Abstract

Aggregation state significantly influences the size, density, and transport characteristics of fine sediment. Understanding sediment transport and deposition processes in the nation's navigable waterways is a primary mission for the US Army Corps of Engineers (USACE), particularly when it comes to infilling of navigation channels. In this study, a newly developed camera system was used to evaluate the aggregation state of eroded sediment from cores collected in the tidal James River, VA. Results showed that bed sediments were composed mostly of mud, but that erosion predominately occurred in the form of aggregates with median sizes 50–270 times larger than the disaggregated sediment. Aggregate size weakly correlated to shear stress at levels <2 Pa, as well as sand content and bed density. A numerical simulation demonstrated that mud aggregates were predicted to transport in incipient suspension or bedload, while disaggregated fines were predominately maintained in full suspension. This difference in transport mode has significant implication for channel infilling and sediment transport within the system.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author, upon reasonable request. These data include .mat and .xlsx files containing grain-size distributions from both processed videos and physical samples, as well as bulk density and water content values obtained from sediment samples.

Acknowledgments

This work was jointly funded and supported by the Dredging Operations Environmental Research (DOER) Program, the Regional Sediment Management (RSM) Program, and the USACE Norfolk District Office (NAO). The authors would like to acknowledge assistance and support provided with both field logistics and laboratory analysis from T. W. Kirklin, J. M. Kirklin, R. S. Pruhs, the VIMS-CHSD Laboratory, and the US Army Fort Eustis Harbor. The involvement of C. T. Friedrichs was supported by NSF Grant OCE-1459708. This is Contribution No. 3884 of the Virginia Institute of Marine Science, William & Mary.

References

ASTM. 2019. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM D2216-19. West Conshohocken, PA: ASTM.
Bachmann, G. H., and Y. Wang. 2014. “Armoured mud balls as a result of ephemeral fluvial flood in a humid climate: Modern example from Guizhou Province, South China.” J. Palaeogeogr. 3 (4): 410–418. https://doi.org/10.3724/SP.J.1261.2014.00064.
Benito, G., Y. Sánchez-Moya, and A. Sopeña. 2003. “Sedimentology of high-stage flood deposits of the Tagus River, Central Spain.” Sediment. Geol. 157 (1–2): 107–132. https://doi.org/10.1016/S0037-0738%2802%2900196-3.
Blott, S. J., and K. Pye. 2006. “Particle size distribution analysis of sand-sized particles by laser diffraction: An experimental investigation of instrument sensitivity and the effects of particle shape.” Sedimentology 53 (3): 671–685. https://doi.org/10.1111/j.1365-3091.2006.00786.x.
Bondevik, S., J. Mangerud, S. Dawson, A. Dawson, and Ø Lohne. 2003. “Record-breaking height for 8000-year-old tsunami in the North Atlantic.” Eos Trans. Am. Geophys. Union 84 (31): 289–293. https://doi.org/10.1029/2003EO310001.
Brown, G. L., J. N. McAlpin, K. C. Pevey, P. V. Luong, C. R. Price, and B. A. Kleiss. 2019. Mississippi River Hydrodynamic and Delta Management Study: Delta Management Modeling. AdH/SEDLIB Multi-Dimensional Model Validation and Scenario Analysis. Report. No. ERDC/CHL-TR-19-2. Engineer Research and Development Center Vicksburg Ms Vicksburg.
Carey, D. A., K. Hickey, J. D. Germano, L. B. Read, and M. E. Esten. 2013. Monitoring survey at the Massachusetts Bay disposal site September/October 2013. DAMOS Contribution No. 195. Concord, MA: USACE.
Cerco, C. F., L. Linker, J. Sweeney, G. Shenk, and A. J. Butt. 2002. “Nutrient and solids controls in Virginia’s Chesapeake Bay tributaries.” J. Water Resour. Plann. Manage. 128 (3): 179–189. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:3(179).
Cutter, Jr., G. R., and R. J. Diaz. 2000. “Biological alteration of physically structured flood deposits on the Eel margin, northern California.” Cont. Shelf Res. 20 (3): 235–253. https://doi.org/10.1016/S0278-4343(99)00059-X.
Donnelly, J. P. 2005. “Evidence of past intense tropical cyclones from backbarrier salt pond sediments: A case study from Isla de Culebrita, Puerto Rico, USA.” J. Coastal Res. 42: 201–210.
Durian, D. J., H. Bideaud, P. Duringer, A. P. Schröder, and C. M. Marques. 2007. “Shape and erosion of pebbles.” Phys. Rev. E 75 (2): 1–9. https://doi.org/10.1103/PhysRevE.75.021301.
Edelvang, K., and I. Austen. 1997. “The temporal variation of flocs and fecal pellets in a tidal channel.” Estuarine Coastal Shelf Sci. 44 (3): 361–367. https://doi.org/10.1006/ecss.1996.0149.
Fettweis, M., J. S. Houziaux, I. Du Four, V. Van Lancker, C. Baeteman, M. Mathys, D. Van den Eynde, F. Francken, and S. Wartel. 2009. “Long-term influence of maritime access works on the distribution of cohesive sediments: Analysis of historical and recent data from the Belgian nearshore area (southern North Sea).” Geo-Mar. Lett. 29 (5): 321–330. https://doi.org/10.1007/s00367-009-0161-7.
Forsberg, P. L., K. H. Skinnebach, M. Becker, V. B. Ernstsen, A. Kroon, and T. J. Andersen. 2018. “The influence of aggregation on cohesive sediment erosion and settling.” Cont. Shelf Res. 171: 52–62. https://doi.org/10.1016/j.csr.2018.10.005.
Fujiwara, O., F. Masuda, T. Sakai, T. Irizuki, and K. Fuse. 2000. “Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan.” Sediment. Geol. 135 (1–4): 219–230. https://doi.org/10.1016/S0037-0738(00)00073-7.
Gastaldo, R. A., B. A. Pludow, and J. Neveling. 2013. “Mud aggregates from the Katberg Formation, South Africa: additional evidence for Early Triassic degradational landscapes.” J. Sediment. Res. 83 (7): 531–540. https://doi.org/10.2110/jsr.2013.45.
Goto, K., et al. 2011. “New insights of tsunami hazard from the 2011 Tohoku-oki event.” Mar. Geol. 290 (1–4): 46–50. https://doi.org/10.1016/j.margeo.2011.10.004.
Hunt, J. R., 1986. Particle aggregate breakup by fluid shear. In Estuarine cohesive sediment dynamics, 85–109. New York: Springer.
Jepsen, R., J. Roberts, and J. Gailani. 2010. “Effects of bed load and suspended load on separation of sands and fines in mixed sediment.” J. Waterw. Port Coastal Ocean Eng. 136 (6): 319–326. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000054.
Johnson, B. H., K. W. Kim, R. E. Heath, B. B. Hsieh, and H. L. Butler. 1993. “Validation of three-dimensional hydrodynamic model of Chesapeake Bay.” J. Hydraul. Eng. 119 (1): 2–20. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:1(2).
Karcz, I. 1972. “Sedimentary structures formed by flash floods in southern Israel.” Sediment. Geol. 7 (3): 161–182. https://doi.org/10.1016/0037-0738(72)90001-2.
Knight, J. 1999. “Morphology and palaeoenvironmental interpretation of deformed soft-sediment clasts: Examples from within Late Pleistocene glacial outwash, Tempo Valley, Northern Ireland.” Sediment. Geol. 128 (3–4): 293–306. https://doi.org/10.1016/S0037-0738(99)00080-9.
Konert, M., and J. E. F. Vandenberghe. 1997. “Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction.” Sedimentology 44 (3): 523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x.
Lesser, G. R., J. A. Roelvink, J. A. T. M. van Kester, and G. S. Stelling. 2004. “Development and validation of a three-dimensional morphological model.” Coastal Eng. 51 (8–9): 883–915. https://doi.org/10.1016/j.coastaleng.2004.07.014.
Li, M., D. Wilkinson, and K. Patchigolia. 2005. “Comparison of particle size distributions measured using different techniques.” Part. Sci. Technol. 23 (3): 265–284. https://doi.org/10.1080/02726350590955912.
Little, R. D. 1982. “Lithified armored mud balls of the Lower Jurassic Turners Falls sandstone, north-central Massachusetts.” J. Geol. 90 (2): 203–207. https://doi.org/10.1086/628665.
McCave, I. N., and I. R. Hall. 2006. “Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow‐speed proxies.” Geochem. Geophy. Geosys. 7 (10). https://doi.org/10.1029/2006GC001284.
McNeil, J., C. Taylor, and W. Lick. 1996. “Measurements of erosion of undisturbed bottom sediments with depth.” J. Hydraul. Eng. 122 (6): 316–324. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(316).
Mehta, A. J. 2013. Vol. 38 of An introduction to hydraulics of fine sediment transport. Singapore: World Scientific Publishing Company.
Mehta, A. J., and W. H. McAnally. 2008. “Fine grained sediment transport.” In Sedimentation engineering: Processes, measurements, modeling, and practice, edited by M. Garcia, 253–306. Reston, VA: ASCE.
Moncure, R., and M. Nichols. 1968. Characteristics of sediments in the James River Estuary, Virginia. Special scientific report (Virginia Institute of Marine Science); No. 53. Gloucester Point, VA: Virginia Institute of Marine Science, College of William and Mary.
Nichols, M. M. 1972. “Sediments of the James River estuary, Virginia.” In Vol. 133 of Environmental framework of coastal plain estuaries, edited by B. W. Nelson, 169–212. Boulder, CO: Geological Society of America.
Nichols, M. M. 1990. “Sedimentologic fate and cycling of Kepone in an estuarine system: Example from the James River estuary.” Sci. Total Environ. 97–98: 407–440. https://doi.org/10.1016/0048-9697(90)90254-R.
Nichols, M. M., G. H. Johnson, and P. C. Peebles. 1991. “Modern sediments and facies model for a microtidal coastal plain estuary, the James Estuary, Virginia.” J. Sediment. Res. 61 (6): 883–899. https://doi.org/10.1306/D42677F8-2B26-11D7-8648000102C1865D.
Park, K., H. V. Wang, S. C. Kim, and J. H. Oh. 2008. “A model study of the estuarine turbidity maximum along the main channel of the upper Chesapeake Bay.” Estuaries Coasts 31 (1): 115–133. https://doi.org/10.1007/s12237-007-9013-8.
Patel, S. J., and B. G. Desai. 2009. “Animal-sediment relationship of the crustaceans and polychaetes in the intertidal zone around Mandvi, Gulf of Kachchh, Western India.” J. Geol. Soc. India 74 (2): 233–259. https://doi.org/10.1007/s12594-009-0125-6.
Pejrup, M., and O. A. Mikkelsen. 2010. “Factors controlling the field settling velocity of cohesive sediment in estuaries.” Estuarine Coastal Shelf Sci. 87 (2): 177–185. https://doi.org/10.1016/j.ecss.2009.09.028.
Perkey, D. W., and S. J. Smith. 2019. Impact of mud aggregate processes in sediment transport studies. Rep. No. ERDC/CHL CHETN-VIII-12. Vicksburg, MS: USACE.
Plint, A. G., J. H. S. Macquaker, and B. L. Varban. 2012. “Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian– Turonian Kaskapau formation, Western Canada foreland basin.” J. Sediment. Res. 82 (11): 801–822. https://doi.org/10.2110/jsr.2012.64.
Rust, B. R., and G. C. Nanson. 1989. “Bedload transport of mud as pedogenic aggregates in modern and ancient rivers.” Sedimentology 36 (2): 291–306. https://doi.org/10.1111/j.1365-3091.1989.tb00608.x.
Schaffner, L. C., E. K. Hinchey, T. M. Dellapenna, C. T. Friedrichs, M. Thompson Neubauer, M. E. Smith, and S. A. Kuehl. 2001. “Physical energy regimes, sea-bed dynamics and organism-sediment interactions along an estuarine gradient.” In Organism-sediment interactions, edited by J. Y. Aller, S. A. Woodin, and R. C. Aller, 161–182. Columbia, SC: Univ. of South Carolina Press.
Schieber, J., J. B. Southard, and A. Schimmelmann. 2010. “Lenticular shale fabrics resulting from intermittent erosion of water-rich muds—interpreting the rock record in the light of recent flume experiments.” J. Sediment. Res. 80 (1): 119–128. https://doi.org/10.2110/jsr.2010.005.
Schiller, L., and A. Naumann. 1933. “Über die grundlegenden berechnungen bei der schwerkraftaufbereitung.” Ver. Deut. Ing. 77: 318–320.
Shen, J., and J. Lin. 2006. “Modeling study of the influences of tide and stratification on age of water in the tidal James River.” Estuarine Coastal Shelf Sci. 68 (1–2): 101–112. https://doi.org/10.1016/j.ecss.2006.01.014.
Smith, N. D. 1972. “Flume experiments on the durability of mud clasts.” J. Sediment. Petrol. 42 (2): 378–383. https://doi.org/10.1306/74D72559-2B21-11D7-8648000102C1865D.
Smith, S. J., and C. T. Friedrichs. 2011. “Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume.” Cont. Shelf Res. 31 (10): S50–S63. https://doi.org/10.1016/j.csr.2010.04.002.
Soulsby, R. L. 1997. Dynamics of marine sands: A manual for practical applications. London: Thomas Telford.
Soulsby, R. L., and R. Whitehouse. 1997. “Threshold of sediment motion in coastal environments.” In Proc., Pacific Coasts and Ports ‘97 Conf., 149–154. Christchurh, New Zealand: Univ. of Canterbury.
Taghon, G. L., A. R. M. Nowell, and P. A. Jumars. 1984. “Transport and breakdown of fecal pellets: Biological and sedimentological consequences.” Limnol. Oceanogr. 29 (1): 64–72. https://doi.org/10.4319/lo.1984.29.1.0064.
Teifke, R. H., and E. Onuschak. 1973. Vol. 83 of Geologic studies, coastal plain of Virginia. Charlottesville, VA: Virginia Division of Mineral Resources.
Thanh, P. H. X, M. D. Grace, and S. C. James. 2008. Sandia National Laboratories environmental fluid dynamics code: Sediment transport user manual. No. SAND2008-5621. Sandia National Laboratories.
Thomsen, L., and G. Gust. 2000. “Sediment erosion thresholds and characteristics of resuspended aggregates on the western European continental margin.” Deep Sea Res. Part I Oceanogr 47 (10): 1881–1897.
USACE (U.S. Army Corps of Engineers). 2016. The U.S. waterway system: transportation facts & information. Washingon, DC: USACE.
USACE (U.S. Army Corps of Engineers). 2019. Norfolk District Navigation Data Repository. Washington, DC: USACE.
USGS (U.S. Geological Survey). 2019. National Water Information System: Web Interface. Reston, VA: USGS. https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=02037500.
van Rijn, L. C. 1984. “Sediment transport, part II: Suspended load transport.” J. Hydraul. Eng. 110 (11): 1613–1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613).
Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango. 2008. “Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model.” Comput. Geosci. 34 (10): 1284–1306. https://doi.org/10.1016/j.cageo.2008.02.012.
Winterwerp, J. C., W. G. M. van Kesteren, B. van Prooijen, and W. Jacobs. 2012. “A conceptual framework for shear flow–induced erosion of soft cohesive sediment beds.” J. Geophys. Res. Oceans 117 (C10): C10020. https://doi.org/10.1029/2012JC008072.
Wright, L. D., L. C. Schaffner, and J. P. Y. Maa. 1997. “Biological mediation of bottom boundary layer processes and sediment suspension in the lower Chesapeake Bay.” Mar. Geol. 141 (1–4): 27–50. https://doi.org/10.1016/S0025-3227(97)00061-3.
Wright, V. P., and S. B. Marriott. 2007. “The dangers of taking mud for granted: Lessons from Lower Old Red Sandstone dryland river systems of South Wales.” Sediment. Geol. 195 (1–2): 91–100. https://doi.org/10.1016/j.sedgeo.2006.03.028.
Xu, R., and O. A. Di Guida. 2003. “Comparison of sizing small particles using different technologies.” Powder Technol. 132 (2–3): 145–153. https://doi.org/10.1016/S0032-5910(03)00048-2.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 146Issue 5September 2020

History

Received: Sep 17, 2019
Accepted: Jan 6, 2020
Published online: Jun 5, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 5, 2020

Authors

Affiliations

Engineer Research and Development Center-Coastal and Hydraulics Laboratory, US Army Corps of Engineers, Vicksburg, MS 39180 (corresponding author). ORCID: https://orcid.org/0000-0003-3062-4984. Email: [email protected]
P.E.
Engineer Research and Development Center-Coastal and Hydraulics Laboratory, US Army Corps of Engineers, Vicksburg, MS 39180. ORCID: https://orcid.org/0000-0002-8649-5598. Email: [email protected]
Kelsey A. Fall [email protected]
Engineer Research and Development Center-Coastal and Hydraulics Laboratory, US Army Corps of Engineers, Vicksburg, MS 39180. Email: [email protected]
Grace M. Massey, Ph.D. [email protected]
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062. Email: [email protected]
Carl T. Friedrichs, Ph.D., Aff.M.ASCE https://orcid.org/0000-0002-1810-900X [email protected]
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062. ORCID: https://orcid.org/0000-0002-1810-900X. Email: [email protected]
Emmalynn M. Hicks [email protected]
Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share