (6): 2057–2062. https://doi.org/10.2514/1.G000496.
Takeichi, N., H. Ueno, and M. Oda. 2005. “Feasibility study of a solar power satellite system configured by formation flying.” Acta Astronaut. 57 (9): 698–706. https://doi.org/10.1016/j.actaastro.2005.02.006.
Tay, T., I. Mareels, and J. B. Moore. 1998. High performance control. 1st ed. Boston: Birkhauser.
Uphoff, C. 1994. “Very fast solar sails.” In Proc., Int. Conf. Space Missions and Astrodynamics III, Niwot, CO: ACTA Consulting Group.
Vadali, S. 1991. “Feedback tether deployment and retrieval.” J. Guidance Control Dyn. 14 (2): 469–470. https://doi.org/10.2514/3.20662.
Vadali, S., and E. Kim. 1991. “Feedback control of tethered satellites using Lyapunov stability theory.” J. Guidance Control Dyn. 14 (4): 729–735. https://doi.org/10.2514/3.20706.
van de Kolk, C. 1999. “Stability of levitated cylindrical orbits by using solar sails.” Adv. Astronaut. Sci. 103 (Aug): 539–544.
Wie, B., and C. Roithmayr. 2001. “Integrated orbit, attitude, and structural control system design for space solar power satellites.” In Proc., AIAA Guidance, Navigation, and Control Conf. and Exhibit, AIAA 2001-4273. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2001-4273.
Yang, Y., Y. Zhang, B. Duan, D. Wang, and X. Li. 2016. “A novel design project for space solar power station (SPSS-omega).” Acta Astronaut. 121 (May): 51–58. https://doi.org/10.1016/j.actaastro.2015.12.029.
Yu, B. S., S. D. Xu, and D. P. Jin. 2020. “Chaos in a tethered satellite system induced by atmospheric drag and earth’s oblateness.” Nonlinear Dyn. 101 (2): 1233–1244. https://doi.org/10.1007/s11071-020-05844-8.
Yu, S. 1995. “On the dynamics and control of the relative motion between two spacecraft.” Acta Astronaut. 35 (6): 403–409. https://doi.org/10.1016/0094-5765(94)00284-S.
Yu, S. 2000. “Tethered satellite system analysis (1) - two-dimensional case and regular dynamics.” Acta Astronaut. 47 (12): 849–858. https://doi.org/10.1016/S0094-5765(00)00133-8.
Zajac, E. E. 1964. “The Kelvin-Tait-Chetayev theorem and extensions.” J. Aeronaut. Sci. 11 (Jun): 46–49.
Zekavat, S. A., O. Abdelkhalik, S. T. Goh, and D. R. Fuhrmann. 2010. “A novel space-based solar power collection via Leo satellite networks: Orbital management via wireless local positioning systems.” In Proc., 2010 IEEE Aerospace Conf., 1–9. New York: IEEE.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 36Issue 6November 2023

History

Received: Nov 4, 2022
Accepted: May 16, 2023
Published online: Aug 22, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 22, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Fellow, Orbital Mechanics Dept., National Institute for Space Research, Av. dos Astronautas 1.75, São José dos Campos, SP 12227-010, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3599-9745. Email: [email protected]
Antonio Fernando Bertachini de Almeida Prado https://orcid.org/0000-0002-7966-3231 [email protected]
Full Researcher, Orbital Mechanics Dept., National Institute for Space Research, Av. dos Astronautas 1.75, São José dos Campos, SP 12227-010, Brazil; Lecturer, Orbital Academy of Engineering, RUDN Univ., Miklukho-Maklaya St. 6, Moscow 117198, Russia. ORCID: https://orcid.org/0000-0002-7966-3231. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share