Technical Papers
Sep 7, 2023

A New Analytical Model for Trapdoor Tests Considering Effect of Incomplete Soil Arching and Principal Stress Deflection

Publication: International Journal of Geomechanics
Volume 23, Issue 11

Abstract

Since the ground reaction curve (GRC) is a useful tool for evaluating the formation deformation and the load acting on an underground structure, it is critical to determine the GRC, especially under small strain conditions. In this paper, a new analytical model considering the progressive development of loose soil was proposed to describe GRC in trapdoor tests. The proposed model is composed of an undisturbed zone, unloading zone, failure zone, and self-weight zone. The key parameters of the proposed model were determined through the existing literature. In addition, the formulas for calculating the lateral pressure coefficient and the height of the failure zone were derived, respectively. Considering the continuity of the principal stress deflection and lateral pressure coefficient in the unloading zone, and assuming that the unloading zone is a three-hinged arch with reasonable arch axis, the load transfer expression in the unloading zone was deduced. Then, based on the limit equilibrium theory, the vertical stress acting on the trapdoor was obtained. The effectiveness of the proposed model was verified by comparing the calculation results of the proposed model with model tests, a theoretical model, and a simplified model. Finally, the influence of the key parameters of the proposed model on GRC was discussed in detail. This work provides a meaningful reference for estimating the GRC.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study is supported by the National Key R&D Program (2019YFC1509704), Major Project of Future Urban Design Innovation Center of Beijing of Civil Engineering and Architecture (UDC2019032824) and Beijing Municipal Engineering Institute. These financial supports are gratefully acknowledged.

Notation

The following symbols are used in this paper:
B
width of trapdoor;
c
cohesion;
Fi
horizontal thrust acting on the ith structural arch foot in phase II;
FPi
horizontal thrust acting on the ith structural arch foot in phase III;
f
arch height of structural arch;
fia
average arch height of the ith structural arch in phase II;
fia
average arch height of the ith structural arch in phase I;
fPia
average arch height of the ith structural arch in phase III;
H
cover depth of the trapdoor;
H1
height of unloading area;
H2
height of parabola at top of failure zone in phase II and III;
H2
height of parabola at top of failure zone in phase I;
H3
height of shear band;
K0
coefficient of static earth pressure;
KA
lateral pressure coefficient at point A;
Ka
coefficient of active earth pressure;
Kia
average lateral pressure coefficient of the ith structural arch in phase II;
Kia
average lateral pressure coefficient of the ith structural arch in phase I;
KL
lateral pressure coefficient on shear band;
KL
lateral pressure coefficient at the bottom of the unloading zone in phase I;
KP0
lateral pressure coefficient of the ground surface in phase III;
KPia
average lateral pressure coefficient of the ith structural arch in phase III;
Ks
lateral pressure coefficient at the boundaries on both sides of different zones;
Li
length of the ith structural arch foot in phase II;
Li
length of the ith structural arch foot in phase I;
LPi
length of the ith structural arch foot in phase III;
m
distribution factor of vertical earth pressure;
q
surcharge on the ground surface;
qi
load acting on the (i + 1)th structural arch in phase II;
qi
load acting on the (i + 1)th structural arch in phase I;
q(i−1)
load acting on the ith structural arch in phase II;
q(i1)
load acting on the ith structural arch in phase I;
qiG
self-weight stress of the ith structural arch in phase II;
qiG
self-weight stress of the ith structural arch in phase I;
qn
load acting on the top of the failure zone in phase II;
qn
load acting on the top of the failure zone in phase I;
qP(i−1)
load acting on the ith structural arch in phase III;
qPi
load acting on the (i + 1)th structural arch in phase III;
qPiG
self-weight stress of the ith structural arch in phase III;
qPn
load acting on the top of the failure zone in phase III;
qS
load acting on the self-weight zone;
qU
load acting on the top of the failure zone;
V
volume of failure zone;
V1
volume of parabolic-shape in phase II and III;
V1
volume of parabolic-shape in phase I;
V2
volume of rectangle;
VT
volume of space formed by trapdoor displacement;
WF
self-weight of soil inside the parabolic-shape in phase II and III;
WF
self-weight of soil inside the parabolic-shape in phase I;
Ws
self-weight of self-weight zone;
α
soil volume bulking factor;
β
angle between horizontal plane and fracture surface at the top of failure zone, it can be taken as θ0 in phase II and III;
γ
unit weight of soil;
γe
unit weight of failure zone in phase II and III;
γe
unit weight of failure zone in phase I;
δ
normalized displacement of trapdoor;
η
displacement of trapdoor;
θ
angle between the direction of the maximum principal stress and the horizontal plane;
θ0
principal stress deflection angle on shear band or the angle between horizontal plane and fracture surface at the top of failure zone in phase II and III;
θia
average principal stress deflection angle of the ith structural arch in phase II;
θia
average principal stress deflection angle of the ith structural arch in phase I;
θP0
principal stress deflection angle of the ground surface in phase III;
θPia
average principal stress deflection angle of the ith structural arch in phase III;
ρ
normalized pressure acting on the trapdoor;
σ1
maximum principal stress of the element in the arch;
σ3
minimum principal stress of the element in the arch;
σav
average vertical stress;
σh
horizontal stress;
σTv
average vertical stress acting on the trapdoor;
σv
vertical stress;
σvA
vertical stress at point A;
τ
shear stress on shear band;
φ
internal friction angle; and
ω
principal stress deflection angle at the boundaries on both sides of different zones.

References

Alonso, E., L. R. Alejano, F. Varas, G. Fdez-Manin, and C. Carranza-Torres. 2003. “Ground response curves for rock masses exhibiting strain-softening behaviour.” Int. J. Numer. Anal. Methods Geomech. 27: 1153–1185. https://doi.org/10.1002/nag.315.
Ahmed, M., and M. Iskander. 2012. “Evaluation of tunnel face stability by transparent soil models.” Tunnelling Underground Space Technol. 27 (1): 101–110. https://doi.org/10.1016/j.tust.2011.08.001.
Anagnostou, G., and K. Kovári. 1996. “Face stability conditions with earth-pressure-balanced shields.” Tunnelling Underground Space Technol. 11 (2): 165–173. https://doi.org/10.1016/0886-7798(96)00017-X.
Anderheggen, E., and H. Knöpfel. 1972. “Finite element limit analysis using linear programming.” Int. J. Solids Struct. 8 (12): 1413–1431. https://doi.org/10.1016/0020-7683(72)90088-1.
Bahmani Tajani, S., H. Fathipour, M. Payan, R. Jamshidi Chenari, and K. Senetakis. 2022. “Temperature-dependent lateral earth pressures in partially saturated backfills.” Eur. J. Environ. Civ. Eng. 27 (10): 3064–3090. https://doi.org/10.1080/19648189.2022.2125911.
Basudhar, P. K., and D. N. Singh. 1994. “A generalized procedure for predicting optimal lower bound break-out factors of strip anchors.” Géotechnique 44 (2): 307–318. https://doi.org/10.1680/geot.1994.44.2.307.
Brown, E. T., J. W. Bray, and B. Ladanyi. 1983. “Ground response curves for rock tunnels.” J. Eng. Mech. 109: 15–39.
Cai, Y., Q. Chen, Y. Zhou, S. Nimbalkar, and J. Yu. 2017. “Estimation of passive earth pressure against rigid retaining wall considering arching effect in cohesive-frictional backfill under translation mode.” Int. J. Geomech. 17: 04016093. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000786.
Carranza-Torres, C., and C. Fairhurst. 1999. “The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion.” Int. J. Rock Mech. Min. Sci. 36: 777–809. https://doi.org/10.1016/S0148-9062(99)00047-9.
Carranza-Torres, C., and C. Fairhurst. 2000. “Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion.” Tunnelling Underground Space Technol. 15 (2): 187–213. https://doi.org/10.1016/S0886-7798(00)00046-8.
Chambon, P., and J.-F. Corté. 1994. “Shallow tunnels in cohesionless soil: Stability of tunnel face.” J. Geotech. Eng. 120 (7): 1148–1165. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1148).
Chen, R. P., J. Li, L. G. Kong, and L. J. Tang. 2013. “Experimental study on face instability of shield tunnel in sand.” Tunn. Undergr. Space Technol. 33: 12–21. https://doi.org/10.1016/j.tust.2012.08.001.
Chen, K.-H., and F.-L. Peng. 2018. “An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers.” Tunnelling Underground Space Technol. 75: 43–66. https://doi.org/10.1016/j.tust.2018.01.027.
Chen, R.-P., X.-T. Lin, and H.-N. Wu. 2019. “An analytical model to predict the limit support pressure on a deep shield tunnel face.” Comput. Geotech. 115: 103174. https://doi.org/10.1016/j.compgeo.2019.103174.
Chen, R. P., L. J. Tang, X. S. Yin, Y. M. Chen, and X. C. Bian. 2015. “An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils.” Acta Geotech. 10 (5): 683–692. https://doi.org/10.1007/s11440-014-0304-5.
Chen, Y. M., W. P. Cao, and R. P. Chen. 2008. “An experimental investigation of soil arching within basal reinforced piled embankments.” Geotext. Geomembr. 26: 164–174. https://doi.org/10.1016/j.geotexmem.2007.05.004.
Chevalier, B., G. Combe, and P. Villard. 2012. “Experimental and discrete element modeling studies of the trapdoor problem: Influence of the macro-mechanical frictional parameters.” Acta Geotech. 7 (1): 15–39. https://doi.org/10.1007/s11440-011-0152-5.
Engesser, F. 1882. “Ueber den Erdduck gegen innere Stützwande (Tunnelwande).” Deutsche Bauzeitung 16: 91–93.
Enstad, G. 1975. “On the theory of arching in mass flow hoppers.” Chem. Eng. Sci. 30 (10): 1273–1283. https://doi.org/10.1016/0009-2509(75)85051-2.
Fang, Q., D. Zhang, P. Zhou, and L. N. Y. Wong. 2013. “Ground reaction curves for deep circular tunnels considering the effect of ground reinforcement.” Int. J. Rock Mech. Min. Sci. 60: 401–412. https://doi.org/10.1016/j.ijrmms.2013.01.003.
Fathipour, H., M. Payan, and R. J. Chenari. 2021a. “Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming.” Comput. Geotech. 134: 104119. https://doi.org/10.1016/j.compgeo.2021.104119.
Fathipour, H., M. Payan, R. Jamshidi Chenari, and K. Senetakis. 2021b. “Lower bound analysis of modified pseudo-dynamic lateral earth pressures for retaining wall-backfill system with depth-varying damping using FEM-Second order cone programming.” Int. J. Numer. Anal. Methods Geomech. 45 (16): 2371–2387. https://doi.org/10.1002/nag.3269.
Fathipour, H., A. Safardoost Siahmazgi, M. Payan, R. Jamshidi Chenari, and M. Veiskarami. 2023. “Evaluation of the active and passive pseudo-dynamic earth pressures using finite element limit analysis and second-order cone programming.” Geotech. Geol. Eng. 41 (3): 1921–1936. https://doi.org/10.1007/s10706-023-02381-0.
Fathipour, H., A. S. Siahmazgi, M. Payan, and R. J. Chenari. 2020. “Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming.” Comput. Geotech. 125: 103587. https://doi.org/10.1016/j.compgeo.2020.103587.
Fathipour, H., A. S. Siahmazgi, M. Payan, M. Veiskarami, and R. Jamshidi Chenari. 2021c. “Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming.” Int. J. Geomech. 21 (2): 04020258. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001924.
Fathipour, H., S. B. Tajani, M. Payan, R. J. Chenari, and K. Senetakis. 2022. “Influence of transient flow during infiltration and isotropic/anisotropic matric suction on the passive/active lateral earth pressures of partially saturated soils.” Eng. Geol. 310: 106883. https://doi.org/10.1016/j.enggeo.2022.106883.
Firouzeh, S. H., M. Payan, R. J. Chenari, A. Shafiee, and K. Senetakis. 2022. “Efficiency of various mitigation schemes in the alleviation of the destructive effect of reverse dipslip fault rupture on surface and embedded shallow foundations using upper bound finite element limit analysis.” Comput. Geotech. 142: 104548. https://doi.org/10.1016/j.compgeo.2021.104548.
Fraldi, M., and F. Guarracino. 2009. “Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek–Brown failure criterion.” Int. J. Rock Mech. Min. Sci. 46: 665–673. https://doi.org/10.1016/j.ijrmms.2008.09.014.
Goel, S., and N. R. Patra. 2008. “Effect of arching on active earth pressure for rigid retaining walls considering translation mode.” Int. J. Geomech. 8 (2): 123–133. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(123).
Guan, K., W. C. Zhu, L. L. Niu, and Q. Y. Wang. 2017. “Three-dimensional upper bound limit analysis of supported cavity roof with arbitrary profile in Hoek-Brown rock mass.” Tunnelling Underground Space Technol. 69: 147–154. https://doi.org/10.1016/j.tust.2017.06.016.
Guan, Z., Y. Jiang, and Y. Tanabasi. 2007. “Ground reaction analyses in conventional tunnelling excavation.” Tunnelling Underground Space Technol. 22: 230–237. https://doi.org/10.1016/j.tust.2006.06.004.
Han, J., and M. A. Gabr. 2002. “Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil.” J. Geotech. Geoenviron. Eng. 128 (1): 44–53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44).
Han, J., F. Wang, M. Al-Naddaf, and C. Xu. 2017. “Progressive development of two-dimensional soil arching with displacement.” Int. J. Geomech. 17 (12): 04017112. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001025.
Handy, R. L. 1985. “The arch in soil arching.” J. Geotech. Eng. 111 (3): 302–318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302).
Hewlett, W. J., and M. F. Randolph. 1988. “Analysis of piled embankments.” Ground Eng. 21 (3): 12–18.
Huang, F., and X. L. Yang. 2011. “Upper bound limit analysis of collapse shape for circular tunnel subjected to pore pressure based on the Hoek–Brown failure criterion.” Tunnelling Underground Space Technol. 26 (5): 614–618. https://doi.org/10.1016/j.tust.2011.04.002.
Idinger, G., P. Aklik, W. Wu, and R. I. Borja. 2011. “Centrifuge model test on the face stability of shallow tunnel.” Acta Geotech. 6 (2): 105–117. https://doi.org/10.1007/s11440-011-0139-2.
Iglesia, G. R., H. H. Einstein, and R. V. Whitman. 1999. “Determination of vertical loading on underground structures based on an arching evolution concept.” In Proc., Geo-Engineering for Underground Facilities, edited by C. Fernandez and R. A. Bauer, 495–506. Reston, VA: ASCE.
Iglesia, G. R., H. H. Einstein, and R. V. Whitman. 2011. “Validation of centrifuge model scaling for soil systems via trapdoor tests.” J. Geotech. Geoenviron. Eng. 137 (11): 1075–1089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000517.
Iglesia, G. R., H. H. Einstein, and R. V. Whitman. 2014. “Investigation of soil arching with centrifuge tests.” J. Geotech. Geoenviron. Eng. 140 (2): 04013005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000998.
Jacobsz, S. W. 2016. “Trapdoor experiments studying cavity propagation.” In Proc., 1st Southern African Geotechnical Conf., 159–165. Boca Raton, FL: CRC Press.
Jiang, B., Q. Wang, S. C. Li, Y. X. Ren, R. X. Zhang, H. T. Wang, B. Zhang, R. Pan, and X. Shao. 2016. “The research of design method for anchor cables applied to cavern roof in water-rich strata based on upper-bound theory.” Tunnelling Underground Space Technol. 53: 120–127. https://doi.org/10.1016/j.tust.2016.01.015.
Keawsawasvong, S. 2021. “Limit analysis solutions for spherical cavities in sandy soils under overloading.” Innovative Infrastruct. Solutions 6 (1): 33. https://doi.org/10.1007/s41062-020-00398-5.
Keawsawasvong, S., and S. Likitlersuang. 2021. “Undrained stability of active trapdoors in two-layered clays.” Underground Space 6: 446–454. https://doi.org/10.1016/j.undsp.2020.07.002.
Keawsawasvong, S., and J. Shiau. 2022. “Stability of active trapdoors in axisymmetry.” Underground Space 7: 50–57. https://doi.org/10.1016/j.undsp.2021.05.001.
Keawsawasvong, S., and B. Ukritchon. 2016. “Finite element limit analysis of pullout capacity of planar caissons in clay.” Comput. Geotech. 75: 12–17. https://doi.org/10.1016/j.compgeo.2016.01.015.
Keawsawasvong, S., and B. Ukritchon. 2017a. “Undrained limiting pressure behind soil gaps in contiguous pile walls.” Comput. Geotech. 83: 152–158. https://doi.org/10.1016/j.compgeo.2016.11.007.
Keawsawasvong, S., and B. Ukritchon. 2017b. “Undrained stability of an active planar trapdoor in non-homogeneous clays with a linear increase of strength with depth.” Comput. Geotech. 81: 284–293. https://doi.org/10.1016/j.compgeo.2016.08.027.
Keawsawasvong, S., and B. Ukritchon. 2017c. “Stability of unsupported conical excavations in non-homogeneous clays.” Comput. Geotech. 81: 125–136. https://doi.org/10.1016/j.compgeo.2016.08.007.
Keawsawasvong, S., and B. Ukritchon. 2017d. “Finite element analysis of undrained stability of cantilever flood walls.” Int. J. Geotech. Eng. 11 (4): 355–367. https://doi.org/10.1080/19386362.2016.1222044.
Keawsawasvong, S., and B. Ukritchon. 2018. “Three-dimensional interaction diagram for the undrained capacity of inverted T-shape strip footings under general loading.” Int. J. Geotech. Eng. 12 (2): 133–146. https://doi.org/10.1080/19386362.2016.1252141.
Keawsawasvong, S., and B. Ukritchon. 2019. “Undrained stability of a spherical cavity in cohesive soils using finite element limit analysis.” J. Rock Mech. Geotech. Eng. 11 (6): 1274–1285. https://doi.org/10.1016/j.jrmge.2019.07.001.
Keawsawasvong, S., and B. Ukritchon. 2020. “Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses.” Bull. Eng. Geol. Environ. 79 (8): 4167–4190. https://doi.org/10.1007/s10064-020-01798-8.
Keawsawasvong, S., and B. Ukritchon. 2021. “Undrained stability of plane strain active trapdoors in anisotropic and non-homogeneous clays.” Tunnelling Underground Space Technol. 107: 103628. https://doi.org/10.1016/j.tust.2020.103628.
Khatri, V. N. 2019. “Determination of passive earth pressure with lower bound finite elements limit analysis and modified pseudo-dynamic method.” Geomech. Geoeng. 14 (3): 218–229. https://doi.org/10.1080/17486025.2019.1573324.
Khatri, V. N., and J. Kumar. 2011. “Effect of anchor width on pullout capacity of strip anchors in sand.” Can. Geotech. J. 48 (3): 511–517. https://doi.org/10.1139/T10-082.
King, D. J., A. Bouazza, J. R. Gniel, R. K. Rowe, and H. H. Bui. 2017a. “Serviceability design for geosynthetic reinforced column supported embankments.” Geotext. Geomembr. 45 (4): 261–279. https://doi.org/10.1016/j.geotexmem.2017.02.006.
King, D. J., A. Bouazza, J. R. Gniel, R. K. Rowe, and H. H. Bui. 2017b. “Load-transfer platform behaviour in embankments supported on semi-rigid columns: Implications of the ground reaction curve.” Can. Geotech. J. 54 (8): 1158–1175. https://doi.org/10.1139/cgj-2016-0406.
Kirsch, A. 2010. “Experimental investigation of the face stability of shallow tunnels in sand.” Acta Geotech. 5 (1): 43–62. https://doi.org/10.1007/s11440-010-0110-7.
Kirsch, A., and D. Kolymbas. 2005. “Theoretische Untersuchung zur Ortsbruststabilität.” [In German.] Bautechnik 82 (7): 449–456. https://doi.org/10.1002/bate.200590151.
Kumar, J., and K. M. Kouzer. 2008. “Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements.” Can. Geotech. J. 45 (5): 698–704. https://doi.org/10.1139/T08-005.
Ladanyi, B., and B. Hoyaux. 1969. “A study of the trap-door problem in a granular mass.” Can. Geotech. J. 6 (1): 1–14. https://doi.org/10.1139/t69-001.
Lai, H.-J., J.-J. Zheng, R.-J. Zhang, and M.-J. Cui. 2018. “Classification and characteristics of soil arching structures in pile-supported embankments.” Comput. Geotech. 98: 153–171. https://doi.org/10.1016/j.compgeo.2018.02.007.
Lee, C. J., B. R. Wu, H. T. Chen, and K. H. Chiang. 2006. “Tunnel stability and arching effects during tunneling in soft clayey soil.” Tunnelling Underground Space Technol. 21 (2): 119–132. https://doi.org/10.1016/j.tust.2005.06.003.
Li, P., K. Chen, F. Wang, and Z. Li. 2019a. “An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face.” Tunnelling Underground Space Technol. 91 (9): 102989. https://doi.org/10.1016/j.tust.2019.05.019.
Li, P., F. Wang, C. Zhang, and Z. Li. 2019b. “Face stability analysis of a shallow tunnel in the saturated and multilayered soils in short-term condition.” Comput. Geotech. 107: 25–35. https://doi.org/10.1016/j.compgeo.2018.11.011.
Li, P., H. Zou, and F. Wang. 2020. “An analytical mechanism of limit support pressure on cutting face for deep tunnels in the sand.” Comput. Geotech. 119: 1–9.
Lin, X.-T., R.-P. Chen, H.-N. Wu, and H.-Z. Cheng. 2019a. “Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle.” Tunnelling Underground Space Technol. 89: 78–90. https://doi.org/10.1016/j.tust.2019.03.021.
Lin, X.-T., R.-P. Chen, H.-N. Wu, and H.-Z. Cheng. 2019b. “Three-dimensional stress-transfer mechanism and soil arching evolution induced by shield tunneling in sandy ground.” Tunnelling Underground Space Technol. 93: 103104. https://doi.org/10.1016/j.tust.2019.103104.
Lin, X.-T., R.-P. Chen, H.-N. Wu, F.-Y. Meng, D. Su, and K. Han. 2022a. “Calculation of earth pressure distribution on the deep circular tunnel considering stress-transfer mechanisms in different zones.” Tunnelling Underground Space Technol. 119: 104211. https://doi.org/10.1016/j.tust.2021.104211.
Lin, X.-T., R.-P. Chen, H.-N. Wu, F.-Y. Meng, Q.-W. Liu, and D. Su. 2022b. “A composite function model for predicting the ground reaction curve on a trapdoor.” Comput. Geotech. 141: 104496. https://doi.org/10.1016/j.compgeo.2021.104496.
Liu, H., G. Kong, J. Chu, and X. Ding. 2015. “Grouted gravel column-supported highway embankment over soft clay: Case study.” Can. Geotech. J. 52 (11): 1725–1733. https://doi.org/10.1139/cgj-2014-0284.
Low, B. K., S. K. Tang, and V. Choa. 1994. “Arching in piled embankments.” J. Geotech. Eng. 120 (11): 1917–1938. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917).
Lü, X., Y. Zhou, M. Huang, and S. Zeng. 2018. “Experimental study of the face stability of shield tunnel in sands under seepage condition.” Tunnelling Underground Space Technol. 74: 195–205. https://doi.org/10.1016/j.tust.2018.01.015.
Lyamin, A. V., and S. W. Sloan. 2002. “Lower bound limit analysis using non-linear programming.” Int. J. Numer. Methods Eng. 55 (5): 573–611. https://doi.org/10.1002/nme.511.
Lysmer, J. 1970. “Limit analysis of plane problems in soil mechanics.” J. Soil Mech. Found. Div. 96: 1311–1334. https://doi.org/10.1061/JSFEAQ.0001441.
Mair, R. J., and R. N. Taylor. 1999. “Bored tunnelling in the urban environment.” In Proc., 14th Int. Conf., on Soil Mechanics and Foundation Engineering, 2353–2385. Rotterdam, Netherlands: A.A Balkema.
Marston, A. 1930. The theory of external loads on closed conduits in the light of latest experiments. Ames, IA: Iowa Engineering Experiment Station.
Martin, C. M. 2009. “Undrained collapse of a shallow plane-strain trapdoor.” Géotechnique 59 (10): 855–863. https://doi.org/10.1680/geot.8.T.023.
Merifield, R. S., A. V. Lyamin, and S. W. Sloan. 2006. “Three-dimensional lower-bound solutions for the stability of plate anchors in sand.” Géotechnique 56 (2): 123–132. https://doi.org/10.1680/geot.2006.56.2.123.
Merifield, R. S., and S. W. Sloan. 2006. “The ultimate pullout capacity of anchors in frictional soils.” Can. Geotech. J. 43 (8): 852–868. https://doi.org/10.1139/t06-052.
Ngamkhanong, C., S. Keawsawasvong, T. Jearsiripongkul, L. T. Cabangon, M. Payan, K. Sangjinda, R. Banyong, and C. Thongchom. 2022. “Data-driven prediction of stability of rock tunnel heading: An application of machine learning models.” Infrastructures 7 (11): 148. https://doi.org/10.3390/infrastructures7110148.
Oblozinsky, P., and J. Kuwano. 2004. “Centrifuge experiments on stability of tunnel face.” Slovak. J. Civ. Eng. 3: 23–29.
O’Rourke, T. D., S. L. El-Gharbawy, and H. E. Stewart. 1991. “Soil loads at pipeline crossings.” In Proc., Pipeline Crossings, 235–238. Reston, VA: ASCE.
Paik, K. H., and R. Salgado. 2003. “Estimation of active earth pressure against rigid retaining walls considering arching effects.” Géotechnique 53 (7): 643–653. https://doi.org/10.1680/geot.2003.53.7.643.
Payan, M., H. Fathipour, M. Hosseini, R. J. Chenari, and J. S. Shiau. 2022. “Lower bound finite element limit analysis of geo-structures with non-associated flow rule.” Comput. Geotech. 147: 104803. https://doi.org/10.1016/j.compgeo.2022.104803.
Rao, P., Q. Chen, Y. Zhou, S. Nimbalkar, and G. Chiaro. 2016. “Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil.” Int. J. Geomech. 16: 04015082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000589.
Rui, R., J. Han, S. J. M. van Eekelen, and Y. Wan. 2019. “Experimental investigation of soil-arching development in unreinforced and geosynthetic-reinforced pile-supported embankments.” J. Geotech. Geoenviron. Eng. 145 (1): 04018103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002000.
Rui, R., A. F. van Tol, Y. Y. Xia, S. J. M. van Eekelen, and G. Hu. 2016. “Investigation of soil-arching development in dense sand by 2D model tests.” Geotech. Test. J. 39 (3): 20150130. https://doi.org/10.1520/GTJ20150130.
Rui, R., F. van Tol, Y. Y. Xia, S. J. M. van Eekelen, and G. Hu 2018. “Evolution of soil arching: 2D analytical models.” Int. J. Geomech. 18 (6): 04018056. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001169.
Schofield, A. N. 1980. “Cambridge geotechnical centrifuge operations.” Géotechnique 30 (3): 227–268. https://doi.org/10.1680/geot.1980.30.3.227.
Sharan, S. K. 2005. “Exact and approximate solutions for displacements around circular openings in elastic–brittle–plastic Hoek–Brown rock.” Int. J. Rock Mech. Min. Sci. 42: 542–549. https://doi.org/10.1016/j.ijrmms.2005.03.019.
Shiau, J., and F. Al-Asadi. 2018. “Revisiting broms and bennermarks” original stability number for tunnel headings.” Géotechnique Lett. 8 (4): 310. https://doi.org/10.1680/jgele.18.00145.
Shiau, J., and F. Al-Asadi. 2020a. “Two-dimensional tunnel heading stability factors Fc, Fs and Fγ.” Tunnelling Underground Space Technol. 97: 103293. https://doi.org/10.1016/j.tust.2020.103293.
Shiau, J., and F. Al-Asadi. 2020b. “Determination of critical tunnel heading pressures using stability factors.” Comput. Geotech. 119: 103345. https://doi.org/10.1016/j.compgeo.2019.103345.
Shiau, J., and F. Al-Asadi. 2020c. “Three-dimensional analysis of circular tunnel headings using broms and bennermarks” original stability number.” Int. J. Geomech. 20 (7): 06020015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001734.
Shiau, J., and F. Al-Asadi. 2020d. “Three-dimensional heading stability of twin circular tunnels.” Geotech. Geol. Eng. 38: 2973–2988. https://doi.org/10.1007/s10706-020-01201-z.
Shiau, J., S. Keawsawasvong, and J.-S. Lee. 2022. “Three-dimensional stability investigation of trapdoors in collapse and blowout conditions.” Int. J. Geomech. 22 (4): 04022007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002339.
Shiau, J. S., C. E. Augarde, A. V. Lyamin, and S. W. Sloan. 2008. “Finite element limit analysis of passive earth resistance in cohesionless soils.” Soils Found. 48 (6): 843–850. https://doi.org/10.3208/sandf.48.843.
Shiau, J. S., A. V. Lyamin, and S. W. Sloan. 2003. “Bearing capacity of a sand layer on clay by finite element limit analysis.” Can. Geotech. J. 40 (5): 900–915. https://doi.org/10.1139/t03-042.
Shiau, J. S., R. S. Merifield, A. V. Lyamin, and S. W. Sloan. 2011. “Undrained stability of footings on slopes.” Int. J. Geomech. 11 (5): 381–390. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000092.
Singh, S., S. K. Shukla, and N. Sivakugan. 2011. “Arching in inclined and vertical mine stopes.” Geotech. Geol. Eng. 29 (5): 685–693. https://doi.org/10.1007/s10706-011-9410-4.
Sloan, S. W. 2013. “Geotechnical stability analysis.” Géotechnique 63 (7): 531–571. https://doi.org/10.1680/geot.12.RL.001.
Song, J., K. Chen, P. Li, Y. Zhang, and C. Sun. 2018. “Soil arching in unsaturated soil with different water table.” Granular Matter 20 (4): 78. https://doi.org/10.1007/s10035-018-0849-3.
Suchowerska, A. M., R. S. Merifield, J. P. Carter, and J. Clausen. 2012. “Prediction of underground cavity roof collapse using the Hoek–Brown failure criterion.” Comput. Geotech. 44: 93–103. https://doi.org/10.1016/j.compgeo.2012.03.014.
Sun, X., L. Miao, H. Lin, and T. Tong. 2018. “Soil arch effect analysis of shield tunnel in dry sandy ground.” Int. J. Geomech. 18 (6): 04018057. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001135.
Sun, Z., D. Zhang, Q. Fang, G. Dui, Q. Tai, and F. Sun. 2021a. “Analysis of the interaction between tunnel support and surrounding rock considering pre-reinforcement.” Tunnelling Underground Space Technol. 115: 104074. https://doi.org/10.1016/j.tust.2021.104074.
Sun, Z., D. Zhang, Q. Fang, D. Liu, and G. Dui. 2021b. “Displacement process analysis of deep tunnels with grouted rockbolts considering bolt installation time and bolt length.” Comput. Geotech. 140: 104437. https://doi.org/10.1016/j.compgeo.2021.104437.
Szajna, W. 2014. “Numerical modeling of soil arching in a shallow backfill layer.” Civ. Environ. Eng. Rep. 15 (4): 127–137.
Takano, D., J. Otani, and H. Nagatani. 2006. “Application of x-ray CT on boundary value problems in geotechnical engineering: Research on tunnel face failure.” In Proc., GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, 1–6. Reston, VA: ASCE.
Tao, L.-J., Y. Zhang, X. Zhao, J. Bian, X.-H. Chen, S. An, and X.-C. Han. 2021. “Group effect of pipe jacking in silty sand.” J. Geotech. Geoenviron. Eng. 147 (11): 05021012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002613.
Terzaghi, K. 1936. “Stress distribution in dry sand and in saturated sand above a yielding trap door.” In Proc., 1st Int. Conf., on Soil Mechanics and Foundation Engineering, 307–311. Cambridge, MA: Harvard University.
Terzaghi, K. 1943. Theoretical soil mechanics. London: Chapman & Hall.
Ting, C. H., S. K. Shukla, and N. Sivakugan. 2011. “Arching in soils applied to inclined mine stopes.” Int. J. Geomech. 11 (1): 29–35. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000067.
Ukritchon, B., and S. Keawsawasvong. 2019a. “Three-dimensional lower bound finite element limit analysis of an anisotropic undrained strength criterion using second-order cone programming.” Comput. Geotech. 106: 327–344. https://doi.org/10.1016/j.compgeo.2018.11.010.
Ukritchon, B., and S. Keawsawasvong. 2020. “Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength.” Geotech. Geol. Eng. 38: 897–915. https://doi.org/10.1007/s10706-019-01023-8.
Ukritchon, B., and S. Keawsawasvong. 2017a. “Error in Ito and Matsui’s limit-equilibrium solution of lateral force on a row of stabilizing piles.” J. Geotech. Geoenviron. Eng. 143 (9): 02817004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001753.
Ukritchon, B., and S. Keawsawasvong. 2017b. “Unsafe error in conventional shape factor for shallow circular foundations in normally consolidated clays.” J. Geotech. Geoenviron. Eng. 143 (6): 02817001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001670.
Ukritchon, B., and S. Keawsawasvong. 2018a. “Lower bound limit analysis of an anisotropic undrained strength criterion using second-order cone programming.” Int. J. Numer. Anal. Methods Geomech. 42 (8): 1016–1033. https://doi.org/10.1002/nag.2781.
Ukritchon, B., and S. Keawsawasvong. 2018b. “Three-dimensional lower bound finite element limit analysis of Hoek-Brown material using semidefinite programming.” Comput. Geotech. 104: 248–270. https://doi.org/10.1016/j.compgeo.2018.09.002.
Ukritchon, B., and S. Keawsawasvong. 2019b. “Design equations of uplift capacity of circular piles in sands.” Appl. Ocean Res. 90: 101844. https://doi.org/10.1016/j.apor.2019.06.001.
Ukritchon, B., and S. Keawsawasvong. 2019c. “Stability of retained soils behind underground walls with an opening using lower bound limit analysis and second-order cone programming.” Geotech. Geol. Eng. 37 (3): 1609–1625. https://doi.org/10.1007/s10706-018-0710-9.
Ukritchon, B., and S. Keawsawasvong. 2019d. “Stability of unlined square tunnels in Hoek-Brown rock masses based on lower bound analysis.” Comput. Geotech. 105: 249–264. https://doi.org/10.1016/j.compgeo.2018.10.006.
Vardoulakis, I., B. Graf, and G. Gudehus. 1981. “Trap-door problem with dry sand: A statical approach based upon model test kinematics.” Int. J. Numer. Anal. Methods Geomech. 5 (1): 57–78. https://doi.org/10.1002/nag.1610050106.
Veiskarami, M., R. Jamshidi Chenari, and A. A. Jameei. 2019. “A study on the static and seismic earth pressure problems in anisotropic granular media.” Geotech. Geol. Eng. 37: 1987–2005. https://doi.org/10.1007/s10706-018-0739-9.
Vermeer, P. A., N. M. Ruse, and T. Marcher. 2002. “Tunnel heading stability in drained ground.” Felsbau 20 (6): 8–18.
Wan, T., P. Li, H. Zheng, and M. Zhang. 2019. “An analytical model of loosening earth pressure in front of tunnel face for deep-buried shield tunnels in sand.” Comput. Geotech. 115: 103170. https://doi.org/10.1016/j.compgeo.2019.103170.
Wang, L., B. Leshchinsky, T. M. Evans, and Y. Xie. 2017. “Active and passive arching stress in c′-φ′ soils: A sensitivity study using computational limit analysis.” Comput. Geotech. 84: 47–57. https://doi.org/10.1016/j.compgeo.2016.11.016.
White, D. J., W. A. Take, and M. D. Bolton. 2003. “Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry.” Géotechnique 53 (7): 619–631. https://doi.org/10.1680/geot.2003.53.7.619.
Wu, J., S.-M. Liao, and M.-B. Liu. 2019. “An analytical solution for the arching effect induced by ground loss of tunneling in sand.” Tunnelling Underground Space Technol. 83: 175–186. https://doi.org/10.1016/j.tust.2018.09.025.
Xu, C. J., Q. Z. Chen, and W. J. Luo. 2018. “Analytical solution for estimating the stress state in backfill considering patterns of stress distribution.” Int. J. Geomech. 19 (1): 04018189.
Yang, X. L., and F. Huang. 2011. “Collapse mechanism of shallow tunnel based on nonlinear Hoek–Brown failure criterion.” Tunnelling Underground Space Technol. 26 (6): 686–691. https://doi.org/10.1016/j.tust.2011.05.008.
Yang, X. L., and F. Huang. 2013. “Three-dimensional failure mechanism of a rectangular cavity in a Hoek–Brown rock medium.” Int. J. Rock Mech. Min. Sci. 61: 189–195. https://doi.org/10.1016/j.ijrmms.2013.02.014.
Zhang, C., K. Han, and D. Zhang. 2015. “Face stability analysis of shallow circular tunnels in cohesive–frictional soils.” Tunnelling Underground Space Technol. 50: 345–357. https://doi.org/10.1016/j.tust.2015.08.007.
Zhang, H., P. Zhang, W. Zhou, S. Dong, and B. Ma. 2016. “A new model to predict soil pressure acting on deep burial jacked pipes.” Tunnelling Underground Space Technol. 60: 183–196. https://doi.org/10.1016/j.tust.2016.09.005.
Zhang, M., Q. Di, P. Li, Y. Wei, and F. Wang. 2022a. “Influence of non-associated flow rule on face stability for tunnels in cohesive–frictional soils.” Tunnelling Underground Space Technol. 121: 104320. https://doi.org/10.1016/j.tust.2021.104320.
Zhang, R., H. Zhao, and G. Wu. 2023. “FELA investigation of eccentrically-loaded footing on parallel tunnels constructed in rock masses.” Comput. Geotech. 153: 105102. https://doi.org/10.1016/j.compgeo.2022.105102.
Zhang, Y., L. Tao, X. Zhao, H. Kong, F. Guo, and J. Bian. 2022b. “An analytical model for face stability of shield tunnel in dry cohesionless soils with different buried depth.” Comput. Geotech. 142: 104565. https://doi.org/10.1016/j.compgeo.2021.104565.
Zhu, B., D. Gao, J.-c. Li, and Y.-m. Chen. 2012. “Model tests on interaction between soil and geosynthetics subjected to localized subsidence in landfills.” J. Zhejiang Univ.-Sci. A 13 (6): 433–444. https://doi.org/10.1631/jzus.A1100315.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 11November 2023

History

Received: Nov 7, 2022
Accepted: May 22, 2023
Published online: Sep 7, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 7, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Beijing Advanced Innovation Center for Future Urban Design, Beijing Univ. of Civil Engineering and Architecture, Beijing 102627, China. Email: [email protected]
Professor, Beijing Advanced Innovation Center for Future Urban Design, Beijing Univ. of Civil Engineering and Architecture, Beijing 102627, China (corresponding author). Email: [email protected]
Senior Engineer, Beijing Municipal Construction Group Co., Ltd, Beijing 100045, China. Email: [email protected]
Lianjin Tao [email protected]
Professor, Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. Email: [email protected]
Professor, Beijing Advanced Innovation Center for Future Urban Design, Beijing Univ. of Civil Engineering and Architecture, Beijing 102627, China. Email: [email protected]
Professor, The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. Email: [email protected]
Senior Engineer, Beijing Municipal Engineering Institute, Beijing 100037, China. Email: [email protected]
Xiaohui Yang [email protected]
Intermediate Engineer, Beijing Municipal Engineering Institute, Beijing 100037, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share