Technical Papers
Feb 7, 2023

Deep Learning for Intelligent Prediction of Rock Strength by Adopting Measurement While Drilling Data

Publication: International Journal of Geomechanics
Volume 23, Issue 4

Abstract

Precise, rapid, and reliable prediction of rock strength parameters is of great significance for underground engineering. This paper presents a method for predicting rock strength parameters including the Poisson’s ratio (P), elastic modulus (E), and uniaxial compressive strength (UCS) based on computer drilling jumbo measurement while drilling (MWD) data. First, the distribution characteristics and correlation of MWD data are studied; second, a filtering method of MWD data is proposed, which reduces the influence of operational and mechanical factors; finally, an intelligent prediction model of rock mechanics parameters was established, 30 groups of test data were used for application, and the mean absolute percentage error (MAPE) of prediction results for P, E and UCS are 2.11%, 3.11%, and 2.9%, the determination coefficients (R2) are 0.4346, 0.8241, and 0.6616. Compared with the data before optimization, the accuracy of prediction results is improved significantly, it shows that the deep neural network model can accurately predict rock mass parameters.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was funded by National Natural Science Foundation of China (Grant No. 51979154 and 52278404), Innovation Team of Shandong Provincial Higher Education Youth Innovation and Technology Program (Grant No. 2021KJG001), State Key Laboratory Open Project of China (Grant No. GJNY-18-73.3), Taishan Scholar Foundation of Shandong Province (Grant No. tsqn202103002), and Shandong University Future Scholars program.

References

Al-AbdulJabbar, A., A. A. Mahmoud, and S. Elkatatny. 2021. “Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations.” Arab. J. Geosci. 14 (2): 117. https://doi.org/10.1007/s12517-021-06457-0.
Asheghi, R., A. Abbaszadeh Shahri, and M. Khorsand Zak. 2019. “Prediction of uniaxial compressive strength of different quarried rocks using metaheuristic algorithm.” Arab. J. Sci. Eng. 44 (10): 8645–8659. https://doi.org/10.1007/s13369-019-04046-8.
Babaei Khorzoughi, M., R. Hall, and D. Apel. 2018. “Rock fracture density characterization using measurement while drilling (MWD) techniques.” Int. J. Min. Sci. Technol. 28 (6): 859–864. https://doi.org/10.1016/j.ijmst.2018.01.001.
Bameri, A., M. Cheraghi Seifabad, and S. H. Hoseinie. 2021. “Laboratorial studies for the prediction of rock texture and hardness using vibration measurement while drilling.” Bull. Eng. Geol. Environ. 80 (11): 8311–8318. https://doi.org/10.1007/s10064-021-02465-2.
Cai, C., Y. Xu, D. Ke, and K. Su. 2018. “Learning of human-like algebraic reasoning using deep feedforward neural networks.” Biol. Inspired Cognit. Archit. 25: 43–50. https://doi.org/10.1016/j.bica.2018.07.004.
Ceryan, N., U. Okkan, and A. Kesimal. 2013. “Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks.” Environ. Earth Sci. 68 (3): 807–819. https://doi.org/10.1007/s12665-012-1783-z.
Cevik, A., E. A. Sezer, and A. F. Cabalar. 2011. “Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network.” Appl. Soft Comput. 11 (2): 2587–2594. https://doi.org/10.1016/j.asoc.2010.10.008.
Chen, J., and Z. Q. Yue. 2016. “Weak zone characterization using full drilling analysis of rotary-percussive instrumented drilling.” Int. J. Rock Mech. Min. Sci. 89: 227–234. https://doi.org/10.1016/j.ijrmms.2016.09.012.
Choudhry, R. S., A. T. Rhead, M. W. D. Nielsen, and R. Butler. 2019. “A plate model for compressive strength prediction of delaminated composites.” Compos. Struct. 210: 509–517. https://doi.org/10.1016/j.compstruct.2018.11.066.
Dao, D., H. Ly, S. Trinh, T. Le, and B. Pham. 2019. “Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete.” Materials 12 (6): 983. https://doi.org/10.3390/ma12060983.
Del Monte, E., S. Boschi, and A. Vignoli. 2020. “Prediction of compression strength of ancient mortars through in situ drilling resistance technique.” Constr. Build. Mater. 237: 117563. https://doi.org/10.1016/j.conbuildmat.2019.117563.
Farrokhrouz, M., and M. R. Asef. 2017. “Experimental investigation for predicting compressive strength of sandstone.” J. Nat. Gas Sci. Eng. 43: 222–229. https://doi.org/10.1016/j.jngse.2017.03.023.
Feng, D., Z. Liu, X. Wang, Y. Chen, J. Chang, D. Wei, and Z. Jiang. 2020. “Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach.” Constr. Build. Mater. 230: 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000.
Haftani, M., B. Bohloli, A. Nouri, M. R. M. Javan, M. Moosavi, and M. Moradi. 2015. “Influence of penetration rate and indenter diameter in strength measurement by indentation testing on small rock specimens.” Rock Mech. Rock Eng. 48 (2): 527–534. https://doi.org/10.1007/s00603-014-0563-3.
He, Q., Y. Li, J. Xu, and C. Zhang. 2020. “Prediction of mechanical properties of igneous rocks under combined compression and shear loading through statistical analysis.” Rock Mech. Rock Eng. 53 (2): 841–859. https://doi.org/10.1007/s00603-019-01948-9.
Huang, F., J. Shen, M. Cai, and C. Xu. 2019a. “An empirical UCS model for anisotropic blocky rock masses.” Rock Mech. Rock Eng. 52 (9): 3119–3131. https://doi.org/10.1007/s00603-019-01771-2.
Huang, Z., P. Wang, J. Liu, W. Xiong, Y. He, X. Zhou, J. Xiao, Y. Li, S. Chen, and D. Fan. 2019b. “Identification of hybrid orbital angular momentum modes with deep feedforward neural network.” Results Phys. 15: 102790. https://doi.org/10.1016/j.rinp.2019.102790.
Jamshidi, E., R. Arabjamaloei, A. Hashemi, M. A. Ekramzadeh, and M. Amani. 2013. “Real-time estimation of elastic properties of formation rocks based on drilling data by using an artificial neural network.” Energy Sources Part A 35 (4): 337–351. https://doi.org/10.1080/15567036.2010.495971.
Jiang, S., J. Huang, D. V. Griffiths, and Z. Deng. 2022. “Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review.” Comput. Geotech. 141: 104498. https://doi.org/10.1016/j.compgeo.2021.104498.
Jiang, S., J. Huang, X. Qi, and C. Zhou. 2020. “Efficient probabilistic back analysis of spatially varying soil parameters for slope reliability assessment.” Eng. Geol. 271: 105597. https://doi.org/10.1016/j.enggeo.2020.105597.
Jiang, S., I. Papaioannou, and D. Straub. 2018. “Bayesian updating of slope reliability in spatially variable soils with in-situ measurements.” Eng. Geol. 239: 310–320. https://doi.org/10.1016/j.enggeo.2018.03.021.
Kadkhodaie-Ilkhchi, A., S. T. Monteiro, F. Ramos, and P. Hatherly. 2010. “Rock recognition from MWD data: A comparative study of boosting, neural networks, and fuzzy logic.” IEEE Geosci. Remote Sens. Lett. 7 (4): 680–684. https://doi.org/10.1109/LGRS.2010.2046312.
Kalantari, S., A. Baghbanan, and H. Hashemalhosseini. 2019. “An analytical model for estimating rock strength parameters from small-scale drilling data.” J. Rock Mech. Geotech. Eng. 11 (1): 135–145. https://doi.org/10.1016/j.jrmge.2018.09.005.
Kalantari, S., H. Hashemolhosseini, and A. Baghbanan. 2018. “Estimating rock strength parameters using drilling data.” Int. J. Rock Mech. Min. Sci. 104: 45–52. https://doi.org/10.1016/j.ijrmms.2018.02.013.
Kanfar, R., O. Shaikh, M. Yousefzadeh, and T. Mukerji. 2020. “Real-time well log prediction from drilling data using deep learning.” Preprint, submitted January 28, 2020. https://arxiv.org/abs/2001.10156.
Kilickap, E., and M. Huseyinoglu. 2010. “Selection of optimum drilling parameters on burr height using response surface methodology and genetic algorithm in drilling of AISI 304 stainless steel.” Mater. Manuf. Processes 25 (10): 1068–1076. https://doi.org/10.1080/10426911003720854.
Kivade, S. B., C. S. N. Murthy, and H. V. ardhan. 2015. “Experimental investigations on penetration rate of percussive drill.” Procedia Earth Planet. Sci. 11 (1): 89–99. https://doi.org/10.1016/j.proeps.2015.06.012.
Lakshminarayana, C. R., A. K. Tripathi, and S. K. Pal. 2020. “Rock strength characterization using measurement while drilling technique.” Indian Geotech. J. 50 (6): 994–1005. https://doi.org/10.1007/s40098-020-00441-3.
Li, H., T. Zhou, J. Deng, J. Yin, and J. Zhu. 2020. “An excess stress model for capturing rate-dependent compressive behavior of rock joint and its validation and applications.” Int. J. Rock Mech. Min. Sci. 128: 104267. https://doi.org/10.1016/j.ijrmms.2020.104267.
Liu, J., Y. Jiang, W. Han, and O. Sakaguchi. 2021. “Optimized ANN model for predicting rock mass quality ahead of tunnel face using measure-while-drilling data.” Bull. Eng. Geol. Environ. 80 (3): 2283–2305. https://doi.org/10.1007/s10064-020-02057-6.
Liu, J., Y. Jiang, S. Ishizu, and O. Sakaguchi. 2020. “Estimation of tunnel support pattern selection using artificial neural network.” Arab. J. Geosci. 13 (9): 321. https://doi.org/10.1007/s12517-020-05311-z.
Lopez-Moreno, I., J. Gonzalez-Dominguez, D. Martinez, O. Plchot, J. Gonzalez-Rodriguez, and P. J. Moreno. 2016. “On the use of deep feedforward neural networks for automatic language identification.” Comput. Speech Lang. 40: 46–59. https://doi.org/10.1016/j.csl.2016.03.001.
Manzoor, S., S. Liaghat, A. Gustafson, D. Johansson, and H. Schunnesson. 2020. “Establishing relationships between structural data from close-range terrestrial digital photogrammetry and measurement while drilling data.” Eng. Geol. 267: 105480. https://doi.org/10.1016/j.enggeo.2020.105480.
McVay, M., M. Rodgers, D. Horhota, and J. Hernando. 2018. “Assessment of rock strength from measuring while drilling shafts in Florida limestone.” Can. Geotech. J. 55 (8): 1154–1167. https://doi.org/10.1139/cgj-2017-0321.
Mishra, D. A., M. Srigyan, A. Basu, and P. J. Rokade. 2015. “Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests.” Int. J. Rock Mech. Min. Sci. 80: 418–424. https://doi.org/10.1016/j.ijrmms.2015.10.012.
Navarro, J., J. A. Sanchidrian, P. Segarra, R. Castedo, C. Paredes, and L. M. Lopez. 2018. “On the mutual relations of drill monitoring variables and the drill control system in tunneling operations.” Tunnelling Underground Space Technol. 72: 294–304. https://doi.org/10.1016/j.tust.2017.10.011.
Navarro, J., H. Schunnesson, R. Ghosh, P. Segarra, D. Johansson, and J. Á. Sanchidrián. 2019. “Application of drill-monitoring for chargeability assessment in sublevel caving.” Int. J. Rock Mech. Min. Sci. 119: 180–192. https://doi.org/10.1016/j.ijrmms.2019.03.026.
Niu, G., K. Zhang, B. Yu, Y. Chen, Y. Wu, and J. Liu. 2019. “Experimental study on comprehensive real-time methods to determine geological condition of rock mass along the boreholes while drilling in underground coal mines.” Shock Vib. 2019: 1–17. https://doi.org/10.1155/2019/1045929.
Orimoloye, L. O., M. Sung, T. Ma, and J. E. V. Johnson. 2020. “Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices.” Expert Syst. Appl. 139: 112828. https://doi.org/10.1016/j.eswa.2019.112828.
Panahandeh, M., H. Hashemolhosseini, M. R. Eftekhar, A. H. Hashemolhosseini, and A. Baghbanan. 2021. “Obtaining the strength parameters of concrete using drilling data.” J. Build. Eng. 38: 102181. https://doi.org/10.1016/j.jobe.2021.102181.
Peters, G. H., et al. 2018. “Uniaxial compressive strengths of rocks drilled at Gale crater, Mars.” Geophys. Res. Lett. 45 (1): 108–116. https://doi.org/10.1002/2017GL075965.
Qu, F., Q. Jiang, G. Jin, Y. Wei, and Z. Zhang. 2020. “Mud pulse signal demodulation based on support vector machines and particle swarm optimization.” J. Petrol. Sci. Eng. 193: 107432. https://doi.org/10.1016/j.petrol.2020.107432.
Rodgers, M., M. McVay, D. Horhota, J. Sinnreich, and J. Hernando. 2019. “Assessment of shear strength from measuring while drilling shafts in Florida limestone.” Can. Geotech. J. 56 (5): 662–674. https://doi.org/10.1139/cgj-2017-0629.
Romanenkova, E., et al. 2020. “Real-time data-driven detection of the rock-type alteration during a directional drilling.” IEEE Geosci. Remote Sens. Lett. 17 (11): 1861–1865. https://doi.org/10.1109/LGRS.2019.2959845.
Saksala, T., M. Fourmeau, P. Kane, and M. Hokka. 2018. “3D finite elements modelling of percussive rock drilling: Estimation of rate of penetration based on multiple impact simulations with a commercial drill bit.” Comput. Geotech. 99 (1): 55–63. https://doi.org/10.1016/j.compgeo.2018.02.006.
Schunnesson, H. 1998. “Rock characterisation using percussive drilling.” Int. J. Rock Mech. Min. Sci. 35 (6): 711–725. https://doi.org/10.1016/S0148-9062(97)00332-X.
Shin, S., G. Goh, and C. Lee. 2019. “Predictions of compressive strength of GPC blended with GGBFS developed at varying temperatures.” Constr. Build. Mater. 206: 1–9. https://doi.org/10.1016/j.conbuildmat.2019.01.181.
Singh, R., R. K. Umrao, M. Ahmad, M. K. Ansari, L. K. Sharma, and T. N. Singh. 2017. “Prediction of geomechanical parameters using soft computing and multiple regression approach.” Measurement 99: 108–119. https://doi.org/10.1016/j.measurement.2016.12.023.
Truong, T. T., D. Dinh-Cong, J. Lee, and T. Nguyen-Thoi. 2020. “An effective deep feedforward neural networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data.” J. Build. Eng. 30: 101244. https://doi.org/10.1016/j.jobe.2020.101244.
van Eldert, J., J. Funehag, D. Saiang, and H. Schunnesson. 2021. “Rock support prediction based on measurement while drilling technology.” Bull. Eng. Geol. Environ. 80: 1449–1465. https://doi.org/10.1007/s10064-020-01957-x.
van Eldert, J., H. Schunnesson, D. Johansson, and D. Saiang. 2020. “Application of measurement while drilling technology to predict rock mass quality and rock support for tunnelling.” Rock Mech. Rock Eng. 53 (4): 1349–1358. https://doi.org/10.1007/s00603-019-01979-2.
Vezhapparambu, V., J. Eidsvik, and S. Ellefmo. 2018. “Rock classification using multivariate analysis of measurement while drilling data: Towards a better sampling strategy.” Minerals 8 (9): 384. https://doi.org/10.3390/min8090384.
Yan, L., Q. Shen, H. Lu, H. Wang, X. Fu, and J. Chen. 2020. “Inversion and uncertainty assessment of ultra-deep azimuthal resistivity logging-while-drilling measurements using particle swarm optimization.” J. Appl. Geophys. 178: 104059. https://doi.org/10.1016/j.jappgeo.2020.104059.
Yesiloglu-Gultekin, N., C. Gokceoglu, and E. A. Sezer. 2013. “Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances.” Int. J. Rock Mech. Min. Sci. 62: 113–122. https://doi.org/10.1016/j.ijrmms.2013.05.005.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 4April 2023

History

Received: Jun 6, 2022
Accepted: Oct 25, 2022
Published online: Feb 7, 2023
Published in print: Apr 1, 2023
Discussion open until: Jul 7, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ruijie Zhao [email protected]
Ph.D. Student, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China. Email: [email protected]
Professor, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China (corresponding author). ORCID: https://orcid.org/0000-0001-8984-9809. Email: [email protected]
Professor, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China. Email: [email protected]
Weidong Guo [email protected]
Ph.D. Student, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China. Email: [email protected]
Ph.D. Student, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China. Email: [email protected]
Ph.D. Student, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China. Email: [email protected]
Ph.D. Student, Geotechnical and Structural Engineering Research Center, School of Qilu Transportation, Shandong Univ., Jinan, Shandong 250061, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Measurement While Drilling Method for Estimating the Uniaxial Compressive Strength of Rocks Considering Frictional Dissipation Energy, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9877, 24, 11, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share