Technical Papers
May 20, 2021

High-Dimensional Uncertainty Quantification in a Hybrid Data + Model-Based Submodeling Method for Refined Response Estimation at Critical Locations

Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 7, Issue 3

Abstract

This study presents frameworks to build nonintrusive polynomial chaos expansion (PCE) models with regression and Smolyak sparse-grid quadrature to perform high-dimensional uncertainty propagation and uncertainty quantification (UQ) for response estimated with the hybrid data + model-based submodeling (HDMS) method. The HDMS method drives the finite-element submodel containing a critical location of a structure using the measured response of the real structure at the preselected submodel boundaries to estimate a refined response distribution around the critical location. The proposed UQ frameworks are implemented on an experimental case study of a plate with holes as critical locations under tensile loading. The UQ results at the critical locations from regression-based PCE models built using different sampling methods and the Smolyak sparse-grid quadrature-based PCE models are compared with the UQ results from the traditional Monte Carlo simulation (MCS) method. The regression-based PCE model with Smolyak sparse-grid sampling demonstrated significantly higher accuracy in distribution parameters and probability density functions (pdf) compared to the other regression-based PCE models. While the Smolyak quadrature-based PCE model with a considerably small experimental design showed slightly lower accuracy, it still outperforms regression-based PCE models with MC-based sampling.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, which includes the DIC data, finite-element submodel of the plate, and the code defining the loads at each boundary.

Acknowledgments

Research funding is partially provided by the National Science Foundation through Grant No. CMMI-1351537, by the Hazard Mitigation and Structural Engineering program, and by a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA). Author B.V. would like to thank J. Saunders and Y. Chen of Lehigh University for their help with data collection in the case study of the plate with holes.

References

ABAQUS. 2017. “ABAQUS analysis users’s manual.” Accessed November 27, 2019. https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-submodeloverview.htm.
Adhikari, S., and H. Haddad Khodaparast. 2014. “A spectral approach for fuzzy uncertainty propagation in finite element analysis.” Fuzzy Sets Syst. 243 (May): 1–24. https://doi.org/10.1016/j.fss.2013.10.005.
Agathos, K., E. Chatzi, and S. P. A. Bordas. 2018. “Multiple crack detection in 3D using a stable XFEM and global optimization.” Comput. Mech. 62 (4): 835–852. https://doi.org/10.1007/s00466-017-1532-y.
Aquino, R. J. 2009. Stochastic finite element modeling and its applications in heat conduction and elastostatics problems. Swansea, Wales: Swansea Univ.
Beisheim, J. R., and G. B. Sinclair. 2002. “Three-dimensional submodeling of stress concentrations.” In Proc., 11th Int. ANSYS Conf. Canonsburg, PA: Ansys.
Bellman, R. 1961. Adaptive control processes. Princeton, NJ: Princeton University Press.
Berveiller, M., B. Sudret, and M. Lemaire. 2006. “Stochastic finite element: A non intrusive approach by regression.” Eur. J. Comput. Mech. 15 (1–3): 81–92. https://doi.org/10.3166/remn.15.81-92.
Bhosekar, A., and M. Ierapetritou. 2020. “A discontinuous derivative-free optimization framework for multi-enterprise supply chain.” Optim. Lett. 14 (4): 959–988. https://doi.org/10.1007/s11590-019-01446-5.
Bigoni, C., and J. S. Hesthaven. 2020. “Simulation-based anomaly detection and damage localization: An application to structural health monitoring.” Comput. Methods Appl. Mech. Eng. 363 (May): 112896. https://doi.org/10.1016/j.cma.2020.112896.
Blatman, G., and B. Sudret. 2011. “Adaptive sparse polynomial chaos expansion based on least angle regression.” J. Comput. Phys. 230 (6): 2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021.
Blatman, G., B. Sudret, and M. Berveiller. 2007. “Quasi-random numbers in stochastic finite element analysis.” Méc. Ind. 8 (3): 289–297. https://doi.org/10.1051/meca:2007051.
Camacho, A., A. Talavera, A. A. Emerick, M. A. Pacheco, and J. Zanni. 2017. “Uncertainty quantification in reservoir simulation models with polynomial chaos expansions: Smolyak quadrature and regression method approach.” J. Pet. Sci. Eng. 153 (May): 203–211. https://doi.org/10.1016/j.petrol.2017.03.046.
Capellari, G., E. Chatzi, and S. Mariani. 2016. “An optimal sensor placement method for SHM based on Bayesian experimental design and polynomial chaos expansion.” In Proc., ECCOMAS Congress 2016—Proc. of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, 6272–6282. Athens, Greece: National Technical University of Athens.
Chang, M., and S. N. Pakzad. 2014a. Modal parameter uncertainty quantification using PCR implementation with SMIT, 185–193. Cham, Switzerland: Springer.
Chang, M., and S. N. Pakzad. 2014b. “Observer Kalman filter identification for output-only systems using interactive structural modal identification toolsuite (SMIT).” J. Bridge Eng. 19 (5): 1–11. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000530.
Chang, M., and S. N. Pakzad. 2014c. “Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes.” J. Bridge Eng. 19 (6): 04014019. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000594.
Cherki, A., G. Plessis, B. Lallemand, T. Tison, and P. Level. 2000. “Fuzzy behavior of mechanical systems with uncertain boundary conditions.” Comput. Methods Appl. Mech. Eng. 189 (3): 863–873. https://doi.org/10.1016/S0045-7825(99)00401-6.
Chiaia, B., G. Ventura, C. Z. Quirini, and G. Marasco. 2020. “Bridge active monitoring for maintenance and structural safety.” In Structural integrity, 866–873. Cham, Switzerland: Springer.
Choi, S. K., R. V. Grandhi, R. A. Canfield, and C. L. Pettit. 2004. “Polynomial chaos expansion with Latin hypercube sampling for estimating response variability.” AIAA J. 42 (6): 1191–1198. https://doi.org/10.2514/1.2220.
Cormier, N. G., B. S. Smallwood, G. B. Sinclair, and G. Meda. 1999. “Aggressive submodelling of stress concentrations.” Int. J. Numer. Methods Eng. 46 (6): 889–909. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6%3C889::AID-NME699%3E3.0.CO;2-F.
Desai, A., J. A. S. Witteveen, and S. Sarkar. 2013. “Uncertainty quantification of a nonlinear aeroelastic system using polynomial chaos expansion with constant phase interpolation.” J. Vib. Acoust. 135 (5): 051034. https://doi.org/10.1115/1.4024794.
Dessombz, O., F. Thouverez, J. P. Laîné, and L. Jézéquel. 2001. “Analysis of mechanical systems using interval computations applied to finite element methods.” J. Sound Vib. 239 (5): 949–968. https://doi.org/10.1006/jsvi.2000.3191.
Dorvash, S., and S. N. Pakzad. 2012. “Effects of measurement noise on modal parameter identification.” Smart Mater. Struct. 21 (6): 065008. https://doi.org/10.1088/0964-1726/21/6/065008.
Dorvash, S., and S. N. Pakzad. 2013. “Stochastic iterative modal identification algorithm and application in wireless sensor networks.” Struct. Control Health Monit. 20 (8): 1121–1137. https://doi.org/10.1002/stc.1521.
Dorvash, S., F. Thouverez, J. P. Laîné, and L. Jézéquel. 2015. “Localized damage detection algorithm and implementation on a large-scale steel beam-to-column moment connection.” Earthquake Spectra 31 (3): 1543–1566. https://doi.org/10.1193/031613EQS069M.
Faes, M., and D. Moens. 2020. “Recent trends in the modeling and quantification of non-probabilistic uncertainty.” Arch. Comput. Methods Eng. 27 (3): 633–671. https://doi.org/10.1007/s11831-019-09327-x.
Ghanem, R., and D. Ghiocel. 1998. “Stochastic seismic soil-structure interaction using the homogeneous chaos expansion.” In Proc., 12th ASCE Engineering Mechanics Division Conf. La Jolla, CA: ASCE Engineering Mechanics Div. https://www.worldcat.org/title/engineering-mechanics-a-force-for-the-21st-century/oclc/42242893.
Ghanem, R., and J. Red-Horse. 1999. “Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach.” Physica D 133 (1): 137–144. https://doi.org/10.1016/S0167-2789(99)00102-5.
Ghanem, R. G., and P. D. Spanos. 2003. Stochastic finite elements: A spectral approach. Mineola, NY: Dover Publications.
Ghiocel, D. M., and R. G. Ghanem. 2002. “Stochastic finite-element analysis of seismic soil–structure interaction.” J. Eng. Mech. 128 (1): 66–77. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(66).
Gilli, L., D. Lathouwers, J. L. Kloosterman, T. H. J. J. Van der Hagen, A. J. Koning, and D. Rochman. 2013. “Uncertainty quantification for criticality problems using non-intrusive and adaptive polynomial chaos techniques.” Ann. Nucl. Energy 56 (Jun): 71–80. https://doi.org/10.1016/j.anucene.2013.01.009.
Hayes, K. R. 2011. “Uncertainty analysis methods, issues in quantitative and qualitative risk modeling with application to import risk assessment ACERA project (0705).” Accessed September 10, 2020. http://www.acera.unimelb.edu.au/sra/2011/Presentations/Uncertainty.pdf.
Heiss, F., and V. Winschel. 2008. “Likelihood approximation by numerical integration on sparse grids.” J. Econom. 144 (1): 62–80. https://doi.org/10.1016/j.jeconom.2007.12.004.
Holtz, M. 2010. Sparse grid quadrature in high dimensions with applications in finance and insurance. New York: Springer.
Hosder, S., R. W. Walters, and M. Balch. 2010. “Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics.” AIAA J. 48 (12): 2721–2730. https://doi.org/10.2514/1.39389.
Hou, T., D. Nuyens, S. Roels, and H. Janssen. 2019. “Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications.” Reliab. Eng. Syst. Saf. 191 (Nov): 106549. https://doi.org/10.1016/j.ress.2019.106549.
Hurtado, J. E., and A. H. Barbat. 1998. “Monte Carlo techniques in computational stochastic mechanics.” Arch. Comput. Methods Eng. 5 (1): 3–29. https://doi.org/10.1007/BF02736747.
Iman, R. L., J. C. Helton, and J. E. Campbell. 1981. “An approach to sensitivity analysis of computer models. Part I: Introduction, input variable selection and preliminary variable assessment.” J. Qual. Technol. 13 (3): 174–183. https://doi.org/10.1080/00224065.1981.11978748.
Isukapalli, S. S., A. Roy, and P. G. Georgopoulos. 1998. “Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems.” Risk Anal. 18 (3): 351–363. https://doi.org/10.1111/j.1539-6924.1998.tb01301.x.
Judd, K. L., L. Maliar, S. Maliar, and R. Valero. 2014. “Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain.” J. Econ. Dyn. Control 44 (Jul): 92–123. https://doi.org/10.1016/j.jedc.2014.03.003.
Kardak, A. A. 2015. “On an effective submodeling procedure for stresses determined with finite element analysis.” Louisiana State University and Agricultural and Mechanical College. Accessed November 27, 2019. https://digitalcommons.lsu.edu/gradschool_dissertations/306.
Keshtegar, B., O. Kisi, and M. Zounemat-Kermani. 2019. “Polynomial chaos expansion and response surface method for nonlinear modelling of reference evapotranspiration.” Hydrol. Sci. J. 64 (6): 720–730. https://doi.org/10.1080/02626667.2019.1601727.
Khuri, A. I., and S. Mukhopadhyay. 2010. “Response surface methodology.” In Wiley interdisciplinary reviews: Computational statistics, 128–149. New York: Wiley.
Knops, R. J., and L. E. Payne. 1971. Uniqueness theorems in linear elasticity. 1st ed. New York: Springer.
Köylüoğlu, H. U., A. Ş. Çakmak, and S. R. K. Nielsen. 1995. “Interval algebra to deal with pattern loading and structural uncertainties.” J. Eng. Mech. 121 (11): 1149–1157. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:11(1149).
Le Maître, O., and O. Kino. 2010. Spectral methods for uncertainty quantification: With applications to computational fluid dynamics. New York: Springer.
Le Maître, O. P., M. T. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio. 2002. “A stochastic projection method for fluid flow. II: Random process.” J. Comput. Phys. 181 (1): 9–44. https://doi.org/10.1006/jcph.2002.7104.
Li, X., S. Dorvash, L. Cheng, and S. Pakzad. 2010. “Pipelining in structural health monitoring wireless sensor network.” In Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2010, edited by M. Tomizuka, C. B. Yun, V. Giurgiutiu, and J. P. Lynch, 163–170. Bellingham, WA: International Society for Optics and Photonics. https://doi.org/10.1117/12.848112.
Liao, L. 2011. “A study of inertia relief analysis.” In Proc., 52nd Structural Dynamics and Materials Conf., 1–10. Denver: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2011-2002.
Liu, P. L., and D. A. Kiureghian. 1991. “Finite element reliability of geometrically nonlinear uncertain structures.” J. Eng. Mech. 117 (8): 1806–1825. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:8(1806).
Mangado, N., G. Piella, J. Noailly, J. Pons-Prats, and M. Á. G. Ballester. 2016. “Analysis of uncertainty and variability in finite element computational models for biomedical engineering: Characterization and propagation.” Front. Bioeng. Biotechnol. 4 (Nov): 85. https://doi.org/10.3389/fbioe.2016.00085.
Marzouk, Y. M., H. N. Najm, and L. A. Rahn. 2007. “Stochastic spectral methods for efficient Bayesian solution of inverse problems.” J. Comput. Phys. 224 (2): 560–586. https://doi.org/10.1016/j.jcp.2006.10.010.
Matarazzo, T., K. Koser, K. Korneva, T. J. Matarazzo, and S. N. Pakzad. 2015. “A wireless mobile sensor platform for structural health monitoring.” Accessed October 21, 2019. https://www.researchgate.net/publication/291698870.
Matarazzo, T. J., and S. N. Pakzad. 2016. “Structural identification for mobile sensing with missing observations.” J. Eng. Mech. 142 (5): 04016021. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001046.
Matarazzo, T. J., and S. N. Pakzad. 2018. “Scalable structural modal identification using dynamic sensor network data with STRIDEX.” Comput.-Aided Civ. Infrastruct. Eng. 33 (1): 4–20. https://doi.org/10.1111/mice.12298.
Mises, R. V. 1945. “On Saint Venant’s principle.” Bull. Am. Math. Soc. 51 (8): 555–562. https://doi.org/10.1090/S0002-9904-1945-08394-3.
Morokoff, W. J., and R. E. Caflisch. 1995. “Quasi-Monte Carlo integration.” J. Comput. Phys. 122 (2): 218–230. https://doi.org/10.1006/jcph.1995.1209.
Muhanna, R. L., and R. L. Mullen. 2001. “Uncertainty in mechanics problems—Interval-based approach.” J. Eng. Mech. 127 (6): 557–566. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557).
Najm, H. N. 2009. “Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics.” Annu. Rev. Fluid Mech. 41 (1): 35–52. https://doi.org/10.1146/annurev.fluid.010908.165248.
Narvydas, E., and N. Puodziuniene. 2014. “Applications of sub-modeling in structural mechanics.” Accessed January 18, 2020. https://www.researchgate.net/publication/282611969.
Niederreiter, H. 1992. Random number generation and Quasi-Monte Carlo methods. Philadelphia: Society for Industrial and Applied Mathematics.
Orchard, M. E., and G. J. Vachtsevanos. 2009. “A particle-filtering approach for on-line fault diagnosis and failure prognosis.” Trans. Inst. Meas. Control 31 (3–4): 221–246. https://doi.org/10.1177/0142331208092026.
Pan, B., K. Qian, H. Xie, and A. Asundi. 2009. “Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review.” Meas. Sci. Technol. 20 (6): 062001. https://doi.org/10.1088/0957-0233/20/6/062001.
Rabinovich, D., D. Givoli, and S. Vigdergauz. 2007. “XFEM-based crack detection scheme using a genetic algorithm.” Int. J. Numer. Methods Eng. 71 (9): 1051–1080. https://doi.org/10.1002/nme.1975.
Rao, S. S., and J. P. Sawyer. 1995. “Fuzzy finite element approach for analysis of imprecisely defined systems.” AIAA J. 33 (12): 2364–2370. https://doi.org/10.2514/3.12910.
Roy, C. J., and W. L. Oberkampf. 2011. “A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing.” Comput. Methods Appl. Mech. Eng. 200 (25–28): 2131–2144.
Serhat Erdogan, Y., and P. Gundes Bakir. 2013. “Inverse propagation of uncertainties in finite element model updating through use of fuzzy arithmetic.” Eng. Appl. Artif. Intell. 26 (1): 357–367. https://doi.org/10.1016/j.engappai.2012.10.003.
Shahidi, S. G., and S. N. Pakzad. 2014a. “Effect of measurement noise and excitation on generalized response surface model updating.” Eng. Struct. 75 (Sep): 51–62. https://doi.org/10.1016/j.engstruct.2014.05.033.
Shahidi, S. G., and S. N. Pakzad. 2014b. “Generalized response surface model updating using time domain data.” J. Struct. Eng. 140 (8): A4014001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000915.
Shinozuka, M. 1971. “Simulation of multivariate and multidimensional random processes.” J. Acoust. Soc. Am. 49 (1B): 357–368. https://doi.org/10.1121/1.1912338.
Shinozuka, M., and G. Deodatis. 1988. “Response variability of stochastic finite element systems.” J. Eng. Mech. 114 (3): 499–519. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:3(499).
Sinclair, G. B., J. R. Beisheim, and P. J. Roache. 2016. “Effective convergence checks for verifying finite element stresses at two-dimensional stress concentrations.” J. Verif. Validation Uncertainty Quantif. 1 (4): 041003. https://doi.org/10.1115/1.4034977.
Smolyak, S. A. 1963. “Quadrature and interpolation formulas for tensor products of certain classes of functions.” Dokl. Akad. Nauk SSSR 148 (5): 1042–1045.
Soize, C., and R. Ghanem. 2004. “Physical systems with random uncertainties: Chaos representations with arbitrary probability measure.” SIAM J. Sci. Comput. 26 (2): 395–410. https://doi.org/10.1137/S1064827503424505.
Spanos, P. D., and R. Ghanem. 1989. “Stochastic finite element expansion for random media.” J. Eng. Mech. 115 (5): 1035–1053. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035).
Spiridonakos, M., and E. Chatzi. 2014. ‘Polynomial chaos expansion models for SHM under environmental variability.” In Proc., 9th Int. Conf. on Structural Dynamics, EURODYN, 2393–2398. Porto, Portugal: Univ. of Porto.
Sracic, M. W., and W. J. Elke. 2019. Effect of boundary conditions on finite element submodeling, 163–170. Cham, Switzerland: Springer.
Sudret, B. 2007. Uncertainty propagation and sensitivity analysis in mechanical models Contributions to structural reliability and stochastic spectral methods, English. Clermont-Ferrand, France: Université Blaise Pascal.
Sun, H., H. Waisman, and R. Betti. 2013. “Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm.” Int. J. Numer. Methods Eng. 95 (10): 871–900. https://doi.org/10.1002/nme.4529.
Sun, H., H. Waisman, and R. Betti. 2014. “A multiscale flaw detection algorithm based on XFEM.” Int. J. Numer. Methods Eng. 100 (7): 477–503. https://doi.org/10.1002/nme.4741.
Sun, P., S. M. Bachilo, C. W. Lin, R. B. Weisman, and S. Nagarajaiah. 2019. “Noncontact strain mapping using laser-induced fluorescence from nanotube-based smart skin.” J. Struct. Eng. 145 (1): 04018238. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002227.
Thévenaz, L. 2010. “Brillouin distributed time-domain sensing in optical fibers: State of the art and perspectives.” Front. Optoelectron. China 3 (1): 13–21. https://doi.org/10.1007/s12200-009-0086-9.
Tiffen, R. 1952. “Uniqueness theorems of two-dimensional elasticity theory.” Q. J. Mech. Appl. Math. 5 (2): 237–252. https://doi.org/10.1093/qjmam/5.2.237.
Vachtsevanos, G., F. L. Lewis, M. Roemer, A. Hess, and B. Wu. 2006. Intelligent fault diagnosis and prognosis for engineering systems. Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470117842.
Valeti, B., and S. N. Pakzad. 2018. “Remaining useful life estimation of wind turbine blades under variable wind speed conditions using particle filters.” In Vol. 10 of Proc., of the Annual Conf. of the PHM Society. Beijing: Prognostics and Health Management Society. https://doi.org/10.36001/phmconf.2018.v10i1.481.
Valeti, B., and S. N. Pakzad. 2019. “Estimation of remaining useful life of a fatigue damaged wind turbine blade with particle filters.” In Proc., Conf. Proc. of the Society for Experimental Mechanics Series, 319–328. New York: Springer.
Valeti, B., and S. N. Pakzad. 2020. “Uncertainty propagation in a hybrid data-driven and physics-based submodeling method for refined response estimation.” In Vol. 3 of Model validation and uncertainty quantification, 349–359. Cham, Switzerland: Springer.
Valeti, B., and S. N. Pakzad. 2021. “Hybrid data + model-based submodeling method for a refined response estimation at critical locations.” Struct. Control Health Monit. 28 (1): e2646. https://doi.org/10.1002/stc.2646.
Wiener, N. 1938. “The homogeneous chaos.” Am. J. Math. 60 (4): 897–936. https://doi.org/10.2307/2371268.
Wilcox, H. C. 1979. “Uniqueness theorems for displacement fields with locally finite energy in linear elastostatics.” J. Elast. 9 (3): 221–243. https://doi.org/10.1007/BF00041096.
Xiu, D., and G. Em Karniadakis. 2002. “The Wiener-Askey polynomial chaos for stochastic differential equations.” SIAM J. Sci. Comput. 24 (2): 619–644. https://doi.org/10.1137/S1064827501387826.
Xiu, D., and G. E. Karniadakis. 2003. “Modeling uncertainty in flow simulations via generalized polynomial chaos.” J. Comput. Phys. 187 (1): 137–167. https://doi.org/10.1016/S0021-9991(03)00092-5.
Yamazaki, F., M. Shinozuka, and G. Dasgupta. 1988. “Neumann expansion for stochastic finite element analysis.” J. Eng. Mech. 114 (8): 1335–1354. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335).
Yao, Y., and B. Glisic. 2015. “Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.” Sensors 15 (4): 8088–8108. https://doi.org/10.3390/s150408088.

Information & Authors

Information

Published In

Go to ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 7Issue 3September 2021

History

Received: Jul 15, 2020
Accepted: Feb 24, 2021
Published online: May 20, 2021
Published in print: Sep 1, 2021
Discussion open until: Oct 20, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Lehigh Univ., Imbt Laboratory, 117 ATLSS Dr., Bethlehem, PA 18015 (corresponding author). ORCID: https://orcid.org/0000-0003-2189-6339. Email: [email protected]; [email protected]
Shamim N. Pakzad, A.M.ASCE [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Lehigh Univ., Imbt Laboratory, 117 ATLSS Dr., Bethlehem, PA 18015. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share