Technical Papers
Mar 27, 2024

Electrokinetics in a Stone Column Encased by a Conductive Jute Geotextile: The Role of Anode Materials

Publication: International Journal of Geomechanics
Volume 24, Issue 6

Abstract

In this study, the behavior of soft clay improved with a conductive jute geotextile-encased stone column was investigated, considering the effects of electrokinetic coupling. The study findings suggest that electrokinetic-coupled encased stone columns (e-ESCs) improve the dewatering efficiency, consolidation settlement rate, and shear strength of the soft clay compared to nonelectrokinetic encased columns. After the inclusion of e-ESCs, the time required to remove 50% of the total discharge was decreased by 92% compared to encased stone columns (ESCs). A significant decrease in the volumetric shrinkage and surface cracks was observed for e-ESC-improved soft clay. Further, due to anode corrosion during the process, brass electrodes experienced a 4.25% loss in weight at the end. The consumed power per unit weight of treated soil (Wh/kg) at the end of the test period was 24.03, 19.70, 20.10, and 23.38 Wh/kg for the e-ESC with mild steel, copper, brass, and aluminum anodes, respectively. The findings showed that the choice of anode material affects the characteristics of soft clay, such as undrained shear strength, pore water discharge, flow pattern, and moisture content. Further, a noteworthy modification in the physicochemical properties of clay was observed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article.

Acknowledgments

The authors express gratitude for the financial support extended by the Science and Engineering Research Board, Department of Science and Technology, India (Grant Nos. SERB/F/4638/2013–14 and CRG/2018/004612), as well as the initial grant from IIT Kanpur (Grant No. 20110145).

References

Abiera, H. O., N. Miura, D. T. Bergado, and T. Nomura. 1999. “Effects of using electro-conductive PVD in the consolidation of reconstituted Ariake clay.” Geotech. Eng. 30 (2): 67–83.
Ambily, A. P., and S. R. Gandhi. 2007. “Behavior of stone columns based on experimental and FEM analysis.” J. Geotech. Geoenviron. Eng. 133: 405–415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405).
ASTM. 2017. Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM D4595-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard specification for reagent water. ASTM D1193-06. West Conshohocken, PA: ASTM.
Ayodele, A. L., S. Pamukcu, and O. A. Agbede. 2020. “Plasticity modification of a tropical laterite by electrochemical stabilization.” Electrochim. Acta 341: 136047. https://doi.org/10.1016/j.electacta.2020.136047.
Behrouzinia, S., H. Ahmadi, N. Abbasi, and A. A. Javadi. 2022. “Experimental investigation on a combination of soil electrokinetic consolidation and remediation of drained water using composite nanofiber-based electrodes.” Sci. Total Environ. 836: 155562. https://doi.org/10.1016/j.scitotenv.2022.155562.
Ben Hassine, A., H. Souli, P. H. Dubujet, F. Ayari, and M. Trabelsi-Ayadi. 2016. “Kaolinite carbonate mixture fabric evolution after electrokinetic tests.” Géotechnique Lett. 6 (1): 45–49. https://doi.org/10.1680/jgele.15.00132.
Bjerrum, L., J. Moum, and O. Eide. 1967. “Application of electro-osmosis to a foundation problem in a Norwegian quick clay.” Géotechnique 17 (3): 214–235. https://doi.org/10.1680/geot.1967.17.3.214.
Bong, T., A. W. Stuedlein, J. Martin, and B.-I. Kim. 2020. “Bearing capacity of spread footings on aggregate pier–reinforced clay: Updates and stress concentration.” Can. Geotech. J. 57: 717–727. https://doi.org/10.1139/cgj-2019-0026.
Cabalar, A. F., M. H. Awraheem, and M. M. Khalaf. 2018. “Geotechnical properties of a low-plasticity clay with biopolymer.” J. Mater. Civ. Eng. 30 (8): 04018170. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380.
Chakraborty, A., and V. A. Sawant. 2022. “Numerical simulation of earthen embankment resting on liquefiable soil and remediation using stone columns.” Int. J. Geomech. 22 (11): 04022205. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002559.
Chen, J.-F., L.-Y. Li, Z. Zhang, X. Zhang, C. Xu, S. Rajesh, and S.-Z. Feng. 2021. “Centrifuge modeling of geosynthetic-encased stone column-supported embankment over soft clay.” Geotext. Geomembr. 49: 210–221. https://doi.org/10.1016/j.geotexmem.2020.10.021.
Chew, S. H., G. P. Karunaratne, V. M. Kuma, L. H. Lim, M. L. Toh, and A. M. Hee. 2004. “A field trial for soft clay consolidation using electric vertical drains.” Geotext. Geomembr. 22: 17–35. https://doi.org/10.1016/S0266-1144(03)00049-9.
Das, S. K., and M. C. Bora. 2013. “Influence of geosynthetic encasement on the performance of stone columns floating in soft clay.” Can. Geotech. J. 50: 754–765. https://doi.org/10.1139/cgj-2012-0437.
Deb, K., and S. Shiyamalaa. 2015. “Effect of clogging on rate of consolidation of stone column-improved ground by considering particle migration.” Int. J. Geomech. 41: 1–10.
Gargano, S., S. Lirer, B. Liguori, and A. Flora. 2020. “Effect of the pore fluid salinities on the behaviour of an electrokinetic treated soft clayey soil.” Soils Found. 60: 898–910. https://doi.org/10.1016/j.sandf.2020.06.003.
Gomes, H. I., C. Dias-Ferreira, A. B. Ribeiro, and S. Pamukcu. 2014. “Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay.” Chemosphere 99: 171–179. https://doi.org/10.1016/j.chemosphere.2013.10.065.
Hamir, R. B., C. J. F. P. Jones, and B. G. Clarke. 2001. “Electrically conductive geosynthetics for consolidation and reinforced soil.” Geotext. Geomembr. 19 (8): 455–482. https://doi.org/10.1016/S0266-1144(01)00021-8.
Harton, J. H., S. Hamid, E. Abi-Chedid, and G. V. Chilingar. 1967. “Effects of electrochemical treatment on selected physical properties of a clayey silt.” Eng. Geol. 2 (3): 191–196. https://doi.org/10.1016/0013-7952(67)90018-X.
IS (Indian Standard). 2003. Design and construction for ground improvement-guidelines. Part 1: Stone column. IS 15284. New Delhi, India: Bureau of Indian Standards.
ISO. 2015. Geosynthetic—Wide-width tensile test. EN ISO 10319. Geneva: ISO.
Jiang, L., A. Qin, L. Li, and H. Meng. 2023. “Analytical solution of electroosmotic-surcharge preloading coupled consolidation for unsaturated soil via electric prefabricated vertical drains (EVDs).” Transp. Geotech. 42: 101088. https://doi.org/10.1016/j.trgeo.2023.101088.
Jones, C. J. F. P., and J. Lamont-Black. 2023. “Reinforced soil design using the combined electrokinetic and mechanical properties of soil.” Geosynth. Int. 30 (4): 398–414. https://doi.org/10.1680/jgein.21.00024.
Jones, C. J. F. P., J. Lamont-Black, S. Glendinning, C. White, and D. Alder. 2014. “The environmental sustainability of electrokinetic geosynthetic strengthened slopes.” Proc. Inst. Civ. Eng. Eng. Sustainability 167 (3): 95–107.
Lamont-Black, J., C. J. F. P. Jones, and D. Alder. 2016. “Electrokinetic strengthening of slopes—Case history.” Geotext. Geomembr. 44 (3): 319–331. https://doi.org/10.1016/j.geotexmem.2016.01.001.
Li, J.-s., Q. Xue, P. Wang, and Z.-z. Li. 2015. “Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay.” Appl. Clay Sci. 105–106: 192–199. https://doi.org/10.1016/j.clay.2014.12.030.
Lv, H., S. Xing, D. Liu, F. Wang, W. Zhang, G. Sun, and X. Wu. 2020. “Soluble metal ions migration and distribution in sludge electro-dewatering.” Environ. Res. 180: 108862. https://doi.org/10.1016/j.envres.2019.108862.
Mahmoud, A., J. Olivier, J. Vaxelarie, and A. F. A. Hoadley. 2010. “Electrical field: A historical review of its application and contributions in wastewater sludge dewatering.” Water Resour. 44: 2381–2407.
Malekzadeh, M., L. Lovisa, and N. Sivakugan. 2016. “An overview of electrokinetic consolidation of soils.” Geotech. Geol. Eng. 34 (3): 759–776. https://doi.org/10.1007/s10706-016-0002-1.
Masi, M., A. Ceccarini, and R. Iannelli. 2017. “Model-based optimization of field-scale electrokinetic treatment of dredged sediments.” Chem. Eng. J. 328: 87–97. https://doi.org/10.1016/j.cej.2017.07.004.
Méndez, E., J. A. García, G. Hernández, S. Solís, F. Prieto, S. Pamukcu, and E. Bustos. 2019. “Study of electrochemical removal of phenanthrene in bentonite clay by physicochemical indicators.” Sep. Purif. Technol. 208: 92–99. https://doi.org/10.1016/j.seppur.2018.04.078.
Micic, S., J. Q. Shang, K. Y. Lo, Y. N. Lee, and S. W. Lee. 2001. “Electrokinetic strengthening of a marine sediment using intermittent current.” Can. Geotech. J. 38 (2): 287–302. https://doi.org/10.1139/t00-098.
Mohamedelhassan, E., and J. Q. Shang. 2002. “Feasibility assessment of electro-osmotic consolidation on marine sediment.” Proc. Inst. Civ. Eng. Ground Improv. 6 (4): 145–152. https://doi.org/10.1680/grim.2002.6.4.145.
Montoro, M. A., and F. M. Francisca. 2010. “Soil permeability controlled by particle–fluid interaction.” Geotech. Geol. Eng. 28: 851–864. https://doi.org/10.1007/s10706-010-9348-y.
Muir Wood, D., W. Hu, and D. F. T. Nash. 2000. “Group effects in stone column foundations: Model tests.” Géotechnique 50 (6): 689–698. https://doi.org/10.1680/geot.2000.50.6.689.
Murugesan, S., and K. Rajagopal. 2010. “Studies on the behavior of single and group of geosynthetic encased stone columns.” J. Geotech. Geoenviron. Eng. 136 (1): 129–139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
Oh, K. H., Y.-H. Ko, and K.-J. Kim. 2020. “Mechanical properties of amorphous PEI, PES, and PVC up to 11 GPa studied by Brillouin light scattering.” Physica B 576: 411722. https://doi.org/10.1016/j.physb.2019.411722.
Ortiz-Soto, R., D. Leal, C. Gutierrez, A. Aracena, A. Rojo, and H. K. Hansen. 2019. “Electrokinetic remediation of manganese and zinc in copper mine tailings.” J. Hazard. Mater. 365: 905–911. https://doi.org/10.1016/j.jhazmat.2018.11.048.
Pal, S., and K. Deb. 2023. “Filtration capability of geotextile encasement to minimize the clogging of stone column during consolidation.” Int. J. Geomech. 23 (6): 04023060. https://doi.org/10.1061/IJGNAI.GMENG-8053.
Pamukcu, S., and J. K. Wittle. 1992. “Electrokinetic removal of selected heavy metals from soil.” Environ. Prog. 11 (3): 241–250. https://doi.org/10.1002/ep.670110323.
Pamukcu, S., A. Weeks, and J. K. Wittle. 2004. “Enhanced reduction of Cr(VI) by direct electric current in a contaminated clay.” Environ. Sci. Technol. 38 (4): 1236–1241. https://doi.org/10.1021/es034578v.
Pandey, B. K., and S. Rajesh. 2019. “Enhanced engineering characteristics of soils by electro-osmotic treatment: An overview.” Geotech. Geol. Eng. 37 (6): 4649–4673. https://doi.org/10.1007/s10706-019-00973-3.
Pandey, B. K., S. Rajesh, and S. Chandra. 2022. “Performance of soft clay reinforced with encased stone column: A systematic review.” Int. J. Geosynth. Ground Eng. 8 (3): 40. https://doi.org/10.1007/s40891-022-00387-x.
Rajesh, S. 2017. “Time-dependent behaviour of fully and partially penetrated geosynthetic encased stone columns.” Geosynth. Int. 24 (1): 60–71. https://doi.org/10.1680/jgein.16.00015.
Rangeard, D., P. T. P. Phan, J. Martinez, and S. Lambert. 2016. “Mechanical behavior of fine-grained soil reinforced by sand columns: An experimental laboratory study.” Geotech. Test. J. 39 (4): 20150152. https://doi.org/10.1520/GTJ20150152.
Rittirong, A., R. S. Douglas, J. Q. Shang, and E. C. Lee. 2008. “Electrokinetic improvement of soft clay using electrical vertical drains.” Geosynth. Int. 15 (5): 369–381. https://doi.org/10.1680/gein.2008.15.5.369.
Sachan, A., and D. Penumadu. 2007. “Identification of microfabric of kaolinite clay mineral using x-ray diffraction technique.” Geotech. Geol. Eng. 25: 603. https://doi.org/10.1007/s10706-007-9133-8.
Sato, N., and G. Okamoto. 1981. “Electrochemical passivation of metals.” In Electrochemical materials science. Vol. 4 of Comprehensive treatise of electrochemistry, edited by J. O. Bockris, B. E. Conway, E. Yeager, and R. E. White, 12. New York: Springer.
Shahu, J. T., S. Kumar, and R. Bhowmik. 2023. “Ground improvement for transportation infrastructure: Experimental investigations on cyclic behavior of a group of granular columns.” Int. J. Geomech. 23 (3): 04022309. https://doi.org/10.1061/IJGNAI.GMENG-7880.
Souli, H., J.-M. Fleureau, M. T. Ayadi, and M. Besnard. 2008. “Physicochemical analysis of permeability changes in the presence of zinc.” Geoderma 145: 1–7. https://doi.org/10.1016/j.geoderma.2008.02.014.
Tajudin, S. A. A. 2012. “Electrokinetic stabilization of soft clay.” Ph.D. thesis, School of Civil Engineering, College of Engineering and Physical Sciences, Univ. of Birmingham.
Wang, L., P. Huang, S. Liu, and E. Alonso. 2020. “Analytical solution for nonlinear consolidation of combined electroosmosis-vacuum-surcharge preloading.” Comput. Geotech. 121: 103484. https://doi.org/10.1016/j.compgeo.2020.103484.
Weber, T. M., M. Plötze, J. Laue, G. Peschke, and S. M. Springman. 2010. “Smear zone identification and soil properties around stone columns constructed in-flight in centrifuge model tests.” Géotechnique 60 (3): 197–206. https://doi.org/10.1680/geot.8.P.098.
Wu, H., L. Hu, and G. Zhang. 2016. “Effects of electro-osmosis on the physical and chemical properties of bentonite.” J. Mater. Civ. Eng. 28: 06016010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001572.
Yan, Y., and G. M. Kirkelund. 2022. “Graphite particles as third electrodes to enhance metal removal and energy saving in a stationary electrodialytic soil system.” Electrochim. Acta 407: 139896. https://doi.org/10.1016/j.electacta.2022.139896.
Yoo, C., and Q. Abbas. 2019. “Performance of geosynthetic-encased stone column-improved soft clay under vertical cyclic loading.” Soils Found. 59: 1875–1890. https://doi.org/10.1016/j.sandf.2019.08.006.
Zhang, L., N. W. Wang, L. P. Jing, C. Fang, Z. D. Shan, and Y. Q. Li. 2017. “Electro-osmotic chemical treatment for marine clayey soils: A laboratory experiment and a field study.” Geotech. Test. J. 40 (1): 20150229. https://doi.org/10.1520/GTJ20150229.
Zhang, X., S. Rajesh, J. F. Chen, Z. Zhang, and L. Y. Li. 2021. “3D coupled mechanical and hydraulic modelling of geosynthetic encased stone column-supported embankment over soft clay.” Mar. Georesour. Geotechnol. 39 (11): 1296–1306. https://doi.org/10.1080/1064119X.2020.1830321.
Zhang, X., S. Rajesh, J.-F. Chen, and J.-Q. Wang. 2022. “Geosynthetic encased column-supported embankment: Behavior with and without basal geogrid.” Geosynth. Int. 29 (3): 312–325. https://doi.org/10.1680/jgein.21.00038.
Zhuang, Y.-F. 2021. “Large scale soft ground consolidation using electrokinetic geosynthetics.” Geotext. Geomembr. 49: 757–770. https://doi.org/10.1016/j.geotexmem.2020.12.006.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 6June 2024

History

Received: Aug 15, 2023
Accepted: Dec 12, 2023
Published online: Mar 27, 2024
Published in print: Jun 1, 2024
Discussion open until: Aug 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh 495009, India (corresponding author). ORCID: https://orcid.org/0000-0001-8043-3815. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India. ORCID: https://orcid.org/0000-0002-1108-3628. Email: [email protected]
Sarvesh Chandra [email protected]
Formerly, Professor, Dept. of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share