Technical Papers
Jul 17, 2020

Selection of JONSWAP Spectra Parameters during Water-Depth and Sea-State Transitions

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 146, Issue 6

Abstract

The design of marine structures requires the simulation of wave parameters that consider sea-state and water-depth transitions. Proper selection of the model coefficients (e.g., alpha and gamma of the JONSWAP spectra) is then required, because of the wave-hydrodynamic nonlinearities during these ocean processes. Therefore, the model coefficient selection should be tested using a nonlinear analysis to assess the effect of the selected spectra coefficients over the modeled wave parameters. The present study performed a design of experiment (DOE)-analysis of variance (ANOVA) and probability analysis to assess the effect of alpha and gamma parameters over the significant wave height (Hs) and peak period (Tp) during sea-state and water-depth transitions. The DOE-ANOVA demonstrated for the mean and extreme wave states of the study area that alpha and gamma parameters positively affect the Hs behavior in deep and intermediate waters. Furthermore, the standardized effects of alpha and gamma over the Tp during extreme wave states suggest quadruplets of wave–wave interactions. The joint and normal probability distributions of alpha and gamma for extreme and normal waves showed a Gaussian distribution, allowing identification of specific alpha and gamma values for the JONSWAP spectra model. The selected alpha and gamma parameters were then validated through the comparison of the modeled Hs (JONSWAP) against other local studies. Considering its relevance in design strategies for offshore structures, this research contributed to the understanding of the nonlinear effects of alpha and gamma parameters over the Hs and Tp during variations of water depth and wave states, easing the selection of the model coefficients.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Authors thank Universidad Militar Nueva Granada, Universidad del Norte, and Universidad de la Costa for the financial support through the research project INV-ING-2985.

References

ASCE. 2017. Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-16. Reston, VA: ASCE.
Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. “A third-generation wave model for coastal regions: 1. Model description and validation.” J. Geophys. Res.: Oceans 104 (C4): 7649–7666. https://doi.org/10.1029/98JC02622.
Boukhanovsky, A. V., and C. Guedes Soares. 2009. “Modelling of multipeaked directional wave spectra.” Appl. Ocean Res. 31 (2): 132–141. https://doi.org/10.1016/j.apor.2009.06.001.
Boukhanovsky, A. V., L. J. Lopatoukhin, and C. Guedes Soares. 2007. “Spectral wave climate of the North Sea.” Appl. Ocean Res. 29 (3): 146–154. https://doi.org/10.1016/j.apor.2007.08.004.
Calini, A., and C. M. Schober. 2017. “Characterizing JONSWAP rogue waves and their statistics via inverse spectral data.” Wave Motion 71: 5–17. https://doi.org/10.1016/j.wavemoti.2016.06.007.
Chakrabarti, S. 2005. Handbook of offshore engineering. Amsterdam, Netherlands: Elsevier.
Cifuentes, C., and M. H. Kim. 2017. “Hydrodynamic response of a cage system under waves and currents using a morison-force model.” Ocean Eng. 141: 283–294. https://doi.org/10.1016/j.oceaneng.2017.06.055.
Deltares. 2014a. Delft3D-WAVE. Simulation of short-crested waves with SWAN—User manual. Delft, Netherlands: Deltares.
Deltares. 2014b. Delft3D-FLOW. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments—User manual. Delft, Netherlands: Deltares.
Derschum, C., I. Nistor, J. Stolle, and N. Goseberg. 2018. “Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry.” Coastal Eng. 141: 24–35. https://doi.org/10.1016/j.coastaleng.2018.08.016.
Devis-Morales, A., R. A. Montoya-Sánchez, G. Bernal, and A. F. Osorio. 2017. “Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications.” Appl. Ocean Res. 69: 10–26. https://doi.org/10.1016/j.apor.2017.09.012.
Dong, G., H. Chen, and Y. Ma. 2014. “Parameterization of nonlinear shallow water waves over sloping bottoms.” Coastal Eng. 94: 23–32. https://doi.org/10.1016/j.coastaleng.2014.08.012.
Elhakeem, A., W. Elshorbagy, and T. Bleninger. 2015. “Long-term hydrodynamic modeling of the Arabian Gulf.” Mar. Pollut. Bull. 94 (1–2): 19–36. https://doi.org/10.1016/j.marpolbul.2015.03.020.
Escobar, C. A. 2011. “Relevancia de procesos costeros en la hidrodinámica del Golfo de Urabá (Caribe colombiano).” Bull. Mar. Coastal Res. 40 (2): 327–346.
FEMA and NOAA (Federal Emergency Management Agency and National Oceanic and Atmospheric Administration). 2012. FEMA P-646: Guidelines for design of structures for vertical evacuation from tsunamis. Redwood City, CA: Applied Technology Council.
Fragasso, J., L. Moro, L. M. Lye, and B. W. T. Quinton. 2019. “Characterization of resilient mounts for marine diesel engines: Prediction of static response via nonlinear analysis and response surface methodology.” Ocean Eng. 171: 14–24. https://doi.org/10.1016/j.oceaneng.2018.10.051.
Garcia, M., I. Ramirez, M. Verlaan, and J. Castillo. 2015. “Application of a three-dimensional hydrodynamic model for San Quintin Bay, B.C., Mexico. Validation and calibration using OpenDA.” J. Comput. Appl. Math. 273: 428–437. https://doi.org/10.1016/j.cam.2014.05.003.
Hanley, M. E., et al. 2014. “Shifting sands? Coastal protection by sand banks, beaches and dunes.” Coastal Eng. 87: 136–146. https://doi.org/10.1016/j.coastaleng.2013.10.020.
Hasselmann, K. 1962. “On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory.” J. Fluid Mech. 12 (4): 481–500. https://doi.org/10.1017/S0022112062000373.
Hasselmann, K. 1963a. “On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irreversibility.” J. Fluid Mech. 15 (2): 273–281. https://doi.org/10.1017/S0022112063000239.
Hasselmann, K. 1963b. “On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum.” J. Fluid Mech. 15 (3): 385–398. https://doi.org/10.1017/S002211206300032X.
Hasselmann, K., et al. 1973. “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).” Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift 8 (12): 93.
Holthuijsen, L. H. 2010. Waves in oceanic and coastal waters. Cambridge, UK: Cambridge University Press.
Ji, C., Q. Zhang, and Y. Wu. 2018. “An empirical formula for maximum wave setup based on a coupled wave-current model.” Ocean Eng. 147: 215–226. https://doi.org/10.1016/j.oceaneng.2017.10.021.
Le Provost, C., M. L. Genco, F. Lyard, P. Vincent, and P. Canceil. 1994. “Spectroscopy of the world ocean tides from a finite element hydrodynamic model.” J. Geophys. Res. 99 (C12): 24777–24797. https://doi.org/10.1029/94JC01381.
Liu, S., Y. Li, and G. Li. 2007. “Wave current forces on the pile group of base foundation for the East Sea Bridge, China.” J. Hydrodyn. 19 (6): 661–670. https://doi.org/10.1016/S1001-6058(08)60001-3.
Locarnini, R. A., et al. 2013. World ocean atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73. Silver Spring, MD: U.S. Department of Commerce.
Lucas, C., and C. Guedes Soares. 2015. “Bivariate distributions of significant wave height and mean wave period of combined sea states.” Ocean Eng. 106: 341–353. https://doi.org/10.1016/j.oceaneng.2015.07.010.
Mackay, E. B. L. 2011. “Modelling and description of omnidirectional wave spectra.” In Proc., European Wave and Tidal Energy. Southampton, UK: University of Southampton.
Mackay, E. B. L. 2016. “A unified model for unimodal and bimodal ocean wave spectra.” Int. J. Mar. Energy 15: 17–40. https://doi.org/10.1016/j.ijome.2016.04.015.
McCombs, M. P., R. P. Mulligan, and L. Boegman. 2014. “Offshore wind farm impacts on surface waves and circulation in Eastern Lake Ontario.” Coastal Eng. 93: 32–39. https://doi.org/10.1016/j.coastaleng.2014.08.001.
Mesa García, J. C. 2010. “Metodología para el reanálisis de series de oleaje para el Caribe Colombiano.” M.Sc. thesis, Facultad de Minas, Universidad Nacional de Colombia.
Montazeri, N., U. D. Nielsen, and J. Juncher Jensen. 2016. “Estimation of wind sea and swell using shipboard measurements—A refined parametric modelling approach.” Appl. Ocean Res. 54: 73–86. https://doi.org/10.1016/j.apor.2015.11.004.
Montgomery, D. C. 2017. Design and analysis of experiments. Hoboken, NJ: John Wiley & Sons.
Myrhaug, D. 2018. “Some probabilistic properties of deep water wave steepness.” Oceanologia 60 (2): 187–192. https://doi.org/10.1016/j.oceano.2017.10.003.
NOAA (National Oceanic and Atmospheric Administration). 2016. “NCEP North American Regional Reanalysis: NARR.” Accessed July 4, 2020. https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html.
NOAA (National Oceanic and Atmospheric Administration). 2018a. “ETOPO1 Global Relief Model.” ETOPO1 Global Relief Model. Accessed July 20, 2018. https://www.ngdc.noaa.gov/mgg/global/.
NOAA (National Oceanic and Atmospheric Administration). 2018b. “NOAA WAVEWATCH III® CFSR Reanalysis Hindcasts.” NOAA WAVEWATCH III. Accessed July 20, 2018. https://polar.ncep.noaa.gov/waves/CFSR_hindcast.shtml.
Ochi, M. K., and E. N. Hubble. 1976. “Six-parameter wave spectra.” In Proc., 15th Int. Conf. on Coastal Engineering, 301–328. Reston, VA: ASCE.
Ortega, S., A. F. Osorio, P. Agudelo-Restrepo, and J. I. Velez. 2011. “Methodology for estimating wave power potential in places with scarce instrumentation in the Caribbean Sea.” In OCEANS 2011 IEEE, 1–5. Santander, Spain: IEEE.
Pascoal, R., L. P. Perera, and C. Guedes Soares. 2017. “Estimation of directional sea spectra from ship motions in sea trials.” Ocean Eng. 132: 126–137. https://doi.org/10.1016/j.oceaneng.2017.01.020.
Phillips, O. M. 1960. “On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions.” J. Fluid Mech. 9 (2): 193–217. https://doi.org/10.1017/S0022112060001043.
Power, H. E., B. Gharabaghi, H. Bonakdari, B. Robertson, A. L. Atkinson, and T. E. Baldock. 2019. “Prediction of wave runup on beaches using gene-expression programming and empirical relationships.” Coastal Eng. 144: 47–61. https://doi.org/10.1016/j.coastaleng.2018.10.006.
Restrepo, J. C., K. Schrottke, C. Traini, J. C. Ortíz, A. Orejarena, L. Otero, A. Higgins, and L. Marriaga. 2016. “Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): Insights from a period of intense change and human intervention (1990–2010).” J. Coastal Res. 32 (3): 575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1.
Rueda Bayona, J. G. 2015. “Caracterización hidromecánica de plataformas marinas en aguas intermedias sometidas a cargas de oleaje y corriente mediante modelación numérica.” Master thesis, Facultad de Minas, Universidad Nacional de Colombia.
Rueda Bayona, J. G. 2017. “Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore.” Ph.D. thesis, Civil and Environmental Engineering Dept., Universidad del Norte.
Rueda-Bayona, J. G., A. Guzmán, and R. Silva. 2020. “Genetic algorithms to determine JONSWAP spectra parameters.” Ocean Dyn. 70: 561–571. https://doi.org/10.1007/s10236-019-01341-8.
Rueda-Bayona, J. G., A. F. Osorio-Arias, A. Guzmán, and G. Rivillas-Ospina. 2019. “Alternative method to determine extreme hydrodynamic forces with data limitations for offshore engineering.” J. Waterw. Port Coastal Ocean Eng. 145 (2): 05018010. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000499.
Sakhare, S., and M. C. Deo. 2009. “Derivation of wave spectrum using data driven methods.” Mar. Struct. 22: 594–609. https://doi.org/10.1016/j.marstruc.2008.12.004.
Sanil Kumar, V., and K. Ashok Kumar. 2008. “Spectral characteristics of high shallow water waves.” Ocean Eng. 35 (8): 900–911. https://doi.org/10.1016/j.oceaneng.2008.01.016.
Sun, Y., and X. Zhang. 2017. “A second order analytical solution of focused wave group interacting with a vertical wall.” Int. J. Nav. Archit. Ocean Eng. 9 (2): 160–176. https://doi.org/10.1016/j.ijnaoe.2016.09.002.
Uittenbogaard, R. E., J. A. T. M. van Kester, and G. S. Stelling. 1992. Implementation of three turbulence models in 3D-TRISULA for rectangular grids. Delft, Netherlands: Delft Hydraulics.
Wang, Y. 2014. “Calculating crest statistics of shallow water nonlinear waves based on standard spectra and measured data at the Poseidon platform.” Ocean Eng. 87: 16–24. https://doi.org/10.1016/j.oceaneng.2014.05.012.
Wijaya, A. P., and E. Van Groesen. 2016. “Determination of the significant wave height from shadowing in synthetic radar images.” Ocean Eng. 114: 204–2015. https://doi.org/10.1016/j.oceaneng.2016.01.011.
Young, D. L., and B. M. Scully. 2018. “Assessing structure sheltering via statistical analysis of AIS data.” J. Waterw. Port Coastal Ocean Eng. 144 (3): 04018002. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000445.
Zanaganeh, M., S. J. Mousavi, and A. F. Etemad Shahidi. 2009. “A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters.” Eng. Appl. Artif. Intell. 22 (8): 1194–1202. https://doi.org/10.1016/j.engappai.2009.04.009.
Zweng, M. M., et al. 2013. World ocean atlas 2013, Volume 2: Salinity. NOAA Atlas NESDIS 74. Silver Spring, MD: U.S. Department of Commerce.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 146Issue 6November 2020

History

Received: May 21, 2019
Accepted: Apr 28, 2020
Published online: Jul 17, 2020
Published in print: Nov 1, 2020
Discussion open until: Dec 17, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Engineering Faculty, Civil Engineering, Water and Energy (AyE) Research Group, Universidad Militar Nueva Granada, Bogotá: Carrera 11 No. 101-80, Bogotá 1101111 (corresponding author). ORCID: https://orcid.org/0000-0003-3806-2058. Email: [email protected]; [email protected]
Professor, Research Group for Structures and Geotechnics (GIEG), Institute for Sustainable Development (IDS), Dept. of Civil and Environmental Engineering, Universidad del Norte, Km 5 via Puerto Colombia, Bloque K, 8-33 K, Barranquilla, CO 081007. ORCID: https://orcid.org/0000-0003-2472-1390. Email: [email protected]
Juan José Cabello Eras, Ph.D. [email protected]
Professor, Energy Dept., Universidad de la Costa, Calle 58 # 55–66, Barranquilla, CO 080002. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share