State-of-the-Art Reviews
Feb 28, 2023

Mechanisms and Modeling Methods of Strain-Softening Behavior of Unsaturated Soils

Publication: International Journal of Geomechanics
Volume 23, Issue 5

Abstract

Studies about the strain-softening behavior of unsaturated soils published in the literature during the past three decades are summarized under three categories; namely: (i) mechanical characteristics and micromechanisms, (ii) prediction models for shear strength, and (iii) numerical methods for modeling strain-softening behavior of unsaturated soils. In addition, the influence of the soil–water characteristic curve and time effects on the strain-softening behavior of unsaturated soils are discussed. Various experimental studies related to the strain-softening behavior of unsaturated soils are summarized to interpret the mechanical behavior characteristics and micromechanisms of the strain-softening under large shear deformation. The widely used empirical/semi-empirical prediction models from the literature for interpreting the peak, critical, and residual shear strength of unsaturated soils are comprehensively summarized considering the influence of soil fabric and water phase on the shear strength. Several numerical methods (i.e., conventional plasticity, bounding surface plasticity, disturbed state concept, and elasto-viscoplasticity) of modeling the strain-softening behavior of unsaturated soils are discussed, highlighting their strengths and limitations. The comprehensive details summarized in this paper related to the strain-softening behavior is valuable for the rational analysis and design of geostructures in unsaturated soils that undergo large shear deformation.

Practical Applications

In several scenarios, unsaturated soils exhibit strain-softening behavior when they undergo a large deformation during the shearing stage. In other words, there is reduction in the shear strength from a peak to a residual value associated with the evolution of a shear band where the dilation is localized. Shear deformations behavior in geo-infrastructures constructed in unsaturated soils are sensitive to the wetting conditions associated with rainfall infiltration. Therefore, shear strength in the geostructures varies between peak and residual value according to the magnitude of corresponding shear deformation. For this reason, the strain-softening behavior should be considered for reliable analyses and design of geo-infrastructure in unsaturated soils undergoing large shear deformation. This paper provides a comprehensive review of the studies about the physical mechanisms and numerical modeling methods of strain-softening behavior of unsaturated soils. The contents summarized in this article assist geotechnical engineers to understand how the strain-softening occurs in unsaturated soils under shearing, and how the shear strength reduction due to strain-softening behavior can be modeled in engineering practice applications.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the sponsorships from the China Scholarship Council (CSC)–University of Ottawa joint scholarship and the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

Al-Khazaali, M., and S. K. Vanapalli. 2019. “Axial force–displacement behaviour of a buried pipeline in saturated and unsaturated sand.” Géotechnique 69 (11): 986–1003. https://doi.org/10.1680/jgeot.17.P.116.
Alonso, E. E., A. Gens, and A. Josa. 1990. “A constitutive model for partially saturated soils.” Géotechnique 40 (3): 405–430. https://doi.org/10.1680/geot.1990.40.3.405.
Alonso, E. E., E. F. O. Iturralde, and E. E. Romero. 2007. “Dilatancy of coarse granular aggregates.” In Experimental unsaturated soil mechanics, edited by T. Schanz, 119–135. Berlin: Springer.
Alonso, E. E., J.-M. Pereira, J. Vaunat, and S. Olivella. 2010. “A microstructurally based effective stress for unsaturated soils.” Géotechnique 60 (12): 913–925. https://doi.org/10.1680/geot.8.P.002.
Andò, E., S. A. Hall, G. Viggiani, J. Desrues, and P. Bésuelle. 2012. “Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach.” Acta Geotech. 7 (1): 1–13. https://doi.org/10.1007/s11440-011-0151-6.
Atkinson, J. 2007. The mechanics of soils and foundations. 2nd ed. London: Taylor and Francis.
Augustesen, A., M. Liingaard, and P. V. Lade. 2004. “Evaluation of time-dependent behavior of soils.” Int. J. Geomech. 4 (3): 137–156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).
Bardet, J. P. 1986. “Bounding surface plasticity model for sands.” J. Eng. Mech. 112 (11): 1198–1217. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198).
Bishop, A. W. 1959. “The principle of effective stress.” Teknisk Ukeblad 39: 859–863.
Bishop, A. W., G. E. Green, V. K. Garga, A. Andresen, and J. D. Brown. 1971. “A new ring shear apparatus and its application to the measurement of residual strength.” Géotechnique 21 (4): 273–328. https://doi.org/10.1680/geot.1971.21.4.273.
Bjerrum, L. 1967. “Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings.” Géotechnique 17 (2): 83–118. https://doi.org/10.1680/geot.1967.17.2.83.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Cai, G., B. Han, S. Asreazad, C. Liu, A. Zhou, J. Li, and C. Zhao. 2022. “Experimental study on critical state behaviour of unsaturated silty sand under constant matric suctions.” Géotechnique 1–22. https://doi.org/10.1680/jgeot.21.00264.
Chávez, C., and E. E. Alonso. 2003. “A constitutive model for crushed granular aggregates which includes suction effects.” Soils Found. 43 (4): 215–227. https://doi.org/10.3208/sandf.43.4_215.
Chen, R., T. Xu, W. Lei, Y. Zhao, and J. Qiao. 2018. “Impact of multiple drying–wetting cycles on shear behaviour of an unsaturated compacted clay.” Environ. Earth Sci. 77 (19): 1–9.
Chen, R.-P., P. Liu, X.-M. Liu, P.-F. Wang, and X. Kang. 2019. “Pore-scale model for estimating the bimodal soil–water characteristic curve and hydraulic conductivity of compacted soils with different initial densities.” Eng. Geol. 260: 105199. https://doi.org/10.1016/j.enggeo.2019.105199.
Chen, W., B. Song, W. Wu, Y. Sun, and Y. Song. 2021. “Direct and reversal shear behaviors of three kinds of slip zone soil in the Northwest of China.” Bull. Eng. Geol. Environ. 80 (5): 3939–3952. https://doi.org/10.1007/s10064-021-02174-w.
Chiu, C. F., and C. W. W. Ng. 2003. “A state-dependent elasto-plastic model for saturated and unsaturated soils.” Géotechnique 53 (9): 809–829. https://doi.org/10.1680/geot.2003.53.9.809.
Collin, F., V. D. Gennaro, P. Delage, and G. Priol. 2008. “An elasto-viscoplastic model for chalk including suction effects.” In Proc., 1st European Conf., on Unsaturated Soils. London, UK: Taylor & Francis Group.
Cui, Y. J., and P. Delage. 1996. “Yielding and plastic behaviour of an unsaturated compacted silt.” Géotechnique 46 (2): 291–311. https://doi.org/10.1680/geot.1996.46.2.291.
Cunningham, M. R., A. M. Ridley, K. Dineen, and J. B. Burland. 2003. “The mechanical behaviour of a reconstituted unsaturated silty clay.” Géotechnique 53 (2): 183–194. https://doi.org/10.1680/geot.2003.53.2.183.
Dafalias, Y. F., and E. P. Popov. 1975. “A model of nonlinearly hardening materials for complex loading.” Acta Mech. 21 (3): 173–192. https://doi.org/10.1007/BF01181053.
De Gennaro, V., and J. M. Pereira. 2013. “A viscoplastic constitutive model for unsaturated geomaterials.” Comput. Geotech. 54: 143–151. https://doi.org/10.1016/j.compgeo.2013.06.005.
Delage, P. 2002. “Experimental unsaturated soil mechanics.” In Proc., 3rd Int. Conf., on Unsaturated Soils, 973–996. Lisse, Netherlands: Swets and Zeitlinger.
Delage, P., M. Audiguier, Y.-J. Cui, and M. D. Howat. 1996. “Microstructure of a compacted silt.” Can. Geotech. J. 33 (1): 150–158. https://doi.org/10.1139/t96-030.
Delage, P., and J. Graham. 1995. “Mechanical behavior of unsaturated soils: Understanding the behavior of unsaturated soils requires reliable concept models.” In Proc., of 1st Int. Conf., on Unsaturated Soils, 1223–1256. Rotterdam, Netherlands: Balkema.
Delage, P., G. R. Suraj de Silva, and E. De Laure. 1987. “Un nouvel appareil triaxial pour les sols non-satures.” In Proc., 9th European Conf., on Soil Mechanics and Foundation Engineering, 25–28. Rotterdam, Netherlands: Balkema.
Derbyshire, E., T. A. Dijkstra, I. J. Smalley, and Y. Li. 1994. “Failure mechanisms in loess and the effects of moisture content changes on remoulded strength.” Quat. Int. 24: 5–15. https://doi.org/10.1016/1040-6182(94)90032-9.
Desai, C. S. 1974. “A consistent finite element technique for work-softening behavior.” In Proc., of the Int. Conf., on Computational Methods in Nonlinear Mechanics. New York: Springer.
Desai, C. S. 2000. Mechanics of materials and interfaces: The disturbed state concept. Boca Raton, FL: CRC Press.
Desai, C. S. 2016. “Disturbed state concept as unified constitutive modeling approach.” J. Rock Mech. Geotech. Eng. 8 (3): 277–293. https://doi.org/10.1016/j.jrmge.2016.01.003.
Dijkstra, T. A., C. D. F. Rogers, I. J. Smalley, E. Derbyshire, Y. J. Li, and X. M. Meng. 1994. “The loess of north-central China: Geotechnical properties and their relation to slope stability.” Eng. Geol. 36 (3–4): 153–171. https://doi.org/10.1016/0013-7952(94)90001-9.
D’Onza, F., et al. 2011. “Benchmark of constitutive models for unsaturated soils.” Géotechnique 61 (4): 283–302. https://doi.org/10.1680/geot.2011.61.4.283.
Ehlers, W., T. Graf, and M. Ammann. 2004. “Deformation and localization analysis of partially saturated soil.” Comput. Methods Appl. Mech. Eng. 193 (27–29): 2885–2910. https://doi.org/10.1016/j.cma.2003.09.026.
Escario, V., and J. Saez. 1986. “The shear strength of partly saturated soils.” Géotechnique 36 (3): 453–456. https://doi.org/10.1680/geot.1986.36.3.453.
Estabragh, A. R., and A. A. Javadi. 2008. “Critical state for overconsolidated unsaturated silty soil.” Can. Geotech. J. 45 (3): 408–420. https://doi.org/10.1139/T07-105.
Fan, X., Q. Xu, G. Scaringi, S. Li, and D. Peng. 2017. “A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China.” Eng. Geol. 228: 337–345. https://doi.org/10.1016/j.enggeo.2017.09.003.
Fern, E. J., D. J. Robert, and K. Soga. 2016. “Modeling the stress–dilatancy relationship of unsaturated silica sand in triaxial compression tests.” J. Geotech. Geoenviron. Eng. 142 (11): 04016055. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001546.
Fredlund, D. G., N. R. Morgenstern, and R. A. Widger. 1978. “The shear strength of unsaturated soils.” Can. Geotech. J. 15 (3): 313–321. https://doi.org/10.1139/t78-029.
Fredlund, D. G., and A. Xing. 1994. “Equations for the soil-water characteristic curve.” Can. Geotech. J. 31 (4): 521–532. https://doi.org/10.1139/t94-061.
Gallipoli, D. 2012. “A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio.” Géotechnique 62 (7): 605–616. https://doi.org/10.1680/geot.11.P.007.
Gallipoli, D., A. Gens, G. Chen, and F. D’Onza. 2008. “Modeling unsaturated soil behaviour during normal consolidation and at critical state.” Comput. Geotech. 35 (6): 825–834. https://doi.org/10.1016/j.compgeo.2008.08.006.
Gan, J. K. M., D. G. Fredlund, and H. Rahardjo. 1988. “Determination of the shear strength parameters of an unsaturated soil using the direct shear test.” Can. Geotech. J. 25 (3): 500–510. https://doi.org/10.1139/t88-055.
Gao, Y., D. Sun, and A. Zhou. 2016. “Hydromechanical behaviour of unsaturated soil with different specimen preparations.” Can. Geotech. J. 53 (6): 909–917. https://doi.org/10.1139/cgj-2015-0381.
Gao, Y., D. Sun, Z. Zhu, and Y. Xu. 2019. “Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range.” Acta Geotech. 14 (2): 417–428. https://doi.org/10.1007/s11440-018-0662-5.
Geiser, F., L. Laloui, and L. Vulliet. 2000. “Modeling the behaviour of unsaturated silt.” In Experimental evidence and theoretical approaches in unsaturated soils, edited by A. Tarantino, and C. Mancuso, 163–184. Boca Raton, FL: CRC Press.
Geiser, F., L. Laloui, and L. Vulliet. 2006. “Elasto-plasticity of unsaturated soils: Laboratory test results on a remoulded silt.” Soils Found. 46 (5): 545–556. https://doi.org/10.3208/sandf.46.545.
Gens, A., M. Sánchez, and D. Sheng. 2006. “On constitutive modeling of unsaturated soils.” Acta Geotech. 1 (3): 137–147. https://doi.org/10.1007/s11440-006-0013-9.
Goh, S. G., H. Rahardjo, and E. C. Leong. 2014. “Shear strength of unsaturated soils under multiple drying-wetting cycles.” J. Geotech. Geoenviron. Eng. 140 (2): 06013001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001032.
Hamid, T. B., and G. A. Miller. 2008. “A constitutive model for unsaturated soil interfaces.” Int. J. Numer. Anal. Methods Geomech. 32 (13): 1693–1714. https://doi.org/10.1002/nag.692.
Han, B., G. Cai, A. Zhou, J. Li, and C. Zhao. 2021. “A bounding surface model for unsaturated soils considering the microscopic pore structure and interparticle bonding effect due to water menisci.” Acta Geotech. 16 (5): 1331–1354. https://doi.org/10.1007/s11440-020-01120-6.
Hayden, C. P., K. Purchase-Sanborn, and M. Dewoolkar. 2018. “Comparison of site-specific and empirical correlations for drained residual shear strength.” Géotechnique 68 (12): 1099–1108. https://doi.org/10.1680/jgeot.17.P.200.
Heredia, J. E. Y. 2015. “Thermo-hydro-mechanical behavior of unsaturated clayey soils via thermo/suction-controlled ring shear testing.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Texas.
Higo, Y., F. Oka, S. Kimoto, T. Sanagawa, and Y. Matsushima. 2011. “Study of strain localization and microstructural changes in partially saturated sand during triaxial tests using microfocus X-ray CT.” Soils Found. 51 (1): 95–111. https://doi.org/10.3208/sandf.51.95.
Higo, Y., F. Oka, T. Sato, Y. Matsushima, and S. Kimoto. 2013. “Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation.” Soils Found. 53 (2): 181–198. https://doi.org/10.1016/j.sandf.2013.02.001.
Hossain, M. A., and J.-H. Yin. 2010a. “Behavior of a compacted completely decomposed granite soil from suction controlled direct shear tests.” J. Geotech. Geoenviron. Eng. 136 (1): 189–198. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000189.
Hossain, M. A., and J.-H. Yin. 2010b. “Shear strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil.” Can. Geotech. J. 47 (10): 1112–1126. https://doi.org/10.1139/T10-015.
Hoyos, L. R., C. L. Velosa, and A. J. Puppala. 2011. “A servo/suction-controlled ring shear apparatus for unsaturated soils: Development, performance, and preliminary results.” Geotech. Test. J. 34 (5): 413–423.
Hoyos, L. R., C. L. Velosa, and A. J. Puppala. 2014. “Residual shear strength of unsaturated soils via suction-controlled ring shear testing.” Eng. Geol. 172: 1–11. https://doi.org/10.1016/j.enggeo.2014.01.001.
Hu, T., D. Liu, and J. Chang. 2020. “Experimental study on strain rate effect of strength characteristics of unsaturated silty clay.” Case Stud. Constr. Mater. 12: e00332.
Hu, W., G. Scaringi, Q. Xu, T. W. J. Van Asch, R. Huang, and W. Han. 2018. “Suction and rate-dependent behaviour of a shear-zone soil from a landslide in a gently-inclined mudstone-sandstone sequence in the Sichuan basin, China.” Eng. Geol. 237: 1–11. https://doi.org/10.1016/j.enggeo.2018.02.005.
Infante Sedano, J. A., and S. Vanapalli. 2011. “Experimental investigation of the relationship between the critical state shear strength of unsaturated soils and the soil-water characteristic curve.” Int. J. Geotech. Eng. 5 (1): 1–8. https://doi.org/10.3328/IJGE.2011.05.01.1-8.
Infante Sedano, J. A., S. K. Vanapalli, and V. K. Garga. 2007. “Modified ring shear apparatus for unsaturated soils testing.” Geotech. Test. J. 30 (1): 39–47.
Jefferies, M. G. 1993. “Nor-Sand: A simle critical state model for sand.” Géotechnique 43 (1): 91–103. https://doi.org/10.1680/geot.1993.43.1.91.
Jommi, C. 2000. “Remarks on the constitutive modeling of unsaturated soils.” In Experimental evidence and theoretical approaches in unsaturated soils, edited by A. Tarantino, and C. Mancuso, 139–153. Rotterdam, Netherlands: Balkema.
Jotisankasa, A., M. Coop, and A. Ridley. 2009. “The mechanical behaviour of an unsaturated compacted silty clay.” Géotechnique 59 (5): 415–428. https://doi.org/10.1680/geot.2007.00060.
Kang, X., S. Wang, and Z. Yu. 2022. “Effects of soil–water interaction on the mechanical behaviors of shear-zone soils.” Int. J. Geomech. 22 (10): 06022028. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002528.
Karube, D., and K. Kawai. 2001. “The role of pore water in the mechanical behavior of unsaturated soils.” Geotech. Geol. Eng. 19 (3–4): 211–241. https://doi.org/10.1023/A:1013188200053.
Kayadelen, C., M. A. Tekinsoy, and T. Taşkıran. 2007. “Influence of matric suction on shear strength behavior of a residual clayey soil.” Environ. Geol. 53 (4): 891. https://doi.org/10.1007/s00254-007-0701-2.
Khaddour, G. 2015. “Multi-scale charaterisation of the hydro-mechecanical behaviour of unsaturated sand: water retention and triaxial responses.” Ph.D. thesis, Laboratoire 3SR, Univ. Grenoble Alpes.
Khalili, N., and M. H. Khabbaz. 1998. “A unique relationship for χ for the determination of the shear strength of unsaturated soils.” Géotechnique 48 (5): 681–687. https://doi.org/10.1680/geot.1998.48.5.681.
Khalili, N., E. Romero, and F. A. Marinho. 2022. “State of the Art Report. Advances in unsaturated soil mechanics: Constitutive modeling, experimental investigation, and field instrumentation.” In Proc., 20th International Conference on Soil Mechanics and Geotechnical Engineering. Sydney, Australia: Australian Geomechanics Society.
Kido, R., and Y. Higo. 2019. “Distribution changes of grain contacts and menisci in shear band during triaxial compression test for unsaturated sand.” Jpn. Geotech. Soc. Spec. Publ. 7 (2): 627–635. https://doi.org/10.3208/jgssp.v07.096.
Kido, R., and Y. Higo. 2020. “Microscopic characteristics of partially saturated dense sand and their link to macroscopic responses under triaxial compression conditions.” Acta Geotech. 15 (11): 3055–3073. https://doi.org/10.1007/s11440-020-01049-w.
Kim, B.-S., S.-W. Park, Y. Takeshita, and S. Kato. 2016. “Effect of suction stress on critical state of compacted silty soils under low confining pressure.” Int. J. Geomech. 16 (6): D4016010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000665.
Kim, B.-S., S. Shibuya, S.-W. Park, and S. Kato. 2010. “Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure.” Can. Geotech. J. 47 (9): 955–970. https://doi.org/10.1139/T10-007.
Kouzegaran, S., H. Shahnazari, and Y. Jafarian. 2021. “The unsaturated shear strength of calcareous soil in comparison with silicate soil.” Mar. Georesour. Geotechnol. 39 (2): 200–218. https://doi.org/10.1080/1064119X.2019.1692266.
Kovacevic, N., D. M. Potts, and P. R. Vaughan. 2001. “Progressive failure in clay embankments due to seasonal climate changes.” In Proc., 15th Int. Conf., on Soil Mechanics and Geotechnical Engineering, 2127–2130. Rotterdam, Netherlands: Balkema.
Lai, B. T., H. Wong, A. Fabbri, and D. Branque. 2016. “A new constitutive model of unsaturated soils using bounding surface plasticity (BSP) and a non-associative flow rule.” Innovative Infrastruct. Solutions 1 (1): 3. https://doi.org/10.1007/s41062-016-0005-z.
Lashkari, A., and M. Kadivar. 2016. “A constitutive model for unsaturated soil–structure interfaces.” Int. J. Numer. Anal. Methods Geomech. 40 (2): 207–234. https://doi.org/10.1002/nag.2392.
Lazari, M., L. Sanavia, and B. A. Schrefler. 2015. “Local and non-local elasto-viscoplasticity in strain localization analysis of multiphase geomaterials.” Int. J. Numer. Anal. Methods Geomech. 39 (14): 1570–1592. https://doi.org/10.1002/nag.2408.
Leong, E. C., and H. Rahardjo. 1997. “Review of soil-water characteristic curve equations.” J. Geotech. Geoenviron. Eng. 123 (12): 1106–1117. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106).
Li, J., Z.-Y. Yin, Y.-J. Cui, K. Liu, and J.-H. Yin. 2019. “An elasto-plastic model of unsaturated soil with an explicit degree of saturation-dependent CSL.” Eng. Geol. 260: 105240. https://doi.org/10.1016/j.enggeo.2019.105240.
Li, L., X. Zhang, G. Chen, and R. Lytton. 2016. “Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method.” Can. Geotech. J. 53 (3): 472–489. https://doi.org/10.1139/cgj-2015-0038.
Li, W., and Q. Yang. 2018. “Hydromechanical constitutive model for unsaturated soils with different overconsolidation ratios.” Int. J. Geomech. 18 (2): 04017142. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001046.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, Y., and S. K. Vanapalli. 2021. “A novel modeling method for the bimodal soil-water characteristic curve.” Comput. Geotech. 138: 104318. https://doi.org/10.1016/j.compgeo.2021.104318.
Lian, B., J. Peng, X. Wang, and Q. Huang. 2020. “Moisture content effect on the ring shear characteristics of slip zone loess at high shearing rates.” Bull. Eng. Geol. Environ. 79 (2): 999–1008. https://doi.org/10.1007/s10064-019-01597-w.
Liingaard, M., A. Augustesen, and P. V. Lade. 2004. “Characterization of models for time-dependent behavior of soils.” Int. J. Geomech. 4 (3): 157–177. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157).
Liu, K., Z.-Y. Yin, W.-B. Chen, W.-Q. Feng, and J.-H. Yin. 2021. “Nonlinear model for the stress–strain–strength behavior of unsaturated granular materials.” Int. J. Geomech. 21 (7): 04021103. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002042.
Liu, K., J.-H. Yin, W.-B. Chen, W.-Q. Feng, and C. Zhou. 2020a. “The stress–strain behaviour and critical state parameters of an unsaturated granular fill material under different suctions.” Acta Geotech. 15: 3383–3398. https://doi.org/10.1007/s11440-020-00973-1.
Liu, P., R.-P. Chen, K. Wu, and X. Kang. 2020b. “Effects of drying-wetting cycles on the mechanical behavior of reconstituted granite-residual soils.” J. Mater. Civ. Eng. 32 (8): 04020199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003272.
Liu, Y., and S. K. Vanapalli. 2019. “Load displacement analysis of a single pile in an unsaturated expansive soil.” Comput. Geotech. 106: 83–98. https://doi.org/10.1016/j.compgeo.2018.10.007.
Lu, N. 2008. “Is matric suction a stress variable?” J. Geotech. Geoenviron. Eng. 134 (7): 899–905. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(899).
Lu, N., J. W. Godt, and D. T. Wu. 2010. “A closed-form equation for effective stress in unsaturated soil.” Water Resour. Res. 46 (5): W05515.
Lu, N., and W. J. Likos. 2006. “Suction stress characteristic curve for unsaturated soil.” J. Geotech. Geoenviron. Eng. 132 (2): 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
Luo, T., D. Chen, Y.-P. Yao, and A.-N. Zhou. 2020. “An advanced UH model for unsaturated soils.” Acta Geotech. 15 (1): 145–164. https://doi.org/10.1007/s11440-019-00882-y.
Lupini, J. F., A. E. Skinner, and P. R. Vaughan. 1981. “The drained residual strength of cohesive soils.” Géotechnique 31 (2): 181–213. https://doi.org/10.1680/geot.1981.31.2.181.
Ma, T., C. Wei, H. Wei, and W. Li. 2016. “Hydraulic and mechanical behavior of unsaturated silt: Experimental and theoretical characterization.” Int. J. Geomech. 16 (6): D4015007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000576.
Maatouk, A., S. Leroueil, and P. La Rochelle. 1995. “Yielding and critical state of a collapsible unsaturated silty soil.” Géotechnique 45 (3): 465–477. https://doi.org/10.1680/geot.1995.45.3.465.
Mac, T. N., B. Shahbodagh, and N. Khalili. 2019. “A fully coupled flow-deformation model for time-dependent analysis of unsaturated soils.” Jpn. Geotech. Soc. Spec. Publ. 7 (2): 587–594. https://doi.org/10.3208/jgssp.v07.091.
Mahmoodabadi, M., and L. S. Bryson. 2021. “Constitutive model for describing the fully coupled hydromechanical behavior of unsaturated soils.” Int. J. Geomech. 21 (4): 04021027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001975.
Maquaire, O., J.-P. Malet, A. Remaıtre, J. Locat, S. Klotz, and J. Guillon. 2003. “Instability conditions of marly hillslopes: Towards landsliding or gullying? The case of the Barcelonnette Basin, South East France.” Eng. Geol. 70 (1–2): 109–130. https://doi.org/10.1016/S0013-7952(03)00086-3.
Mendes, J., and D. G. Toll. 2016. “Influence of initial water content on the mechanical behavior of unsaturated sandy clay soil.” Int. J. Geomech. 16 (6): D4016005. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000594.
Merchán, V., E. Romero, and J. Vaunat. 2011. “An adapted ring shear apparatus for testing partly saturated soils in the high suction range.” Geotech. Test. J. 34 (5): 433–444.
Merchán, V., J. Vaunat, E. Romero, and T. Meca. 2008. “Experimental study of the influence of drying on the residual friction angle of clays.” In Proc., 1st European Conf., on Unsaturated Soils, 423–428. London, UK: Taylor & Francis Group.
Mesri, G., and M. Shahien. 2003. “Residual shear strength mobilized in first-time slope failures.” J. Geotech. Geoenviron. Eng. 129 (1): 12–31. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(12).
Miao, L., S. Liu, and Y. Lai. 2002. “Research of soil–water characteristics and shear strength features of Nanyang expansive soil.” Eng. Geol. 65 (4): 261–267. https://doi.org/10.1016/S0013-7952(01)00136-3.
Milatz, M., and J. Grabe. 2019. “Microscopic investigation of the hydro-mechanical behavior of unsaturated granular media with X-ray CT.” Jpn. Geotech. Soc. Spec. Publ. 7 (2): 615–626. https://doi.org/10.3208/jgssp.v07.095.
Milatz, M., N. Hüsener, E. Ando, G. Viggiani, and J. Grabe. 2021. “Quantitative 3D imaging of partially saturated granular materials under uniaxial compression.” Acta Geotech. 16 (11): 3573–3600. https://doi.org/10.1007/s11440-021-01315-5.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. 3rd ed. New York: Wiley.
Monghassem, M., M. Ajdari, S. M. Binesh, and F. Vahedifard. 2021. “Effects of suction and drying–wetting cycles on shearing response of adobe.” J. Mater. Civ. Eng. 33 (7): 04021173. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003816.
Morvan, M., H. Wong, and D. Branque. 2010. “An unsaturated soil model with minimal number of parameters based on bounding surface plasticity.” Int. J. Numer. Anal. Methods Geomech. 34 (14): 1512–1537. https://doi.org/10.1002/nag.871.
Mun, W., T. Teixeira, M. C. Balci, J. Svoboda, and J. S. McCartney. 2016. “Rate effects on the undrained shear strength of compacted clay.” Soils Found. 56 (4): 719–731. https://doi.org/10.1016/j.sandf.2016.07.012.
Murray, E. J. 2002. “An equation of state for unsaturated soils.” Can. Geotech. J. 39 (1): 125–140. https://doi.org/10.1139/t01-087.
Musso, G., A. Azizi, and C. Jommi. 2020. “A microstructure-based elastoplastic model to describe the behaviour of a compacted clayey silt in isotropic and triaxial compression.” Can. Geotech. J. 57 (7): 1025–1043. https://doi.org/10.1139/cgj-2019-0176.
Ng, C. W. W., and A. C. Chiu. 2003. “Laboratory study of loose saturated and unsaturated decomposed granitic soil.” J. Geotech. Geoenviron. Eng. 129 (6): 550–559. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(550).
Ng, C. W. W., H. Sadeghi, F. Jafarzadeh, M. Sadeghi, C. Zhou, and S. Baghbanrezvan. 2020a. “Effect of microstructure on shear strength and dilatancy of unsaturated loess at high suctions.” Can. Geotech. J. 57 (2): 221–235. https://doi.org/10.1139/cgj-2018-0592.
Ng, C. W. W., L. T. Zhan, C. G. Bao, D. G. Fredlund, and B. W. Gong. 2003. “Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration.” Géotechnique 53 (2): 143–157. https://doi.org/10.1680/geot.2003.53.2.143.
Ng, C. W. W., C. Zhou, and C. F. Chiu. 2020b. “Constitutive modeling of state-dependent behaviour of unsaturated soils: An overview.” Acta Geotech. 15 (10): 2705–2725. https://doi.org/10.1007/s11440-020-01014-7.
Ng, C. W. W., and R. Z. B. Zhou. 2005. “Effects of soil suction on dilatancy of an unsaturated soil.” In Proc., 16th Int. Conf., on Soil Mechanics and Geotechnical Engineering, 559–562. Rotterdam, Netherlands: Millpress.
Nicotera, M. V., R. Papa, and G. Urciuoli. 2015. “The hydro-mechanical behaviour of unsaturated pyroclastic soils: An experimental investigation.” Eng. Geol. 195: 70–84. https://doi.org/10.1016/j.enggeo.2015.05.023.
Nova, R., and D. M. Wood. 1979. “A constitutive model for sand in triaxial compression.” Int. J. Numer. Anal. Methods Geomech. 3 (3): 255–278. https://doi.org/10.1002/nag.1610030305.
Oda, M., and H. Kazama. 1998. “Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils.” Géotechnique 48 (4): 465–481. https://doi.org/10.1680/geot.1998.48.4.465.
Oka, F., T. Kodaka, S. Kimoto, Y. S. Kim, and N. Yamasaki. 2006. “An elasto-viscoplastic model and multiphase coupled FE analysis for unsaturated soil.” In Vol. 147 of Proc., 4th Int. Conf., on Unsaturated Soils, Geotechnical Special Publication 147, edited by G. A. Miller, C. E. Zapata, S. L. Houston, and D. G. Fredlund, 2039–2050. Reston, VA: ASCE.
Oka, F., T. Kodaka, H. Suzuki, Y. S. Kim, N. Nishimatsu, and S. Kimoto. 2010. “Experimental study on the behavior of unsaturated compacted silt under triaxial compression.” Soils Found. 50 (1): 27–44. https://doi.org/10.3208/sandf.50.27.
Oka, F., B. Shahbodagh, and S. Kimoto. 2019. “A computational model for dynamic strain localization in unsaturated elasto-viscoplastic soils.” Int. J. Numer. Anal. Methods Geomech. 43 (1): 138–165. https://doi.org/10.1002/nag.2857.
Öberg, A. L., and G. Sällfors. 1997. “Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve.” Geotech. Test. J. 20 (1): 40–48. https://doi.org/10.1520/GTJ11419J.
Patil, U. D., L. R. Hoyos, A. J. Puppala, and T. V. Bheemasetti. 2018. “Modeling stress–dilatancy behavior of compacted silty sand under suction-controlled axisymmetric shearing.” Geotech. Geol. Eng. 36 (6): 3961–3977. https://doi.org/10.1007/s10706-018-0647-z.
Patil, U. D., A. J. Puppala, L. R. Hoyos, and A. Pedarla. 2017. “Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing.” Eng. Geol. 231: 21–33. https://doi.org/10.1016/j.enggeo.2017.10.011.
Perzyna, P. 1966. “Fundamental problems in viscoplasticity.” Adv. Appl. Mech. 9: 243–377. https://doi.org/10.1016/S0065-2156(08)70009-7.
Pineda, J. A., E. Romero, M. De Gracia, and D. Sheng. 2014. “Shear strength degradation in claystones due to environmental effects.” Géotechnique 64 (6): 493–501. https://doi.org/10.1680/geot.13.T.025.
Postill, H., N. Dixon, G. Fowmes, A. El-Hamalawi, and W. A. Take. 2020. “Modeling seasonal ratcheting and progressive failure in clay slopes: A validation.” Can. Geotech. J. 57 (9): 1265–1279. https://doi.org/10.1139/cgj-2018-0837.
Qi, S., and S. K. Vanapalli. 2016. “Influence of swelling behavior on the stability of an infinite unsaturated expansive soil slope.” Comput. Geotech. 76: 154–169. https://doi.org/10.1016/j.compgeo.2016.02.018.
Qian, J., Z. Lin, and Z. Shi. 2022. “Experimental and modeling study of water-retention behavior of fine-grained soils with dual-porosity structures.” Acta Geotech. 17: 3245–3258.
Rahardjo, H., O. B. Heng, and L. E. Choon. 2004. “Shear strength of a compacted residual soil from consolidated drained and constant water content triaxial tests.” Can. Geotech. J. 41 (3): 421–436. https://doi.org/10.1139/t03-093.
Rahardjo, H., N. C. Thang, Y. Kim, and E.-C. Leong. 2018. “Unsaturated elasto-plastic constitutive equations for compacted kaolin under consolidated drained and shearing-infiltration conditions.” Soils Found. 58 (3): 534–546. https://doi.org/10.1016/j.sandf.2018.02.019.
Rampino, C., C. Mancuso, and F. Vinale. 2000. “Experimental behaviour and modeling of an unsaturated compacted soil.” Can. Geotech. J. 37 (4): 748–763. https://doi.org/10.1139/t00-004.
Rasool, A. M., and M. Aziz. 2020. “Advanced triaxial tests on partially saturated soils under unconfined conditions.” Int. J. Civ. Eng. 18: 1139–1156. https://doi.org/10.1007/s40999-020-00530-7.
Rechenmacher, A., S. Abedi, and O. Chupin. 2010. “Evolution of force chains in shear bands in sands.” Géotechnique 60 (5): 343–351. https://doi.org/10.1680/geot.2010.60.5.343.
Romero, E., A. Gens, and A. Lloret. 1999. “Water permeability, water retention and microstructure of unsaturated compacted Boom clay.” Eng. Geol. 54 (1–2): 117–127. https://doi.org/10.1016/S0013-7952(99)00067-8.
Romero, E., M. Sánchez, X. Gai, M. Barrera, and A. Lloret. 2019. “Mechanical behavior of an unsaturated clayey silt: An experimental and constitutive modeling study.” Can. Geotech. J. 56 (10): 1461–1474. https://doi.org/10.1139/cgj-2018-0117.
Romero, E., J. Vaunat, and V. Merchán. 2014. “Suction effects on the residual shear strength of clays.” J. Geo-Eng. Sci. 2 (1–2): 17–37. https://doi.org/10.3233/JGS-141320.
Roscoe, K. H., and J. B. Burland. 1968. “On the generalized stress–strain behavior of “wet” clay.” In Engineering plasticity, edited by J. Heyman, and F. A. Leckie, 535–609. Camridge: Camridge University Press.
Roscoe, K. H., A. Schofield, and C. P. Wroth. 1958. “On the yielding of soils.” Géotechnique 8 (1): 22–53. https://doi.org/10.1680/geot.1958.8.1.22.
Rowe, P. W. 1962. “The stress–dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London, Ser. A 269 (1339): 500–527.
Russell, A. R., and N. Khalili. 2004. “A bounding surface plasticity model for sands exhibiting particle crushing.” Can. Geotech. J. 41 (6): 1179–1192. https://doi.org/10.1139/t04-065.
Russell, A. R., and N. Khalili. 2006. “A unified bounding surface plasticity model for unsaturated soils.” Int. J. Numer. Anal. Methods Geomech. 30 (3): 181–212. https://doi.org/10.1002/nag.475.
Salager, S., M. Nuth, A. Ferrari, and L. Laloui. 2013. “Investigation into water retention behaviour of deformable soils.” Can. Geotech. J. 50 (2): 200–208. https://doi.org/10.1139/cgj-2011-0409.
Schnellmann, R., H. Rahardjo, and H. R. Schneider. 2013. “Unsaturated shear strength of a silty sand.” Eng. Geol. 162: 88–96. https://doi.org/10.1016/j.enggeo.2013.05.011.
Schofield, A., and P. Wroth. 1968. Critical state soil mechanics. London: McGraw-Hill.
Shahbodagh, B. 2011. “Large deformation dynamic analysis method for partially saturated elasto-viscoplastic soils.” Ph.D. thesis, Dept. of Civil and Earth Resources Engineering, Kyoto Univ.
Sheng, D. 2011. “Review of fundamental principles in modeling unsaturated soil behaviour.” Comput. Geotech. 38 (6): 757–776. https://doi.org/10.1016/j.compgeo.2011.05.002.
Sheng, D., A. Zhou, and D. G. Fredlund. 2011. “Shear strength criteria for unsaturated soils.” Geotech. Geol. Eng. 29 (2): 145–159. https://doi.org/10.1007/s10706-009-9276-x.
Shire, T., and J. Standing. 2021. “Strength and stiffness properties of an unsaturated clayey silt: Experimental study at high degrees of saturation.” Int. J. Geomech. 21 (7): 04021094. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002049.
Sivakumar, V., R. Sivakumar, J. Boyd, and P. Mackinnon. 2010. “Mechanical behaviour of unsaturated kaolin (with isotropic and anisotropic stress history). part 2: Performance under shear loading.” Géotechnique 60 (8): 595–609. https://doi.org/10.1680/geot.8.P.008.
Skempton, A. W. 1970. “First-time slides in over-consolidated clays.” Géotechnique 20 (3): 320–324. https://doi.org/10.1680/geot.1970.20.3.320.
Skempton, A. W. 1985. “Residual strength of clays in landslides, folded strata and the laboratory.” Géotechnique 35 (1): 3–18. https://doi.org/10.1680/geot.1985.35.1.3.
Solowski, W. T., and S. W. Sloan. 2015. “Equivalent stress approach in creation of elastoplastic constitutive models for unsaturated soils.” Int. J. Geomech. 15 (2): 04014041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000368.
Stark, T. D., and H. T. Eid. 1994. “Drained residual strength of cohesive soils.” J. Geotech. Eng. 120 (5): 856–871. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(856).
Sun, D., H. Matsuoka, Y.-P. Yao, and W. Ichihara. 2000. “An elasto-plastic model for unsaturated soil in three-dimensional stresses.” Soils Found. 40 (3): 17–28. https://doi.org/10.3208/sandf.40.3_17.
Takano, D., N. Lenoir, J. Otani, and S. A. Hall. 2015. “Localised deformation in a wide-grained sand under triaxial compression revealed by X-ray tomography and digital image correlation.” Soils Found. 55 (4): 906–915. https://doi.org/10.1016/j.sandf.2015.06.020.
Take, W. A., and M. D. Bolton. 2011. “Seasonal ratcheting and softening in clay slopes, leading to first-time failure.” Géotechnique 61 (9): 757–769. https://doi.org/10.1680/geot.9.P.125.
Tang, C.-T., R. H. Borden, and M. A. Gabr. 2019. “Model applicability for prediction of residual soil apparent cohesion.” Transp. Geotech. 19: 44–53. https://doi.org/10.1016/j.trgeo.2019.01.003.
Tao, G., Y. Chen, L. Kong, H. Xiao, Q. Chen, and Y. Xia. 2018. “A simple fractal-based model for soil-water characteristic curves incorporating effects of initial void ratios.” Energies 11 (6): 1419. https://doi.org/10.3390/en11061419.
Tarantino, A. 2011. “Unsaturated soils: Compacted versus reconstituted states.” In Proc., of 5th Int. Conf., on Unsaturated Soil, 113–136. Rotterdam, Netherlands: Balkema.
Tarantino, A., and S. Tombolato. 2005. “Coupling of hydraulic and mechanical behaviour in unsaturated compacted clay.” Géotechnique 55 (4): 307–317. https://doi.org/10.1680/geot.2005.55.4.307.
Thanh, D. T., N. T. Long, and L. T. Thang. 2019. “Analysis the effects of the degree of saturation on the slopes stability using modeling and numerical simulation.” Int. J. Geomate 17 (63): 119–125. https://doi.org/10.21660/2019.63.24154.
Thu, T. M., H. Rahardjo, and E.-C. Leong. 2007. “Critical state behavior of a compacted silt specimen.” Soils Found. 47 (4): 749–755. https://doi.org/10.3208/sandf.47.749.
Toll, D. G. 1990. “A framework for unsaturated soil behaviour.” Géotechnique 40 (1): 31–44. https://doi.org/10.1680/geot.1990.40.1.31.
Toll, D. G. 2000. “The influence of fabric on the shear behavior of unsaturated compacted soils.” In Advances in Unsaturated Geotechnics, Geotechnical Special Publication 99, edited by C. D. Shackelford, S. L. Houston, and N.-Y. Chang, 222–234. Reston, VA: ASCE.
Toll, D. G., and B. H. Ong. 2003. “Critical-state parameters for an unsaturated residual sandy clay.” Géotechnique 53 (1): 93–103. https://doi.org/10.1680/geot.2003.53.1.93.
Toyota, H., S. Takada, and A. Susami. 2019. “Rate dependence on mechanical properties of unsaturated cohesive soil with stress-induced anisotropy.” Soils Found. 59 (4): 1013–1023. https://doi.org/10.1016/j.sandf.2019.04.001.
Tsiampousi, A., L. Zdravković, and D. M. Potts. 2013. “A new hvorslev surface for critical state type unsaturated and saturated constitutive models.” Comput. Geotech. 48: 156–166. https://doi.org/10.1016/j.compgeo.2012.09.010.
Vanapalli, S. K. 2009. “Shear strength of unsaturated soils and its applications in geotechnical engineering practice.” In Proc., 4th Asia-Pacific Conf., on Unsaturated Soils, 579–598. London, UK: Taylor & Francis Group.
Vanapalli, S. K., and D. G. Fredlund. 2000. “Comparison of different procedures to predict unsaturated soil shear strength.” In Advances in unsaturated geotechnics, edited by C. D. Shackelford, 195–209. New York: ASCE.
Vanapalli, S. K., D. G. Fredlund, and D. E. Pufahl. 1999. “The influence of soil structure and stress history on the soil–water characteristics of a compacted till.” Géotechnique 49 (2): 143–159. https://doi.org/10.1680/geot.1999.49.2.143.
Vanapalli, S. K., D. G. Fredlund, D. E. Pufahl, and A. W. Clifton. 1996. “Model for the prediction of shear strength with respect to soil suction.” Can. Geotech. J. 33 (3): 379–392. https://doi.org/10.1139/t96-060.
Van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vaunat, J., C. Amador, E. Romero, and I. Djeren-Maigre. 2006. “Residual strength of a low plasticity clay at high suctions.” In Proc., 4th Int. Conf., on Unsaturated Soils, 1279–1289. Reston, VA: ASCE.
Vaunat, J., V. Merchán, E. Romero, and J. Pineda. 2007. “Residual strength of clays at high suctions.” In Proc., Theoretical and Numerical Unsaturated Soil Mechancs, 151–163. Berlin: Springer.
Velosa, C. L. 2011. “Unsaturated soil behavior under large deformations using a fully servo/suction-controlled ring shear apparatus.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Texas.
Vo, T., H. Taiebat, and A. R. Russell. 2016. “Interaction of a rotating rigid retaining wall with an unsaturated soil in experiments.” Géotechnique 66 (5): 366–377. https://doi.org/10.1680/jgeot.14.P.187.
Wang, J.-P., E. Andò, P. Charrier, S. Salager, P. Lambert, and B. François. 2019. “Micro-scale investigation of unsaturated sand in mini-triaxial shearing using X-ray CT.” Géotechnique Lett. 9 (4): 269–277. https://doi.org/10.1680/jgele.18.00214.
Wang, Q., D. E. Pufahl, and D. G. Fredlund. 2002. “A study of critical state on an unsaturated silty soil.” Can. Geotech. J. 39 (1): 213–218. https://doi.org/10.1139/t01-086.
Wheeler, S. J., and V. Sivakumar. 1995. “An elasto-plastic critical state framework for unsaturated soil.” Géotechnique 45 (1): 35–53. https://doi.org/10.1680/geot.1995.45.1.35.
Widger, R. A., and D. G. Fredlund. 1979. “Stability of swelling clay embankments.” Can. Geotech. J. 16 (1): 140–151. https://doi.org/10.1139/t79-012.
Wijaya, M., and E. C. Leong. 2016. “Equation for unimodal and bimodal soil–water characteristic curves.” Soils Found. 56 (2): 291–300. https://doi.org/10.1016/j.sandf.2016.02.011.
Wijaya, M., and E. C. Leong. 2017. “Modeling the effect of density on the unimodal soil-water characteristic curve.” Géotechnique 67 (7): 637–645. https://doi.org/10.1680/jgeot.15.P.270.
Wood, D. M., and K. Belkheir. 1994. “Strain softening and state parameter for sand modeling.” Géotechnique 44 (2): 335–339. https://doi.org/10.1680/geot.1994.44.2.335.
Wu, S., A. Zhou, S.-L. Shen, and J. Kodikara. 2020. “Influence of different strain rates on hydro-mechanical behaviour of reconstituted unsaturated soil.” Acta Geotech. 15 (12): 3415–3431. https://doi.org/10.1007/s11440-020-01026-3.
Yang, J., T. Ishikawa, T. Lin, T. Tokoro, T. Nakamura, and Y. Momoya. 2021. “Influence of aging on hydro-mechanical behavior of unsaturated ballast.” Transp. Geotech. 27: 100480. https://doi.org/10.1016/j.trgeo.2020.100480.
Yang, X., and S. K. Vanapalli. 2020. “Model for predicting the variation of shear stress in unsaturated soils during strain-softening.” Can. Geotech. J. 58 (10): 1513–1526. https://doi.org/10.1139/cgj-2020-0312.
Yao, Y.-P., W. Hou, and A.-N. Zhou. 2009. “UH model: Three-dimensional unified hardening model for overconsolidated clays.” Géotechnique 59 (5): 451–469. https://doi.org/10.1680/geot.2007.00029.
Yao, Y. P., L. Niu, and W. J. Cui. 2014. “Unified hardening (UH) model for overconsolidated unsaturated soils.” Can. Geotech. J. 51 (7): 810–821. https://doi.org/10.1139/cgj-2013-0183.
Yerro, A., E. E. Alonso, and N. M. Pinyol. 2015. “The material point method for unsaturated soils.” Géotechnique 65 (3): 201–217. https://doi.org/10.1680/geot.14.P.163.
Zhan, T. L. T., and C. W. W. Ng. 2006. “Shear strength characteristics of an unsaturated expansive clay.” Can. Geotech. J. 43 (7): 751–763. https://doi.org/10.1139/t06-036.
Zhang, J., G. Niu, X. Li, and D. Sun. 2020. “Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range.” Acta Geotech. 15 (1): 265–278. https://doi.org/10.1007/s11440-019-00874-y.
Zhang, J., D. Sun, A. Zhou, and T. Jiang. 2016. “Hydromechanical behaviour of expansive soils with different suctions and suction histories.” Can. Geotech. J. 53 (1): 1–13. https://doi.org/10.1139/cgj-2014-0366.
Zhang, Y., T. Ishikawa, T. Tokoro, and T. Nishimura. 2014. “Influences of degree of saturation and strain rate on strength characteristics of unsaturated granular subbase course material.” Transp. Geotech. 1 (2): 74–89. https://doi.org/10.1016/j.trgeo.2014.04.001.
Zhao, H. F., and L. M. Zhang. 2014. “Effect of coarse content on shear behavior of unsaturated coarse granular soils.” Can. Geotech. J. 51 (12): 1371–1383. https://doi.org/10.1139/cgj-2012-0292.
Zhao, N. F., W. M. Ye, Q. Wang, B. Chen, and Y. G. Cui. 2021. “A bounding surface model for unsaturated compacted bentonite.” Eur. J. Environ. Civ. Eng. 25 (14): 2692–2706. https://doi.org/10.1080/19648189.2019.1651222.
Zhou, A., and D. Sheng. 2015. “An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities.” Comput. Geotech. 63: 46–66. https://doi.org/10.1016/j.compgeo.2014.07.017.
Zhou, A.-N., D. Sheng, and J. P. Carter. 2012a. “Modeling the effect of initial density on soil-water characteristic curves.” Géotechnique 62 (8): 669–680. https://doi.org/10.1680/geot.10.P.120.
Zhou, A.-N., D. Sheng, S. W. Sloan, and A. Gens. 2012b. “Interpretation of unsaturated soil behaviour in the stress – Saturation space, I: Volume change and water retention behaviour.” Comput. Geotech. 43: 178–187. https://doi.org/10.1016/j.compgeo.2012.04.010.
Zhou, C., P. Tai, and J.-H. Yin. 2020. “A bounding surface model for saturated and unsaturated soil-structure interfaces.” Int. J. Numer. Anal. Methods Geomech. 44 (18): 2412–2429. https://doi.org/10.1002/nag.3123.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 23Issue 5May 2023

History

Received: Apr 16, 2022
Accepted: Sep 8, 2022
Published online: Feb 28, 2023
Published in print: May 1, 2023
Discussion open until: Jul 28, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil Engineering, Univ. of Ottawa, Ottawa, ON K1N 6N5, Canada. ORCID: https://orcid.org/0000-0001-5469-9863. Email: [email protected]
Professor, Dept. of Civil Engineering, Univ. of Ottawa, Ottawa, ON K1N 6N5, Canada (corresponding author). ORCID: https://orcid.org/0000-0002-3273-6149. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share