Open access
Technical Papers
Jun 11, 2020

Relative Magnitude of Infragravity Waves at Coastal Dikes with Shallow Foreshores: A Prediction Tool

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 146, Issue 5

Abstract

Despite the widely recognized role of infragravity (IG) waves in many often-hazardous nearshore processes, spectral wave models, which exclude IG-wave dynamics, are often used in the design and assessment of coastal dikes. Consequently, the safety of these structures in environments where IG waves dominate remains uncertain. Here, we combine physical and numerical modeling to: (1) assess the influence of various offshore, foreshore, and dike slope conditions on the dominance of IG waves over those at sea and swell (SS) frequencies; and (2) develop a predictive model for the relative magnitude of IG waves, defined as the ratio of the IG-to-SS-wave height at the dike toe. Findings show that higher, directionally narrow-banded incident waves; shallower water depths; milder foreshore slopes; reduced vegetated cover; and milder dike slopes promote IG-wave dominance. In addition, the empirical model derived, which captures the combined effect of the varied environmental parameters, allows practitioners to quickly estimate the significance of IG waves at the coast, and may also be combined with spectral wave models to extend their applicability to areas where IG waves contribute significantly.

Formats available

You can view the full content in the following formats:

Acknowledgments

This work is part of the Perspectief research program All-Risk with project number B2 which is (partly) financed by NWO Domain Applied and Engineering Sciences, in collaboration with the following private and public partners: the Dutch Ministry of Infrastructure and Water Management (RWS); Deltares; STOWA; the regional water authority, Noorderzijlvest; the regional water authority, Vechtstromen; It Fryske Gea; HKV consultants; Natuurmonumenten; and waterboard HHNK. The authors also acknowledge Ap van Dongeren and Ad Reniers for their review of key sections of this manuscript. Finally, we acknowledge Charles Feys for his contribution to the research.

Notation

The following symbols are used in this paper:
A
envelope of the sea and swell waves (m);
a
fitted coefficient in the prediction of H~IG (m−1);
ah
vegetation height (m);
bv
vegetation stem diameter (m);
CD
drag coefficient (−);
Cηη
wave energy density (m2/Hz);
c
wave speed (m/s);
cf
bed friction factor (−);
cg
wave-group velocity (m/s);
cin
incoming wave speed (m/s);
cout
outgoing wave speed (m/s);
FD
drag force (N/m);
Fv
depth-averaged vegetation force (N);
flow
mean frequency of the IG wave at breakpoint (Hz);
fnode
nodal frequency of standing wave (Hz);
fp
peak frequency (Hz);
H~IG
relative magnitude of the infragravity waves at the dike toe (−);
Hm0
local significant wave height (m);
Hm0,deep
significant wave height offshore in deep water (m);
Hm0,IG
significant wave height in the infragravity frequency band (m);
Hm0,IG,toe
significant wave height in the infragravity frequency band, at the dike toe (m);
Hm0,SS
significant wave height in the sea and swell frequency band (m);
Hm0,SS,toe
significant wave height in the sea and swell frequency band, at the dike toe (m);
h
local water depth (m);
hb
water depth at breakpoint (m);
htoe
initial water depth at the dike toe (m);
k
wave number (rad/m);
L
local wavelength (m);
L0
wavelength in deep water (m);
m
mode of the dike–foreshore system (standing wave) (−);
Nv
vegetation stem density (stems/m2);
n
manning roughness coefficient (s/m1/3);
q¯
depth-averaged dynamic (nonhydrostatic) pressure normalized by the density (−);
Rel.bias
Relative Bias (−);
RηA
cross-correlation coefficient (−);
R2
coefficient of determination (−);
s
user-defined directional spreading factor (XBeach) (−);
s0
deep-water wave steepness (−);
SCI
scatter Index (−);
Tm−1,0
spectral wave period (s);
Tp
peak wave period in deep water (s);
u
depth-averaged cross-shore velocity (m/s);
vh
horizontal viscosity (m2/s);
Wveg
width of vegetated cover (m);
x
cross-shore location (m);
xb
cross-shore breakpoint location (m);
xdike
cross-shore dike location (m);
αdike
dike slope angle (°);
αfore
foreshore slope angle (°);
βb
normalized bed slope (−);
γ¯
Influence factor (−);
Δx
cross-shore grid spacing (m);
Δy
alongshore grid spacing (m);
η
surface elevation (m);
ηIG
low-pass filtered surface elevation (m);
η¯
mean water level relative to the dike toe (m);
ηinIG
incoming low-pass filtered surface elevation (m);
ηoutIG
outgoing low-pass filtered surface elevation (m);
ηSS
high-pass filtered surface elevation (m);
ξ0
breaker index (Iribarren number) (−);
ρ
density of water (kg/m3);
σ
directional spreading (°);
σA
standard deviation of the wave envelope time series (m);
ση
standard deviation of the low-pass filtered surface elevation time series (m);
ω
angular frequency (rad/s); and
Ω
ratio of breaking waves to water depth (−).

References

Altomare, C., T. Suzuki, X. Chen, T. Verwaest, and A. Kortenhaus. 2016. “Wave overtopping of sea dikes with very shallow foreshores.” Coastal Eng. 116: 236–257. https://doi.org/10.1016/j.coastaleng.2016.07.002.
Baldock, T. E. 2006. “Long wave generation by the shoaling and breaking of transient wave groups on a beach.” Proc. R. Soc. London, Ser. A 462 (2070): 1853–1876. https://doi.org/10.1098/rspa.2005.1642.
Baldock, T. E. 2012. “Dissipation of incident forced long waves in the surf zone—implications for the concept of “bound” wave release at short wave breaking.” Coastal Eng. 60: 276–285. https://doi.org/10.1016/j.coastaleng.2011.11.002.
Baldock, T. E., and D. A. Huntley. 2002. “Long-wave forcing by the breaking of random gravity waves on a beach.” Proc. R. Soc. London, Ser. A 458 (2025): 2177–2201. https://doi.org/10.1098/rspa.2002.0962.
Baldock, T. E., D. A. Huntley, P. A. D. Bird, T. O’Hare, and G. N. Bullock. 2000. “Breakpoint generated surf beat induced by bichromatic wave groups.” Coastal Eng. 39 (2–4): 213–242. https://doi.org/10.1016/S0378-3839(99)00061-7.
Baron-Hyppolite, C., C. Lashley, J. Garzon, T. Miesse, C. Ferreira, and J. Bricker. 2019. “Comparison of implicit and explicit vegetation representations in SWAN hindcasting wave dissipation by coastal wetlands in Chesapeake Bay.” Geosciences 9 (1): 8. https://doi.org/10.3390/geosciences9010008.
Battjes, J. A., H. J. Bakkenes, T. T. Janssen, and A. R. van Dongeren. 2004. “Shoaling of subharmonic gravity waves.” J. Geophys. Res. 109 (C2): C02009. https://doi.org/10.1029/2003JC001863.
Baumann, J., E. Chaumillon, X. Bertin, J. L. Schneider, B. Guillot, and M. Schmutz. 2017. “Importance of infragravity waves for the generation of washover deposits.” Mar. Geol. 391: 20–35. https://doi.org/10.1016/j.margeo.2017.07.013.
Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. “A third-generation wave model for coastal regions—1. Model description and validation.” J. Geophys. Res. 104 (C4): 7649–7666. https://doi.org/10.1029/98JC02622.
Buckley, M. L., R. J. Lowe, J. E. Hansen, A. R. van Dongeren, and C. D. Storlazzi. 2018. “Mechanisms of wave-driven water level variability on reef-fringed coastlines.” J. Geophys. Res. 123 (5): 3811–3831. https://doi.org/10.1029/2018JC013933.
Contardo, S., and G. Symonds. 2013. “Infragravity response to variable wave forcing in the nearshore.” J. Geophys. Res. 118 (12): 7095–7106. https://doi.org/10.1002/2013JC009430.
Cox, N., L. M. Dunkin, and J. L. Irish. 2013. “An empirical model for infragravity swash on barred beaches.” Coastal Eng. 81: 44–50. https://doi.org/10.1016/j.coastaleng.2013.06.008.
Dalrymple, R. A., J. T. Kirby, and P. A. Hwang. 1984. “Wave diffraction due to areas of energy dissipation.” J. Waterw. Port Coastal Ocean Eng. 110 (1): 67–79. https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67).
de Bakker, A. T. M., M. F. S. Tissier, and B. G. Ruessink. 2014. “Shoreline dissipation of infragravity waves.” Cont. Shelf Res. 72: 73–82. https://doi.org/10.1016/j.csr.2013.11.013.
Gomes da Silva, P., R. Medina, M. González, and R. Garnier. 2018. “Infragravity swash parameterization on beaches: The role of the profile shape and the morphodynamic beach state.” Coastal Eng. 136: 41–55. https://doi.org/10.1016/j.coastaleng.2018.02.002.
Guza, R. T., and E. B. Thornton. 1982. “Swash oscillations on a natural beach.” J. Geophys. Res. 87 (C1): 483–491. https://doi.org/10.1029/JC087iC01p00483.
Guza, R. T, E. B. Thornton, and R. Holman. 1984. “Swash on steep and shallow beaches.” In Proc., 19th Int. Conf. on Coastal Engineering, edited by B. L. Edge, 708–723. Reston, VA: ASCE.
Henderson, S. M., and A. J. Bowen. 2002. “Observations of surf beat forcing and dissipation.” J. Geophys. Res. 107 (C11): 14-11–14-10. https://doi.org/10.1029/2000JC000498.
Henderson, S. M., R. T. Guza, S. Elgar, T. H. C. Herbers, and A. J. Bowen. 2006. “Nonlinear generation and loss of infragravity wave energy.” J. Geophys. Res. 111 (C12): C12007. https://doi.org/10.1029/2006JC003539.
Hofland, B., X. Chen, C. Altomare, and P. Oosterlo. 2017. “Prediction formula for the spectral wave period Tm-1,0 on mildly sloping shallow foreshores.” Coastal Eng. 123: 21–28. https://doi.org/10.1016/j.coastaleng.2017.02.005.
Holman, R. A., and A. H. Sallenger. 1985. “Setup and swash on a natural beach.” J. Geophys. Res. 90 (C1): 945–953. https://doi.org/10.1029/JC090iC01p00945.
Inch, K., M. Davidson, G. Masselink, and P. Russell. 2017. “Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions.” Cont. Shelf Res. 138: 19–31. https://doi.org/10.1016/j.csr.2017.02.010.
Janssen, T. T., J. A. Battjes, and A. R. van Dongeren. 2003. “Long waves induced by short-wave groups over a sloping bottom.” J. Geophys. Res. 108 (C8): 3252. https://doi.org/10.1029/2002JC001515.
Klopman, G., and J. W. van der Meer. 1999. “Random wave measurements in front of reflective structures.” J. Waterw. Port Coastal Ocean Eng. 125 (1): 39–45. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:1(39).
Koftis, T., P. Prinos, and V. Stratigaki. 2013. “Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study.” Coastal Eng. 73: 71–83. https://doi.org/10.1016/j.coastaleng.2012.10.007.
Lara, J. L., A. Ruju, and I. J. Losada. 2011. “Reynolds averaged Navier–Stokes modeling of long waves induced by a transient wave group on a beach.” Proc. R. Soc. London, Ser. A 467 (2129): 1215–1242. https://doi.org/10.1098/rspa.2010.0331.
Lashley, C. H., X. Bertin, D. Roelvink, and G. Arnaud. 2019a. “Contribution of infragravity waves to run-up and overwash in the pertuis Breton embayment (France).” J. Mar. Sci. Eng. 7 (7): 205. https://doi.org/10.3390/jmse7070205.
Lashley, C. H., J. D. Bricker, J. van der Meer, C. Altomare, and T. Suzuki. 2019b. “Infragravity-wave dominance at Sea-dikes fronted by very and extremely shallow foreshores.” In Proc., 29th Int. Ocean and Polar Engineering Conf., 1–7. Mountain View, CA: ISOPE.
Lashley, C. H., D. Roelvink, A. van Dongeren, M. L. Buckley, and R. J. Lowe. 2018. “Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments.” Coastal Eng. 137: 11–27. https://doi.org/10.1016/j.coastaleng.2018.03.007.
List, J. H. 1992. “A model for the generation of two-dimensional surf beat.” J. Geophys. Res. 97 (C4): 5623–5635. https://doi.org/10.1029/91JC03147.
Longuet-Higgins, M. S., and R. W. Stewart. 1962. “Radiation stress and mass transport in gravity waves, with application to “surf beats”.” J. Fluid Mech. 13 (4): 481–504. https://doi.org/10.1017/S0022112062000877.
Lowe, R. J., J. L. Falter, J. R. Koseff, S. G. Monismith, and M. J. Atkinson. 2007. “Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation.” J. Geophys. Res. 112 (C5): C05018. https://doi.org/10.1029/2006JC003605.
Mase, H., T. Tamada, T. Yasuda, T. S. Hedges, and M. T. Reis. 2013. “Wave runup and overtopping at seawalls built on land and in very shallow water.” J. Waterw. Port Coastal Ocean Eng. 139 (5): 346–357. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000199.
Masselink, G. 1995. “Group bound long waves as a source of infragravity energy in the surf zone.” Cont. Shelf Res. 15 (13): 1525–1547. https://doi.org/10.1016/0278-4343(95)00037-2.
McCall, R. T., G. Masselink, T. G. Poate, J. A. Roelvink, and L. P. Almeida. 2015. “Modeling the morphodynamics of gravel beaches during storms with XBeach-G.” Coastal Eng. 103: 52–66. https://doi.org/10.1016/j.coastaleng.2015.06.002.
Nwogu, O., and Z. Demirbilek. 2010. “Infragravity wave motions and runup over shallow fringing reefs.” J. Waterw. Port Coastal Ocean Eng. 136 (6): 295–305. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000050.
Okihiro, M., R. T. Guza, and R. J. Seymour. 1993. “Excitation of seiche observed in a small harbor.” J. Geophys. Res. 98 (C10): 18201–18211. https://doi.org/10.1029/93JC01760.
Passarella, M., E. B. Goldstein, S. De Muro, and G. Coco. 2018. “The use of genetic programming to develop a predictor of swash excursion on sandy beaches.” Nat. Hazards Earth Syst. Sci. 18 (2): 599–611. https://doi.org/10.5194/nhess-18-599-2018.
Pearson, S. G., C. D. Storlazzi, A. R. van Dongeren, M. F. S. Tissier, and A. J. H. M. Reniers. 2017. “A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts.” J. Geophys. Res. 122 (12): 10099–10117. https://doi.org/10.1002/2017JC013204.
Percival, D. B., and A. T. Walden. 1993. Spectral analysis for physical applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511622762.
Pomeroy, A., R. Lowe, G. Symonds, A. van Dongeren, and C. Moore. 2012. “The dynamics of infragravity wave transformation over a fringing reef.” J. Geophys. Res. 117 (C11): C11022. https://doi.org/10.1029/2012JC008310.
Power, H. E., M. G. Hughes, T. Aagaard, and T. E. Baldock. 2010. “Nearshore wave height variation in unsaturated surf.” J. Geophys. Res. 115 (C8): C08030. https://doi.org/10.1029/2009JC005758.
Roeber, V., and J. D. Bricker. 2015. “Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.” Nat. Commun. 6 (1): 7854. https://doi.org/10.1038/ncomms8854.
Roelvink, D., R. McCall, S. Mehvar, K. Nederhoff, and A. Dastgheib. 2018. “Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup.” Coastal Eng. 134: 103–123. https://doi.org/10.1016/j.coastaleng.2017.07.004.
Roelvink, D., A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, and J. Lescinski. 2009. “Modeling storm impacts on beaches, dunes and barrier islands.” Coastal Eng. 56 (11–12): 1133–1152. https://doi.org/10.1016/j.coastaleng.2009.08.006.
Roelvink, D., A. van Dongeren, R. McCall, B. Hoonhout, A. van Rooijen, P. van Geer, L. De Vet, K. Nederhoff, and E. Quataert. 2015. XBeach technical reference: Kingsday release. Technical Rep. Delft, Netherlands: Deltares.
Roelvink, J. A., and M. J. F. Stive. 1989. “Bar-generating cross-shore flow mechanisms on a beach.” J. Geophys. Res. 94 (C4): 4785–4800. https://doi.org/10.1029/JC094iC04p04785.
Ruessink, B. G., M. G. Kleinhans, and P. G. L. van den Beukel. 1998. “Observations of swash under highly dissipative conditions.” J. Geophys. Res. 103 (C2): 3111–3118. https://doi.org/10.1029/97JC02791.
Ruggiero, P., R. A. Holman, and R. A. Beach. 2004. “Wave run-up on a high-energy dissipative beach.” J. Geophys. Res. 109 (C6): C06025. https://doi.org/10.1029/2003JC002160.
Sheremet, A., R. Guza, S. Elgar, and T. Herbers. 2002. “Observations of nearshore infragravity waves: Seaward and shoreward propagating components.” J. Geophys. Res. 107 (C8): 3095. https://doi.org/10.1029/2001JC000970.
Sheremet, A., T. Staples, F. Ardhuin, S. Suanez, and B. Fichaut. 2014. “Observations of large infragravity wave runup at Banneg Island, France.” Geophys. Res. Lett. 41 (3): 976–982. https://doi.org/10.1002/2013GL058880.
Shimozono, T., Y. Tajima, A. B. Kennedy, H. Nobuoka, J. Sasaki, and S. Sato. 2015. “Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan.” J. Geophys. Res. 120 (6): 4463–4486. https://doi.org/10.1002/2015JC010760.
Smagorinsky, J. 1963. “General circulation experiments with the primitive equations.” Mon. Weather Rev. 91 (3): 99–164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%26gt;2.3.CO;2.
Smit, P., G. Stelling, J. Roelvink, J. van Thiel de Vries, R. McCall, A. van Dongeren, C. Zwinkels, and R. Jacobs. 2010. XBeach: Non-hydrostatic model: Validation, verification and model description. Delft, Netherlands: Delft Univ. of Technology.
Smith, J. M., A. R. Sherlock, and D. T. Resio. 2001. STWAE: Steady-state spectral wave model user’s manual for STWAVE, version 3.0. Washington, DC: U.S. Army Corps of Engineers.
Stockdon, H. F., R. A. Holman, P. A. Howd, and A. H. Sallenger. 2006. “Empirical parameterization of setup, swash, and runup.” Coastal Eng. 53 (7): 573–588. https://doi.org/10.1016/j.coastaleng.2005.12.005.
Suzuki, T., C. Altomare, W. Veale, T. Verwaest, K. Trouw, P. Troch, and M. Zijlema. 2017. “Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH.” Coastal Eng. 122: 108–123. https://doi.org/10.1016/j.coastaleng.2017.01.009.
Suzuki, T., Z. Hu, K. Kumada, L. K. Phan, and M. Zijlema. 2019. “Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields.” Coastal Eng. 149: 49–64. https://doi.org/10.1016/j.coastaleng.2019.03.011.
Suzuki, T., M. Zijlema, B. Burger, M. C. Meijer, and S. Narayan. 2012. “Wave dissipation by vegetation with layer schematization in SWAN.” Coastal Eng. 59 (1): 64–71. https://doi.org/10.1016/j.coastaleng.2011.07.006.
Symonds, G., D. A. Huntley, and A. J. Bowen. 1982. “Two-dimensional surf beat: Long wave generation by a time-varying breakpoint.” J. Geophys. Res. 87 (C1): 492–498. https://doi.org/10.1029/JC087iC01p00492.
Thomson, J., S. Elgar, B. Raubenheimer, T. H. C. Herbers, and R. T. Guza. 2006. “Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone.” Geophys. Res. Lett. 33 (5): L05601. https://doi.org/10.1029/2005GL025514.
van der Meer, J., N. Allsop, T. Bruce, J. De Rouck, A. Kortenhaus, T. Pullen, H. Schuttrumpf, P. Troch, and B. Zanuttigh. 2018. EurOtop 2018: Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. https://www.overtopping-manual.com.
van Dongeren, A., J. Battjes, T. Janssen, J. van Noorloos, K. Steenhauer, G. Steenbergen, and A. Reniers. 2007. “Shoaling and shoreline dissipation of low-frequency waves.” J. Geophys. Res. 112 (C2): C02011. https://doi.org/10.1029/2006JC003701.
van Dongeren, A., A. Reniers, J. Battjes, and I. Svendsen. 2003. “Numerical modeling of infragravity wave response during DELILAH.” J. Geophys. Res. 108 (C9): 3288. https://doi.org/10.1029/2002JC001332.
van Dongeren, A. R., and I. A. Svendsen. 1997. Quasi 3-D modeling of nearshore hydrodynamics. Newark, DE: Center for Applied Coastal Research, Univ. of Delaware.
van Gent, M. R. A. 2001. “Wave runup on dikes with shallow foreshores.” J. Waterw. Port Coastal Ocean Eng. 127 (5): 254–262. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:5(254).
van Rooijen, A., R. McCall, J. van Thiel de Vries, A. van Dongeren, A. Reniers, and J. Roelvink. 2016. “Modeling the effect of wave-vegetation interaction on wave setup.” J. Geophys. Res. 121 (6): 4341–4359. https://doi.org/10.1002/2015JC011392.
Vuik, V., S. N. Jonkman, B. W. Borsje, and T. Suzuki. 2016. “Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes.” Coastal Eng. 116: 42–56. https://doi.org/10.1016/j.coastaleng.2016.06.001.
Yao, Y., Z. Huang, S. G. Monismith, and E. Y. M. Lo. 2013. “Characteristics of monochromatic waves breaking over fringing reefs.” J. Coastal Res. 29 (1): 94–104. https://doi.org/10.2112/JCOASTRES-D-12-00021.1.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 146Issue 5September 2020

History

Received: Aug 13, 2019
Accepted: Dec 11, 2019
Published online: Jun 11, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 11, 2020

Authors

Affiliations

Ph.D. Researcher, Dept. of Hydraulic Engineering, Delft Univ. of Technology, Stevinweg 1, 2628 CN Delft, Netherlands (corresponding author). ORCID: https://orcid.org/0000-0001-7149-2864. Email: [email protected]
Jeremy D. Bricker [email protected]
Associate Professor, Dept. of Hydraulic Engineering, Delft Univ. of Technology, Stevinweg 1, 2628 CN Delft, Netherlands. Email: [email protected]
Visiting Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Michigan, 2350 Hayward St., Ann Arbor, MI 48109-2125.
Jentsje van der Meer, M.ASCE [email protected]
Principal, Van der Meer Consulting, P.O. Box 11, 8490 AA Akkrum, Netherlands. Email: [email protected]
Professor, Water Science and Engineering Dept., IHE Delft, Westvest 7, 2611 AX Delft, Netherlands.
Corrado Altomare [email protected]
Postdoctoral Researcher, Universitat Politecnica de Catalunya—BarcelonaTech, carrer Jordi Girona 1-3, 08034 Barcelona, Spain. Email: [email protected]
Postdoctoral Researcher, Dept. of Civil Engineering, Ghent Univ., 9000 Ghent, Belgium.
Senior Researcher, Flanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, Belgium. ORCID: https://orcid.org/0000-0002-6008-4440. Email: [email protected]
Visiting Researcher, Dept. of Hydraulic Engineering, Delft Univ. of Technology, Stevinweg 1, 2628 CN Delft, Netherlands.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share