Technical Papers
Jun 12, 2018

Peak Strength Expression for Concrete Confined with Fiber-Reinforced Polymer

Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 4, Issue 3

Abstract

This study obtains a three-dimensional unified peak strength expression for confined concrete from the reported experimental results of circular concrete columns confined with different fiber-reinforced polymer (FRP) materials under axial compressive load for application in pile design. The reported experimental results are divided into two groups: FRP-wrapped and FRP tube–encased specimens. An assessment using various statistical indicators is carried out to evaluate the performance of existing predictive equations for peak strength. A reliability analysis of the models is conducted using the advanced first-order second-moment approach. Based on the assessment, it is inferred that most of the models conform to the reliability index criteria suggested by current requirements for structural concrete.

Get full access to this article

View all available purchase options and get full access to this article.

References

ACI (American Concrete Institute). 2011. Building code requirements for structural concrete and commentary. ACI 318–11. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2017. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-17. Farmington Hills, MI: ACI.
Akogbe, R. K., M. Liang, and Z. M. Wu. 2011. “Size effect of axial compressive strength of CFRP confined concrete cylinders.” Int. J. Concr. Struct. Mater. 5 (1): 49–55. https://doi.org/10.4334/IJCSM.2011.5.1.049.
Al-Salloum, Y., and N. Siddiqui. 2009. “Compressive strength prediction model for FRP-confined concrete.” In Proc., 9th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, 97–106. Sydney, Australia: Univ. of Adelaide.
Au, C., and O. Buyukozturk. 2005. “Effect of fiber orientation and ply mix on fiber reinforced polymer-confined concrete.” J. Compos. Constr. 9 (5): 397–407. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(397).
Baji, H., H. R. Ronagh, and C. Q. Li. 2016. “Probabilistic design models for ultimate strength and strain of FRP-confined concrete.” J. Compos. Constr. 20 (6): 04016051. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000704.
Benzaid, R., and H. A. Mesbah. 2013. “Circular and square concrete columns externally confined by CFRP composite: Experimental investigation and effective strength models.” In Fiber reinforced polymers-the technology applied for concrete repair. London: IntechOpen.
Berthet, J. F., E. Ferrier, and P. Hamelin. 2006. “Compressive behavior of concrete externally confined by composite jackets. Part B: Modeling.” Constr. Build. Mater. 20 (5): 338–347. https://doi.org/10.1016/j.conbuildmat.2005.01.029.
Binici, B. 2008. “Design of FRPs in circular bridge column retrofits for ductility enhancement.” Eng. Struct. 30 (3): 766–776. https://doi.org/10.1016/j.engstruct.2007.05.012.
Bisby, L. A., A. J. Dent, and M. F. Green. 2005. “Comparison of confinement models for fiber-reinforced polymer-wrapped concrete.” ACI Struct. J. 102 (1): 62–72.
Campione, G., and N. Miraglia. 2003. “Strength and strain capacities of concrete compression members reinforced with FRP.” Cem. Concr. Compos. 25 (1): 31–41. https://doi.org/10.1016/S0958-9465(01)00048-8.
Carey, S. A., and K. A. Harries. 2005. “Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets.” ACI Struct. J. 102 (4): 596–604.
Ellingwood, B. 1980. Vol. 13 of Development of a probability based load criterion for American National Standard A58: Building code requirements for minimum design loads in buildings and other structures. MD: National Bureau of Standards.
Elsanadedy, H. M., Y. A. Al-Salloum, S. H. Alsayed, and R. A. Iqbal. 2012. “Experimental and numerical investigation of size effects in FRP-wrapped concrete columns.” Constr. Build. Mater. 29 (Apr): 56–72. https://doi.org/10.1016/j.conbuildmat.2011.10.025.
Fahmy, M. F., and Z. Wu. 2010. “Evaluating and proposing models of circular concrete columns confined with different FRP composites.” Compos. Part B: Eng. 41 (3): 199–213. https://doi.org/10.1016/j.compositesb.2009.12.001.
Fam, A., and S. H. Rizkalla. 2001. “Behavior of axially loaded concrete-filled circular FRP tubes.” ACI Struct. J. 98 (3): 280–289.
Fardis, M. N., and H. H. Khalili. 1982. “FRP-encased concrete as a structural material.” Mag. Concr. Res. 34 (121): 191–202. https://doi.org/10.1680/macr.1982.34.121.191.
Gang, W., and L. Zhitao. 2002. “Experimental study on seismic behavior of RC columns strengthened with carbon fiber sheet.” Build. Struct. 32 (10): 42–45.
Girgin, Z. C. 2009. “Modified failure criterion to predict ultimate strength of circular columns confined by different materials.” ACI Struct. J. 106 (6): 800–809.
Girgin, Z. C., and K. Girgin. 2015. “A design-oriented combined model (7 MPa to 190 MPa) for FRP-confined circular short columns.” Polymers 7 (10): 1905–1917. https://doi.org/10.3390/polym7101489.
Guler, S., and A. Ashour. 2015. “Review of current design guidelines for circular FRP-wrapped plain concrete cylinders.” J. Compos. Constr. 20 (2): 4015057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000619.
Guralnick, S. A., and L. Gunawan. 2006. “Strengthening of reinforced concrete bridge columns with FRP wrap.” Pract. Period. Struct. Des. Constr. 11 (4): 218–228. https://doi.org/10.1061/(ASCE)1084-0680(2006)11:4(218).
Hany, N. F., E. G. Hantouche, and M. H. Harajli. 2015. “Axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading.” J. Compos. Constr. 19 (6): 04015004. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000557.
Ilki, A., N. Kumbasar, and V. Koc. 2002. “Strength and deformability of low strength concrete confined by carbon fiber composite sheets.” In Proc., ASCE 15th Engineering Mechanics Conf. Reston, VA: ASCE.
Ilki, A., N. Kumbasar, and V. Koc. 2004. “Low strength concrete members externally confined with FRP sheets.” Struct. Eng. Mech. 18 (2): 167–194. https://doi.org/10.12989/sem.2004.18.2.167.
Jalal, M., and A. A. Ramezanianpour. 2012. “Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks.” Compos. Part B: Eng. 43 (8): 2990–3000. https://doi.org/10.1016/j.compositesb.2012.05.044.
Jolly, C. K., and D. Lilistone. 1998. “The stress–strain behavior of concrete confined by advanced fibre composites.” In Proc., 8th BCA Conf. on Higher Education and the Concrete Industry, 117–135. Berkshire, UK: British Cement Association.
Karabinis, A. I., and T. C. Rousakis. 2001. “Carbon FRP confined concrete elements under axial load.” In Proc., FRP Composites in Civil Engineering Conf., 309–16. Amsterdam, Netherlands: Elsevier.
Karbhari, V. M., and Y. Gao. 1997. “Composite jacketed concrete under uniaxial compression—Verification of simple design equations.” J. Mater. Civ. Eng. 9 (4): 185–193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185).
Keshtegar, B., T. Ozbakkaloglu, and A. Gholampour. 2017. “Modeling the behavior of FRP-confined concrete using dynamic harmony search algorithm.” Eng. Comput. 33 (3): 415–430. https://doi.org/10.1007/s00366-016-0481-y.
Kono, S., M. Inazumi, and T. Kaku. 1998. “Evaluation of confining effects of CFRP sheets on reinforced concrete members.” In Proc., 2nd Int. Conf. on Composites in Infrastructure. Tucson, AZ: Univ. of Arizona.
Kumutha, R., R. Vaidyanathan, and M. S. Palanichamy. 2007. “Behaviour of reinforced concrete rectangular columns strengthened using GFRP.” Cem. Concr. Compos. 29 (8): 609–615. https://doi.org/10.1016/j.cemconcomp.2007.03.009.
Lam, L., and J. G. Teng. 2003. “Design-oriented stress-strain model for FRP-confined concrete.” Constr. Build. Mater. 17 (6): 471–489. https://doi.org/10.1016/S0950-0618(03)00045-X.
Li, Y. F., C. T. Lin, and Y. Y. Sung. 2003. “A constitutive model for concrete confined with carbon fiber reinforced plastics.” Mech. Mater. 35 (3): 603–619. https://doi.org/10.1016/S0167-6636(02)00288-0.
Liang, M., Z. M. Wu, T. Ueda, J. J. Zheng, and R. Akogbe. 2012. “Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes.” J. Reinf. Plast. Compos. 31 (6): 389–403. https://doi.org/10.1177/0731684412439347.
Lim, J. C., M. Karakus, and T. Ozbakkaloglu. 2016. “Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming.” Comput. Struct. 162 (Jan): 28–37. https://doi.org/10.1016/j.compstruc.2015.09.005.
Lin, H. J., and C. T. Chen. 2001. “Strength of concrete cylinder confined by composite materials.” J. Reinf. Plast. Compos. 20 (18): 1577–1600. https://doi.org/10.1177/073168401772679066.
Liu, P. L., and A. Der Kiureghian. 1986. “Multivariate distribution models with prescribed marginals and covariances.” Probab. Eng. Mech. 1 (2): 105–112. https://doi.org/10.1016/0266-8920(86)90033-0.
Mander, J. B., M. J. Priestley, and R. Park. 1988. “Theoretical stress-strain model for confined concrete.” J. Struct. Eng. 114 (8): 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Matthys, S., H. Toutanji, K. Audenaert, and L. Taerwe. 2005. “Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites.” ACI Struct. J. 102 (2): 258–267.
Matthys, S., H. Toutanji, and L. Taerwe. 2006. “Stress-strain behavior of large-scale circular columns confined with FRP composites.” J. Struct. Eng. 132 (1): 123–133. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123).
Mirmiran, A., and M. Shahawy. 1996. “A new concrete-filled hollow FRP composite column.” Compos. Part B: Eng. 27 (3–4): 263–268. https://doi.org/10.1016/1359-8368(95)00019-4.
Mirza, S. A., and J. G. MacGregor. 1979. “Variability of mechanical properties of reinforcing bars.” J. Struct. Div. 105 (5): 921–937.
Miyauchi, K., S. Inoue, T. Kuroda, and A. Kobayashi. 1999. “Strengthening effects with carbon fiber sheet for concrete column.” Proc. Jpn. Concr. Inst. 21(3), 1453–1458.
Miyauchi, K., S. Nishibayashi, and S. Inoue. 1997. “Estimation of strengthening effects with carbon fiber sheet for concrete column.” In Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 217–224. Japan: Japan Concrete Institute.
Mohamed, H. M., and R. Masmoudi. 2010. “Axial load capacity of concrete-filled FRP tube columns: Experimental versus theoretical predictions.” J. Compos. Constr. 14 (2): 231–243. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000066.
Moran, D. A., and C. P. Pantelides. 2002. “Variable strain ductility ratio for fiber-reinforced polymer-confined concrete.” J. Compos. Constr. 6 (4): 224–232. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(224).
Newman, K., and J. B. Newman. 1971. “Failure theories and design criteria for plain concrete.” Structure, solid mechanics and engineering design, 963–995. London: Wiley.
Nowak, A. S., and M. M. Szerszen. 2003. “Calibration of design code for buildings (ACI 318): Part I—Statistical models for resistance.” ACI Struct. J. 100 (3): 377–382.
Ozbakkaloglu, T., and J. C. Lim. 2013. “Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model.” Compos. Part B: Eng. 55 (Dec): 607–634. https://doi.org/10.1016/j.compositesb.2013.07.025.
Ozbakkaloglu, T., J. C. Lim, and T. Vincent. 2013. “FRP-confined concrete in circular sections: Review and assessment of stress–strain models.” Eng. Struct. 49 (Apr): 1068–1088. https://doi.org/10.1016/j.engstruct.2012.06.010.
Park, J. H., B. W. Jo, S. J. Yoon, and S. K. Park. 2011. “Experimental investigation on the structural behavior of concrete filled FRP tubes with/without steel re-bar.” KSCE J. Civ. Eng. 15 (2): 337–345. https://doi.org/10.1007/s12205-011-1040-0.
Pham, T. M., and M. N. Hadi. 2014. “Confinement model for FRP confined normal- and high-strength concrete circular columns.” Constr. Build. Mater. 69 (Oct): 83–90. https://doi.org/10.1016/j.conbuildmat.2014.06.036.
Popovics, S. 1973. “A numerical approach to the complete stress-strain curve of concrete.” Cem. Concr. Res. 3 (5): 583–599. https://doi.org/10.1016/0008-8846(73)90096-3.
Realfonzo, R., and A. Napoli. 2011. “Concrete confined by FRP systems: Confinement efficiency and design strength models.” Compos. Part B: Eng. 42 (4): 736–755. https://doi.org/10.1016/j.compositesb.2011.01.028.
Saadatmanesh, H., M. R. Ehsani, and M. W. Li. 1994. “Strength and ductility of concrete columns externally reinforced with fiber-composite straps.” ACI Struct. J. 91 (4): 434–447.
Saafi, M., H. A. Toutanji, and Z. Li. 1999. “Behavior of concrete columns confined with fiber reinforced polymer tubes.” ACI Mater. J. 96 (4): 500–509.
Saiidi, M. S., K. Sureshkumar, and C. Pulido. 2005. “Simple carbon-fiber-reinforced-plastic-confined concrete model for moment-curvature analysis.” J. Compos. Constr. 9 (1): 101–104. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(101).
Samaan, M., A. Mirmiran, and M. Shahawy. 1998. “Model of concrete confined by fiber composites.” J. Struct. Eng. 124 (9): 1025–1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).
Shehata, I. A., L. A. Carneiro, and L. C. Shehata. 2002. “Strength of short concrete columns confined with CFRP sheets.” Mater. Struct. 35 (1): 50–58. https://doi.org/10.1007/BF02482090.
Shehata, I. A., L. A. Carneiro, and L. C. Shehata. 2007. “Strength of confined short concrete columns.” Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures, 1–10. Patras, Greece: Univ. of Patras.
Sheikh, S. A., D. Laine, and C. Cui. 2013. “Behavior of normal-and high-strength confined concrete.” ACI Struct. J. 110 (6): 989–1000.
Spoelstra, M. R., and G. Monti. 1999. “FRP-confined concrete model.” J. Compos. Constr. 3 (3): 143–150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143).
Szerszen, M. M., and A. S. Nowak. 2003. “Calibration of design code for buildings (ACI 318): Part 2—Reliability analysis and resistance factors.” ACI Struct. J.Ann Arbor 100 (3): 383–391.
Tamuzs, V., R. Tepfers, E. Zile, and O. Ladnova. 2006. “Behavior of concrete cylinders confined by a carbon composite. 3: Deformability and the ultimate axial strain.” Mech. Compos. Mater. 42 (4): 303–314. https://doi.org/10.1007/s11029-006-0040-5.
Teng, J. G., T. Jiang, L. Lam, and Y. Z. Luo. 2009. “Refinement of a design-oriented stress-strain model for FRP-confined concrete.” J. Compos. Constr. 13 (4): 269–278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
Thériault, M., K. Neale, and S. Claude. 2004. “Fiber-reinforced polymer-confined circular concrete columns: Investigation of size and slenderness effects.” J. Compos. Constr. 8 (4): 323–331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323).
Thériault, M., and K. W. Neale. 2000. “Design equations for axially loaded reinforced concrete columns strengthened with fibre reinforced polymer wraps.” Can. J. Civ. Eng. 27 (5): 1011–1020. https://doi.org/10.1139/l00-019.
Toutanji, H. A. 1999. “Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets.” ACI Mater. J. 96 (3): 397–404.
Val, D. V. 2003. “Reliability of fiber-reinforced polymer-confined reinforced concrete columns.” J. Struct. Eng. 129 (8): 1122–1130. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1122).
Vintzileou, E., and E. Panagiotidou. 2008. “An empirical model for predicting the mechanical properties of FRP-confined concrete.” Constr. Build. Mater. 22 (5): 841–854. https://doi.org/10.1016/j.conbuildmat.2006.12.009.
Wang, Y. F., and H. L. Wu. 2011. “Size effect of concrete short columns confined with aramid FRP jackets.” J. Compos. Constr. 15 (4): 535–770. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178.
Wei, Y. Y., and Y. F. Wu. 2012. “Unified stress-strain model of concrete for FRP-confined columns.” Constr. Build. Mater. 26 (1): 381–392. https://doi.org/10.1016/j.conbuildmat.2011.06.037.
Wu, G., Z. T. Lü, and Z. S. Wu. 2006. “Strength and ductility of concrete cylinders confined with FRP composites.” Constr. Build. Mater. 20 (3): 134–148. https://doi.org/10.1016/j.conbuildmat.2005.01.022.
Wu, H. L., and Y. F. Wang. 2010. “Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets.” Steel Compos. Struct. 10 (6): 501–516. https://doi.org/10.12989/scs.2010.10.6.501.
Wu, H. L., Y. F. Wang, L. Yu, and X. R. Li. 2009. “Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets.” J. Compos. Constr. 13 (2): 125–134. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(125).
Wu, Y. F., and L. M. Wang. 2009. “Unified strength model for square and circular concrete columns confined by external jacket.” J. Struct. Eng. 135 (3): 253–261. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253).
Wu, Y. F., and Y. W. Zhou. 2010. “Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP.” J. Compos. Constr. 14 (2): 175–184. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000062.
Yan, Z., and C. P. Pantelides. 2007. “Design-oriented model for concrete columns confined with bonded FRP jackets or post-tensioned FRP shells.” In Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Greece: Univ. of Patras.
Youssef, M. N., M. Q. Feng, and A. S. Mosallam. 2007. “Stress-strain model for concrete confined by FRP composites.” Compos. Part B: Eng. 38 (5–6): 614–628. https://doi.org/10.1016/j.compositesb.2006.07.020.
Yu, T., X. L. Fang, and J. G. Teng. 2013. “FRP-confined self-compacting concrete under axial compression.” J. Mater. Civ. Eng. 26 (11): 4014082. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000993.

Information & Authors

Information

Published In

Go to ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 4Issue 3September 2018

History

Received: Sep 28, 2017
Accepted: Mar 8, 2018
Published online: Jun 12, 2018
Published in print: Sep 1, 2018
Discussion open until: Nov 12, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Sonal Singh [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India. Email: [email protected]
Nihar Ranjan Patra, Ph.D., M.ASCE [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share