Abstract

This work presents a theoretical discussion and experimental results about the directional bound waves generated by second-order nonlinear interaction between two noncollinear wave trains. Research focus is set on presence, characteristics, and effects of the angle difference between the primary wave trains on the generation of super- and subharmonic bound wave components as well as propagation direction, orbital velocity, and the resulting radiation stress field. An analytical model is derived, and computations thereof conducted for different conditions of wave height, period, and depth. Laboratory tests, systematically conducted in a wave basin, confirm computational results from analytical formulation and indicate that (i) the magnitude of all second-order properties (setup and setdown of the mean water level, orbital velocities) are strongly dependent on the individual combination of periods and directions of the primary wave trains, (ii) the direction of the bound wave differs from those of the primary waves, and (iii) the radiation stress components show a spatial and temporal oscillatory pattern outside the surf zone.

Formats available

You can view the full content in the following formats:

Data Availability Statement

All data, models, or codes generated or used during the study are available from the corresponding author by request.

Acknowledgments

This study was conducted while the first author was a Graduate Researcher at UFRJ and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The authors are thankful to the Ludwig-Franzius-Institut of the Leibniz University Hannover for making the wave basin available for this research, for providing instruments, materials, and personnel for the physical experiments, and for giving access to the wave analysis software during the stay of the first author at that institute with a UFRJ/PDSE/CAPES scholarship. This research has also benefitted from the support of Deutsche Forschungsgemeinschaft (DFG) for funding in the Collaborative Research Center 1463 “Integrated Design and Operation Methodology for Offshore Megastructures” (SFB1463). The authors also acknowledge the support of the Ocean Engineering Program of the Federal University of Rio de Janeiro.

Notation

The following symbols are used in this paper:
cgab
wave group celerity (vector) for the subtractive interaction of waves a and b;
E*
wave energy density, subscript ()* indicates the wave being considered (a, b);
g
acceleration of gravity;
H*
wave height, subscript ()* indicates the wave being considered (a, b, i, j);
h
local water depth;
kij+=|ki+kj|
wave number for the additive interference of waves i and j;
kij=|kikj|
wave number for the SubI of waves i and j;
k*
wave number vector, subscript ()* indicates the wave being considered (a, b, i, j);
Δk
wave number vector for the subtractive interaction of waves a and b;
|Δk|
modulus of the vector;
L*
wave length, subscript ()* indicates the wave being considered (a, b);
n*
ratio between group celerity and phase speed, subscript ()* indicates the wave being considered (a, b);
p
dynamic wave pressure;
Sxx*, Sxy*, Syy*
components of radiation stress tensor, superscript ()* indicates the wave being considered (a, b, a–b);
T*
wave period, subscript ()* indicates the wave being considered (a, b);
u~i(*),u~j(*)
horizontal components of orbital velocity, superscript ()* indicates the wave being considered (a, b, ab, a + b), subscript i, j corresponds to Cartesian coordinates;
u*(1),u*(2)
first- and second-order of x-component of orbital velocity, subscript ()* indicates the wave being considered (a, b, ab, a + b);
v*(1),v*(2)
first- and second-order of y-component of orbital velocity, subscript ()* indicates the wave being considered (a, b, ab, a + b);
w*(1),w*(2)
first- and second-order of z-component of orbital velocity, subscript ()* indicates the wave being considered (a, b, ab, a + b);
x = (x, y)
horizontal position with (x, y) coordinates;
ɛ
wave arbitrary initial phase;
ϕ=(kxσt+ε)
wave phase;
Φ(1)
first-order velocity potential;
Φ(2)
second-order velocity potential;
ρ
water density;
σ*
wave frequency, subscript ()* indicates the wave being considered (a, b); and
Δσ
frequency difference between waves a and b.

References

Aagaard, T., and B. Greenwood. 2008. “Infragravity wave contribution to surf zone sediment transport — The role of advection.” Mar. Geol. 251 (1–2): 1–14. https://doi.org/10.1016/j.margeo.2008.01.017.
Alsina, J. M., E. M. Padilla, and I. Cáceres. 2016. “Sediment transport and beach profile evolution induced by bi-chromatic wave groups with different group periods.” Coastal Eng. 114: 325–340. https://doi.org/10.1016/j.coastaleng.2016.04.020.
Andersen, T. L., M. R. Eldrup, and M. Clavero. 2019. “Separation of long-crested nonlinear bichromatic waves into incident and reflected components.” J. Mar. Sci. Eng. 7 (39): 1–12. https://doi.org/10.3390/jmse7020039.
Ardhuin, F., L. Gualtieri, and E. Stutzmann. 2015. “How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s.” Geophys. Res. Lett. 42 (3): 765–772. https://doi.org/10.1002/2014GL062782.
Baldock, T. E. 2006. “Long wave generation by the shoaling and breaking of transient wave groups on a beach.” Proc. R. Soc. A 462 (2070): 1853–1876. https://doi.org/10.1098/rspa.2005.1642.
Baldock, T. E., D. A. Huntley, P. A. D. Bird, T. O’H´are, and G. N. Bullock. 2000. “Breakpoint generated surf beat induced by bichromatic wave groups.” Coastal Eng. 39 (2–4): 213–242. https://doi.org/10.1016/S0378-3839(99)00061-7.
Baldock, T. E., P. Manoonvoravong, and K. S. Pham. 2010. “Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups.” Coastal Eng. 57 (10): 898–916. https://doi.org/10.1016/j.coastaleng.2010.05.006.
Battjes, J. A. 1972a. “Radiation stresses in short-crested waves.” J. Mar. Res. 30: 56–64.
Battjes, J. A. 1972b. “Set-Up due to irregular waves.” In Proc., 13th Int. Conf. on Coastal Engineering, 1993–2004. New York: ASCE.
Battjes, J. A., H. J. Bakkenes, T. T. Janssen, and A. R. van Dongeren. 2004. “Shoaling of subharmonic gravity waves.” J. Geophys. Res. 109 (C2): C02009. https://doi.org/10.1029/2003JC001863.
Bertin, X., et al. 2018. “Infragravity waves: From driving mechanisms to impacts.” Earth-Sci. Rev. 177: 774–799. https://doi.org/10.1016/j.earscirev.2018.01.002.
Bromirski, P. D., Z. Chen, R. A. Stephen, P. Gerstoft, D. Arcas, A. Diez, R. C. Aster, D. A. Wiens, and A. Nyblade. 2017. “Tsunami and infragravity waves impacting Antarctic ice shelves.” J. Geophys. Res. 122 (7): 5786–5801. https://doi.org/10.1002/2017JC012913.
Bromirski, P. D., O. V. Sergienko, and D. R. MacAyeal. 2010. “Transoceanic infragravity waves impacting Antarctic ice shelves.” Geophys. Res. Lett. 37 (2): L02502. https://doi.org/10.1029/2009GL041488.
Cheriton, O. M., C. D. Storlazzi, and K. J. Rosenberger. 2016. “Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding.” J. Geophys. Res. 121 (5): 3121–3140. https://doi.org/10.1002/2015JC011231.
Conde, J. M. P., C. J. Fortes, E. Didier, and R. Lemos. 2013. “Physical modelling of bichromatic wave propagation and wave breaking in a wave flume.” In Proc., 6th Int. Short Course/Conf. of Applied Coastal Research, 1–2. Accessed March 26, 2022. http://6scacr.lnec.pt/43_Conde_Jose.pdf.
Conde, J. M. P., R. Lemos, and C. J. Fortes. 2014a. “Comparison between time, spectral and wavelet analysis on wave breaking and propagation.” In Proc., 3rd IAHR Europe Congress, 1–10. Porto, Portugal: International Association for Hydro-Environment Engineering and Research.
Conde, J. M. P., C. F. Neves, C. J. E. M. Fortes, and R. Lemos. 2014b. “Experimental wave breaking velocity characterization for monochromatic, bichromatic and irregular waves.” In Proc., 5th Int. Conf. on the Application of Physical Modelling to Port and Coastal Protection - Coastlab14, 87–96. Varna, Bulgaria: Black Sea Danube Association and IAHR.
Dalrymple, R. A. 1975. “A mechanism for rip current generation on an open coast.” J. Geophys. Res. 80 (24): 3485–3487. https://doi.org/10.1029/JC080i024p03485.
Dalrymple, R. A., and G. A. Lanan. 1976. “Beach cusps formed by intersecting waves.” Geol. Soc. Am. Bull. 87 (1): 57–60. https://doi.org/10.1130/0016-7606(1976)87%3C57:BCFBIW%3E2.0.CO;2.
Dalrymple, R. A., J. H. MacMahan, A. J. H. M. Reniers, and V. Nelko. 2011. “Rip currents.” Annu. Rev. Fluid Mech. 43 (1): 551–581. https://doi.org/10.1146/annurev-fluid-122109-160733.
Davis, R. E., and L. A. Regier. 1977. “Methods for estimating directional wave spectra from multielement arrays.” J. Mar. Res. 35 (3): 453–477.
Dean, R. G., and R. A. Dalrymple. 1991. Water wave mechanics for engineers and scientists. Singapore: World Scientific.
de Bakker, A. T. M., T. H. C. Herbers, P. B. Smit, M. F. S. Tissier, and B. G. Ruessink. 2015. “Nonlinear infragravity–wave interactions on a gently sloping laboratory beach.” J. Phys. Oceanogr. 45 (2): 589–605. https://doi.org/10.1175/JPO-D-14-0186.1.
de Souza e Silva, M. G. 2019. “Bichromatic-bidirectional waves: Application of the Hilbert-Huang transform to orbital velocities.” [In Portuguese.] D.Sc. thesis, Ocean Engineering Program/COPPE, Federal University of Rio de Janeiro.
de Souza e Silva, M. G., N. Kerpen, P.C.C. Rosman, T. Schlurmann, C. F. Neves. 2018b. “Finding Bichromatic-Bidirectional Waves with ADVs.” In Vol. 1 of Proc., 36th Int. Conf. on Coastal Engineering. Baltimore, MD: American Society of Civil Engineers.
de Souza e Silva, M. G., P. C. C. Rosman, and C. F. Neves. 2017. “Nonlinear second order effects of bichromatic-bidirectional waves.” In Proc., 8th –Int. Short Conf. on Applied Coastal Research, 1–12. Reston, VA: ASCE.
de Souza e Silva, M. G., P. C. C. Rosman, and C. F. Neves. 2018a. “Propagation of bichromatic-bidirectional waves.” Rev. Bras. Recur. Hidr. 24 (6): 1–12. https://doi.org/10.1590/2318-0331.241920180095.
Dong, G., X. Ma, M. Perlin, Y. Ma, B. Yu, and G. Wang. 2009. “Experimental study of long wave generation on sloping bottoms.” Coastal Eng. 56 (1): 82–89. https://doi.org/10.1016/j.coastaleng.2008.10.002.
Fowler, R. E., and R. A. Dalrymple. 1990. “Wave Group Forced Nearshore Circulation.” In Proc., 22nd Int. Conf. on Coastal Engineering, 729–742. New York: ASCE.
Fowler, R. E., and R. A. Dalrymple. 1991. Wave Group Forced Nearshore Circulation: A generation mechanism for migrating rip currents and low frequency motion. Research Rep. CACR-91-03. Newark, DE: Center for Applied Coastal Research, Univ. of Delaware.
Frigaard, P., and T. Lykke Andersen. 2014. Analysis of waves. Technical documentation for WaveLab 3. Version 3.742. DCE Lecture Notes No. 33. Aalborg, Denmark: Aalborg Univ.
Geng, X., and M. C. Boufadel. 2015. “Numerical study of solute transport in shallow beach aquifers subjected to waves and tides.” J. Geophys. Res. 120 (2): 1409–1428. https://doi.org/10.1002/2014JC010539.
Goring, D. G., and V. I. Nikora. 2002. “Despiking acoustic Doppler velocimeter data.” J. Hydraul. Eng. 128 (1): 117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117).
Hammack, J., N. Scheffner, and H. Segur. 1989. “Two-dimensional periodic waves in shallow water.” J. Fluid Mech. 209: 567–589. https://doi.org/10.1017/S0022112089003228.
Hammack, J. L., D. M. Henderson, and H. Segur. 2005. “Progressive waves with persistent two-dimensional surface patterns in deep water.” J. Fluid Mech. 532: 1–52. https://doi.org/10.1017/S0022112005003733.
Hashimoto, N., and K. Kobune. 1989. “Directional spectrum estimation from a Bayesian approach.” In Coastal Engineering, edited by B. L. Edge. Reston, VA: ASCE.
Herbers, T. H. C., and M. C. Burton. 1997. “Nonlinear shoaling of directionally spread waves on a beach.” J. Geophys. Res. 102 (C9): 21101–21114. https://doi.org/10.1029/97JC01581.
Herbers, T. H. C., S. Elgar, and R. T. Guza. 1994. “Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I: Forced waves.” J. Phys. Oceanogr. 24 (5): 917–927.
Herbers, T. H. C., S. Elgar, and R. T. Guza. 1995a. “Generation and propagation of infragravity waves.” J. Geophys. Res. 100 (C12): 24863–24872. https://doi.org/10.1029/95JC02680.
Herbers, T. H. C., S. Elgar, R. T. Guza, and W. C. O’Reilly. 1995b. “Infragravity frequency (0.005–0.05 Hz) motions on the shelf. PartI II: Free waves.” J. Phys. Oceanogr. 25: 917–927.
Hsu, T. W., J. R. C. Hsu, W. K. Weng, S. K. Wang, and S. H. Ou. 2006. “Wave setup and setdown generated by obliquely incident waves.” Coastal Eng. 53 (10): 865–877. https://doi.org/10.1016/j.coastaleng.2006.05.002.
Hsu, T.-W., and Y.-J. Lan. 2009. “Reply to “Discussion of wave setup and setdown generated by obliquely incident waves” by F. Shi and J.T. Kirby.” Coastal Eng. 56 (3): 382–383. https://doi.org/10.1016/j.coastaleng.2008.12.003.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. 1998. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proc. R. Soc. London, Ser. A 454 (1971): 903–995. https://doi.org/10.1098/rspa.1998.0193.
Inman, D. L., R. J. Tait, and C. E. Nordstrom. 1971. “Mixing in the surf zone.” J. Geophys. Res. 76 (15): 3493–3514. https://doi.org/10.1029/JC076i015p03493.
Janssen, T. T., J. A. Battjes, and A. R. van Dongeren. 2003. “Long waves induced by short-wave groups over a sloping bottom.” J. Geophys. Res. 108 (C8): 3252. https://doi.org/10.1029/2002JC001515.
Kench, P. S., E. Beetham, C. Bosserelle, J. Kruger, S. Pohler, and E. J. Ryan. 2017. “Nearshore hydrodynamics, beachface cobble transport and morphodynamics on a Pacific atoll motu.” Mar. Geol. 389: 17–31. https://doi.org/10.1016/j.margeo.2017.04.012.
Kench, P. S., M. R. Ford, and S. D. Owen. 2018. “Patterns of island change and persistence offer alternate adaptation pathways for atoll nations.” Nat. Commun. 9: 605. https://doi.org/10.1038/s41467-018-02954-1.
Kirby, J. T. 2017. “Recent advances in nearshore wave, circulation, and sediment transport modeling.” J. Mar. Res. 75 (3): 263–300. https://doi.org/10.1357/002224017821836824.
Kirby, J. T., and R. A. Dalrymple. 1983. “Oblique envelope solutions of the Davey–Stewartson equations in intermediate water depth.” Phys. Fluids 26 (10): 2916. https://doi.org/10.1063/1.864056.
Li, L., and D. A. Barry. 2000. “Wave-induced beach groundwater flow.” Adv. Water Resour. 23 (4): 325–337. https://doi.org/10.1016/S0309-1708(99)00032-9.
Liu, P. L.-F. 1989. “A note on long waves induced by short-wave groups over a shelf.” J. Fluid Mech. 205: 163–170. https://doi.org/10.1017/S0022112089001989.
Liu, P. L.-F., S. B. Yoon, and J. T. Kirby. 1985. “Nonlinear refraction-diffraction of waves in shallow water.” J. Fluid Mech. 153: 185–201. https://doi.org/10.1017/S0022112085001203.
Longuet-Higgins, M. S. 1950. “A theory of the origin of microseisms.” Philos. Trans. R. Soc. London, Ser. A 243 (857): 1–35. https://doi.org/10.1098/rsta.1950.0012.
Longuet-Higgins, M. S., and R. W. Stewart. 1964. “Radiation stresses in water waves; a physical discussion, with applications.” Deep Sea Res. Oceanogr. Abstr. 11 (4): 529–562. https://doi.org/10.1016/0011-7471(64)90001-4.
Madsen, P. A., and D. R. Fuhrman. 2006. “Third-order theory for bichromatic bi-directional water waves.” J. Fluid Mech. 557: 369. https://doi.org/10.1017/S0022112006009815.
Madsen, P. A., and D. R. Fuhrman. 2012. “Third-order theory for multi-directional irregular waves.” J. Fluid Mech. 698: 304–334. https://doi.org/10.1017/jfm.2012.87.
Mei, C. C., and C. Benmoussa. 1984. “Long waves induced by short-wave groups over an uneven bottom.” J. Fluid Mech. 139: 219–235. https://doi.org/10.1017/S0022112084000331.
Moura, T. G. R., and T. E. Baldock. 2017. “Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone.” J. Geophys. Res. 122 (4): 3106–3122. https://doi.org/10.1002/2016JC012233.
Moura, T. G. R., and T. E. Baldock. 2019. “The influence of free long wave generation on the shoaling of forced infragravity waves.” J. Mar. Sci. Eng. 7 (9): 305. https://doi.org/10.3390/jmse7090305.
Moura, T. G. R., C. F. Neves, and J. C. F. Telles. 2010. “Applying bivariate HHT to horizontal velocities of multi-directional waves.” In Proc., 32nd Int. Conf. on Coastal Engineering. Shanghai, China: American Society of Civil Engineers.
Mulligan, R. P., and J. L. Hanson. 2016. “Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes.” J. Geophys. Res. 121 (6): 4178–4193. https://doi.org/10.1002/2016JC011706.
Munk, W. H. 1949. “Surf beats.” Trans. Am. Geophys. Union 30 (6): 849–854. https://doi.org/10.1029/TR030i006p00849.
Neves, C. F., L. M. Endres, C. J. Fortes, and D. Spinola. 2012. “The use of ADV in wave flumes: getting more information about waves.” In Vol. 1 of Proc., 33rd Int. Conf. on Coastal Engineering, 1–15. Santander, Spain: American Society of Civil Engineers.
Norman, E. C., N. J. Rosser, M. J. Brain, D. N. Petley, and M. Lim. 2013. “Coastal cliff-top ground motions as proxies for environmental processes.” J. Geophys. Res. 118 (12): 6807–6823. https://doi.org/10.1002/2013JC008963.
Nose, T., A. Babanin, and K. Ewans. 2016. “Directional analysis and potential for spectral modelling of infragravity waves.” In Proc., 35th Int. Conf. on Ocean, Offshore and Arctic Engineering. New York: ASME.
Nwogu, O., and Z. Demirbilek. 2010. “Infragravity wave motions and runup over shallow fringing reefs.” J. Waterway, Port, Coastal, Ocean Eng. 136 (6): 295–305. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000050.
O’Hara Murray, R. B., D. M. Hodgson, and P. D. Thorne. 2012. “Wave groups and sediment resuspension processes over evolving sandy bedforms.” Cont. Shelf Res. 46: 16–30. https://doi.org/10.1016/j.csr.2012.02.011.
Okayasu, A., T. Matsumoto, and Y. Suzuki. 1996. “Laboratory experiments on generation of long waves in the surf zone.” In Proc., 25th Int. Conf. on Coastal Engineering, 1321–1334. New York: ASCE.
Okihiro, M., R. T. Guza, and R. J. Seymour. 1992. “Bound infragravity waves.” J. Geophys. Res. 97 (C7): 11453–11469. https://doi.org/10.1029/92JC00270.
Okihiro, M., R. T. Guza, and R. J. Seymour. 1993. “Excitation of seiche observed in a small harbor.” J. Geophys. Res. 98 (C10): 18201–18211. https://doi.org/10.1029/93JC01760.
Padilla, E. M., and J. M. Alsina. 2016. “Laboratory experiments of bichromatic wave groups propagation on a gentle slope beach profile and energy transfer to low and high frequency components.” In Vol. 1 of Proc., 35th Int. Conf. on Coastal Engineering. Antalya, Turkey: American Society of Civil Engineers.
Padilla, E. M., and J. M. Alsina. 2018. “Long wave generation induced by differences in the wave-group structure.” J. Geophys. Res. 123 (12): 8921–8940. https://doi.org/10.1029/2018JC014213.
Panicker, N. N., and L. E. Borgman. 1970. “Directional spectra from wave-gage arrays.” In Proc., 12th Conf. on Coastal Engineering, 117–136. Reston, VA: ASCE.
Pereira, H., N. Violante-Carvalho, I. Nogueira, A. Babanin, Q. Liu, U. Pinho, F. Nascimento, and C. E. Parente. 2017. “Wave observations from an array of directional buoys over the southern Brazilian coast.” Ocean Dyn. 67 (12): 1577–1591. https://doi.org/10.1007/s10236-017-1113-9.
Polidoro, A., T. Pullen, J. Eade, T. Mason, B. Blanco, and D. Wyncoll. 2018. “Gravel beach profile response allowing for bimodal sea-states.” In Proc., Institution of Civil Engineers – Maritime Engineering, 171 (4): 145–166. https://doi.org/10.1680/jmaen.2018.11.
Quataert, E., C. Storlazzi, A. van Rooijen, O. Cheriton, and A. van Dongeren. 2015. “The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines.” Geophys. Res. Lett. 42 (15): 6407–6415. https://doi.org/10.1002/2015GL064861.
Rehman, N., and D. P. Mandic. 2009. “Multivariate empirical mode decomposition.” Proc. R. Soc. A 466 (2117): 1291–1302.
Riefolo, L., P. Contestabili, and D. Vicinaza. 2018. “Seiching induced by bichromatic and monochromatic wave conditions: Experimental and numerical analysis in a large wave flume.” J. Mar. Sci. Eng. 6 (2): 68. https://doi.org/10.3390/jmse6020068.
Ruju, A., J. L. Lara, and I. J. Losada. 2012. “Radiation stress and low-frequency energy balance within the surf zone: A numerical approach.” Coastal Eng. 68: 44–55. https://doi.org/10.1016/j.coastaleng.2012.05.003.
Ruju, A., J. L. Lara, and I. J. Losada. 2019. “Numerical assessment of infragravity swash response to offshore wave frequency spread variability.” J. Geophys. Res. 124 (9): 6643–6657. https://doi.org/10.1029/2019JC015063.
Sand, S. E. 1982. “Long waves in directional seas.” Coastal Eng. 6 (3): 195–208. https://doi.org/10.1016/0378-3839(82)90018-7.
Schäffer, H. A. 1993. “Infragravity waves induced by short-wave groups.” J. Fluid Mech. 247: 551–588. https://doi.org/10.1017/S0022112093000564.
Shah, A. M., and J. W. Kamphuis. 1996. “The swassh zone: A focus on low frequency motion.” In Proc., 25th Int. Conf. on Coastal Engineering, 1431–1442. Reston, VA: ASCE.
Sharma, J. N., and R. G. Dean. 1981. “Second-order directional seas and associated wave forces.” Soc. Petrol. Eng. J. 21 (1): 129–140. https://doi.org/10.2118/8584-PA.
Shi, F., and J. T. Kirby. 2008. “Discussion of ‘Wave setup and setdown generated by obliquely incident waves’ by T.-W. Hsu et al., Coastal Engineering, 53, 865–877, 2006.” Coastal Eng. 55 (12): 1247–1249. https://doi.org/10.1016/j.coastaleng.2008.08.001.
Smit, P. B., R. Bland, T. T. Janssen, and B. Laughlin. 2016. “Remote sensing of nearshore wave interference.” J. Geophys. Res. 121 (5): 3409–3421. https://doi.org/10.1002/2016JC011705.
Smit, P. B., T. T. Janssen, T. H. C. Herbers, T. Taira, and B. A. Romanowicz. 2018. “Infragravity wave radiation across the shelf break.” J. Geophys. Res. 123 (7): 4483–4490. https://doi.org/10.1029/2018JC013986.
Storlazzi, C. D., et al. 2018. “Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding.” Sci. Adv. 4 (4): eaap9741. https://doi.org/10.1126/sciadv.aap9741.
Su, M., M. Bergin, P. Marler, and R. Myrick. 1982. “Experiments on nonlinear instabilities and evolution of steep gravity-wave trains.” J. Fluid Mech. 124: 45–72. https://doi.org/10.1017/S0022112082002407.
Symonds, G., D. A. Huntley, and A. J. Bowen. 1982. “Two-dimensional surf beat: Long wave generation by a time-varying breakpoint.” J. Geophys. Res. 87 (C1): 492. https://doi.org/10.1029/JC087iC01p00492.
Thompson, R. O. R. Y. 1983. “Low-pass filters to suppress inertial and tidal frequencies.” J. Phys. Oceanogr. 13 (6): 1077–1083. https://doi.org/10.1175/1520-0485(1983)013%3C1077:LPFTSI%3E2.0.CO;2.
Thomson, J., S. Elgar, T. H. C. Herbers, B. Raubenheimer, and R. T. Guza. 2007. “Refraction and reflection of infragravity waves near submarine canyons.” J. Geophys. Res. 112: C10009. https://doi.org/10.1029/2007JC004227.
Tucker, M. J. 1950. “Surf beats: Sea waves of 1 to 5 min. Period.” Proc. R. Soc. A 202 (1071): 565–573. https://doi.org/10.1098/rspa.1950.0120.
van Dongeren, A., and A. Reniers. 1999. Numerical modelling of infragravity wave response during delilah. Rep. 10-99. Delft, Netherlands: TU Delft.
Webb, S. C. 2008. “The Earth’s hum: the excitation of Earth normal modes by ocean waves.” Geophys. J. Int. 174 (2): 542–566. https://doi.org/10.1111/j.1365-246X.2008.03801.x.
Wiegel, R. L. 1964. Oceanographical engineering. Englewood Cliffs, NJ: Prentice-Hall.
Wiggins, M., T. Scott, G. Masselink, P. Russell, and N. G. Valiente. 2019. “Regionally-coherent embayment rotation: Behavioural response to bi-directional waves and atmospheric forcing.” J. Mar. Sci. Eng. 7 (4): 116. https://doi.org/10.3390/jmse7040116.
Xie, M. 2012. “Three-dimensional numerical modelling of the wave-induced rip currents under irregular bathymetry.” J. Hydrodyn. 24 (6): 864–872. https://doi.org/10.1016/S1001-6058(11)60314-4.
Young, A. P., P. N. Adams, W. C. O’Reilly, R. E. Flick, and R. T. Guza. 2011. “Coastal cliff ground motions from local ocean swell and infragravity waves in southern California.” J. Geophys. Res. 116 (C9): C09007. https://doi.org/10.1029/2011JC007175.
Young, A. P., R. T. Guza, M. E. Dickson, W. C. O’Reilly, and R. E. Flick. 2013. “Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves.” J. Geophys. Res. 118 (12): 6590–6602. https://doi.org/10.1002/2013JC008883.
Zou, Q. 2011. “Generation, transformation, and scattering of long waves induced by a short-wave group over finite topography.” J. Phys. Oceanogr. 41 (10): 1842–1859. https://doi.org/10.1175/2011JPO4511.1.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 148Issue 5September 2022

History

Received: Jul 4, 2021
Accepted: Feb 10, 2022
Published online: May 19, 2022
Published in print: Sep 1, 2022
Discussion open until: Oct 19, 2022

Authors

Affiliations

Mario Grüne de Souza e Silva, D.Sc., A.M.ASCE [email protected]
Coastal Scientist, Moffatt & Nichol, São Paulo, SP, Brazil. Email: [email protected]
Senior Researcher, Leibniz Univ. Hannover, Ludwig-Franzius-Institut, Hannover, Germany. ORCID: https://orcid.org/0000-0003-4112-490X. Email: [email protected]
Paulo Cesar C. Rosman, Ph.D. [email protected]
Professor, Federal Univ. of Rio de Janeiro, COPPE – Ocean Engineering Program, Rio de Janeiro, RJ, Brazil. Email: [email protected]
Professor, Federal Univ. of Rio de Janeiro, COPPE – Ocean Engineering Program, Rio de Janeiro, RJ, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-5760-8402. Email: [email protected]
Professor, Leibniz Univ. Hannover, Ludwig-Franzius-Institut, Hannover, Germany. ORCID: https://orcid.org/0000-0002-4691-7629. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share