Abstract

In a time span of over 3,000 years, the function of harbor breakwaters has remained the same (i.e., the energy dissipation), with differences depending on the general breakwater configurations: rubble mound breakwaters or caisson breakwaters. The recent demands of the sea level rise and the intensification of extreme events related to climate change issues are requiring new replacement schemes and, in most cases, will not be easy to achieve with a simple modification in seawall height. Moreover, the international community recognizes the importance of investing in reliable and reasonable energy sources, which are alternative to the traditional ones. In this context, the combination wave energy converters–harbor breakwaters represent the coastal engineering response to these issues, creating a smart alternative and a path of innovation. This paper presents a review of innovative harbor breakwaters for wave-energy conversion, developing a coconstructed description of the criticality and benefits of such innovation.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first author thanks Peter Frigaard and the Department of Civil Engineering of Aalborg University for getting me involved in the field of WECs. This article was partially supported by the OCEANERA-NET project, SE@PORTS (Sustainable Energy at Sea Ports), reference OCEANERA/0003/2016, under the frame of Sociedad para el Desarrollo Regional de Cantabria S.A. (SODERCAN).

References

Aguado, A., and V. Sánchez-Naverac. 1978. “ Nuevo tipo de sección para diques en talud con espaldón.” Revista de Obras Publicas 353 – 359.
Allsop, N. W. H., M. W. McBride, and D. Colombo. 1994. “ The reflection performance of vertical walls and low reflection alternatives: Results of wave flume tests.” In Proc., 3rd MCS Project Workshop. MAS2-CT92-0047. De Voorst, Netherlands : Monolithic (Vertical) Coastal Structures.
Allsop, N. W. H., J. E. McKenna, D. Vicinanza, and T. T. J. Whittaker. 1996a. “ New design methods for wave impact loadings on vertical breakwaters and seawalls.” In Vol. 2 of Proc., 25th Int. Conf. on Coastal Engineering, 2508 – 2521. Reston, VA : ASCE.
Allsop, N. W. H., D. Vicinanza, M. Calabrese, and L. Centurioni, 1996b. “ Breaking wave impact loads on vertical faces.” In Vol 3 of Proc., 6th Int. Conf. ISOPE, 185 – 191. Mountain View, CA : International Society of Offshore and Polar Engineers.
Allsop, W., T. Bruce, J. Alderson, V. Ferrante, V. Russo, D. Vicinanza, and M. Kudella. 2014. “ Large scale tests on a generalised oscillating water column wave energy converter.” In Proc., HYDRALAB IV Joint User Meeting. Bruxelles, Belgium : HORIZON2020.
Aminti, P., and L. Franco. 2001. “ Performance of overspill basin on top of breakwaters.” In Proc., Int. Conf. in Ocean Engineering. 41 – 46. Santander, Spain : ICCE.
Andersen, M. T., and P. B. Frigaard. 2015. “ Incentive-based financial support scheme for immature renewable energy systems.” In Proc., European Wave and Tidal Energy Conf. Southampton, UK : European Wave and Tidal Energy Conference.
Arena, F. 2014. “ Un impianto REWEC3 per la produzione di energia elettrica da moto ondoso: Dall'invenzione del Prof. Paolo Boccotti alla costruzione del primo prototipo.” Workshop Energia dal Mare le Nuove Tecnologie per i Mari Italiani. Accessed February 5, 2018. http://www.enea.it/it/enea_informa/events/energia-dal-mare/Arena1.pdf.
Arena, F., V. Fiamma, V. Laface, G. Malara, A. Romolo, A. Viviano, G. Sannino, and A. Carillo. 2013a. “ Installing U-OWC devices along Italian coasts ”. In Proc., ASME 2013 32nd Int. Conf. on Ocean, Offshore and Arctic Engineering. New York : ASME.
Arena, F., A. Romolo, G. Malara, and A. Ascanelli. 2013b. “ On design and building of a U-OWC wave energy converter in the Mediterranean Sea: A case study.” In Proc., 32nd Int. Conf. on Ocean, Offshore and Arctic Engineering OMAE2013. New York : ASME.
Arena, F., A. Romolo, G. Malara, V. Fiamma, and V. Laface. 2016. “ The first worldwide application at full-scale of the REWEC3 device in the Port of Civitavecchia: Initial energetic performances.” In Proc., Progress in Renewable Energies Offshore: 2nd Int. Conf. on Renewable Energies Offshore (RENEW2016), p. 303. Boca Raton, FL : CRC Press.
Arena, F., A. Romolo, G. Malara, V. Fiamma, and V. Laface. 2017. “ The first full operative U-OWC plants in the Port of Civitavecchia.” In Proc., ASME 2017 36th Int. Conf. on Ocean, Offshore and Arctic Engineering. New York : ASME.
Arup Energy. 2005. The carbon trust—Marine energy challenge, oscillating water column wave energy converter evaluation report. London : Carbon Trust.
Ashlin, S. J., V. Sundar, and S. A. Sannasiraj. 2017. “ Pressures and forces on an oscillating water column–type wave energy caisson breakwater.” J. Waterway, Port, Coastal, Ocean Eng. 143 ( 5 ): 04017020. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000405.
Astobiza, O. A. 2016. “ Mutriku milestone: 1 GWh from waves to grid.” In Proc., Int. Conf. on Ocean Energy (ICOE). Edinburgh, UK : ICOE Research Ltd.
Babarit, A., and J. Hals. 2011. “ On the maximum and actual capture width ratio of wave energy converters.” In Proc., European Wave and Tidal Energy Conf. 2011. Southampton, UK : European Wave and Tidal Energy Conference.
Baird, B., S. Logan, W. van der Molen, T. Elliott, and D. Zimmer. 2016. “ Thoughts on the future of physical models in coastal engineering.” In Proc., 6th Int. Conf. on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16). Ottawa, Canada : HR Wallinford.
Barstow, S., G. Mørk, D. Mollison, and J. Cruz. 2008. “ The wave energy resource.” In Ocean Wave Energy, 93 – 132. Berlin : Springer.
Birks, J. 2010. “ Composite sea walls for energy generation.” Third year thesis, Dept. of Civil Engineering and the Environment, Univ. of Southampton.
Boake, C. B., T. J. T. Whittaker, M. Folley, and H. Ellen. 2002. “ Overview and initial operational experience of the LIMPET wave energy plant.” In Vol. 1 of Proc., 12th Int. Offshore and Polar Engineering Conf., 586 – 594. Kitakyushu, Japan : ISOPE.
Boccotti, P. 2003. “ On a new wave energy absorber.” Ocean Eng. 30 ( 9 ): 1191 – 1200. https://doi.org/10.1016/S0029-8018(02)00102-6.
Boccotti, P. 2007a. “ Caisson breakwaters embodying an OWC with a small opening—Part I: Theory.” Ocean Eng. 34 ( 5–6 ): 806 – 819. https://doi.org/10.1016/j.oceaneng.2006.04.006.
Boccotti, P. 2007b. “ Comparison between a U-OWC and a conventional OWC.” Ocean Eng. 34 ( 5–6 ): 799 – 805. https://doi.org/10.1016/j.oceaneng.2006.04.005.
Boccotti, P., P. Filianoti, V. Fiamma, and F. Arena. 2007. “ Caisson breakwaters embodying an OWC with a small opening—Part II: A small-scale field experiment.” Ocean Eng. 34 ( 5–6 ): 820 – 841. https://doi.org/10.1016/j.oceaneng.2006.04.016.
British Standards Institution. 1984. Maritime structures. BS 6349-1:1984. London : British Standards Institution.
Brito-Melo, A. 2018. “ Press release Wave Pico Plant.” Accessed April 17, 2019. http://www.pico-owc.net/news.php?cat=89&newid=346&wnsid=ffaedab643e41be91f9eecf88f429ee8.
Brito-Melo, A., F. Neuman, and A. J. N. A. Sarmento. 2008. “ Full-scale data assessment in OWC Pico plant.” Int. J. Offshore Polar Eng. 18 ( 1 ): 1053 – 5381.
Bruce, T., and J. O'Callaghan. 2013. “ Oscillating water column wave energy converters at the coast: A review and forward look.” In Proc., 6th Int. Conf., Coastal Structures 2011, 345 – 356. Singapore : World Scientific.
Buccino, M., D. Banfi, D. Vicinanza, M. Calabrese, G. D. Giudice, and A. Carravetta. 2012. “ Non breaking wave forces at the front face of seawave slotcone generators.” Energies 5 ( 11 ): 4779 – 4803. https://doi.org/10.3390/en5114779.
Buccino, M., D. Vicinanza, F. Ciardulli, M. Calabrese, and J. P. Kofoed. 2011. “ Wave pressures and loads on a small scale model of the Svåheia SSG pilot project.” In Proc., 9th European Wave Tidal Energy Conf., 1 – 7. Southampton, UK : Univ. of Southampton.
Buccino, M., D. Vicinanza, D. Salerno, D. Banfi, and M. Calabrese. 2015. “ Nature and magnitude of wave loadings at seawave slot-cone generators.” Ocean Eng. 95 : 34 – 58.
Burcharth, H. F. 1993. “ The design of breakwaters.” In Coastal, esturial and harbour engineers' reference book, edited by M. B. Abbott and W. A. Price, 381 – 424. London : E & FN Spon.
Burcharth, H. F., and T. Lykke-Andersen. 2007. “ Overtopping of rubble mound breakwaters with front reservoir.” In Proc., 30th Int. Conf., Coastal Engineering 2006, 4605 – 4615. Singapore : World Scientific.
Calabrese, M., and D. Vicinanza. 1999. “ Prediction of wave impact occurrence on vertical and composite breakwaters.” Vol. XIII of Excerpta of the Italian contributions to the field of hydraulic engineering, 91 – 122. Napoli, Italia : CUEN.
Cappietti, L., and P. L. Aminti. 2012. “ Laboratory investigation on the effectiveness of an overspill basin in reducing wave overtopping on marina breakwaters.” Coastal Eng. Proc. 1 ( 33 ): 20. https://doi.org/10.9753/icce.v33.structures.20.
Centurioni, L., L. Braasch, E. Di Lauro, P. Contestabile, F. De Leo, R. Casotti, L. Franco, and D. Vicinanza. 2017. “ A new strategic wave measurement station off Naples port main breakwater.” Coastal Eng. Proc. 1 ( 35 ): 36. https://doi.org/10.9753/icce.v35.waves.36.
CIRIA (Construction Industry Research and Information Association), CUR (Centre for Civil Engineering), CETMEF (Central Technical Service of the Ministry of the Equipment). 2007. The rock manual. The use of rock in hydraulic engineering. 2nd ed. London : CIRIA.
Contestabile, P., E. Di Lauro, M. Buccino, and D. Vicinanza. 2017a. “ Economic assessment of overtopping breakwater for energy conversion (OBREC): A case study in Western Australia.” Sustainability 9 ( 1 ): 51. https://doi.org/10.3390/su9010051.
Contestabile, P., V. Ferrante, E. Di Lauro, and D. Vicinanza. 2016. “ Prototype overtopping breakwater for wave energy conversion at port of Naples.” In Proc., 26th Int. Ocean and Polar Engineering Conf. Mountain View, CA : International Society of Offshore and Polar Engineers.
Contestabile, P., V. Ferrante, E. Di Lauro, and D. Vicinanza. 2017b. “ Full-scale prototype of an overtopping breakwater for wave energy conversion.” In Proc., 35th Int. Conf. Coastal Engineering. Los Angeles : ICCE.
Contestabile, P., V. Ferrante, and D. Vicinanza. 2015. “ Wave energy resource along the coast of Santa Catarina (Brazil).” Energies 8 ( 12 ): 14219 – 14243. https://doi.org/10.3390/en81212423.
Contestabile, P., C. Iuppa, E. Di Lauro, L. Cavallaro, T. L. Andersen, and D. Vicinanza. 2017c. “ Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion.” Coastal Eng. 122 ( Apr ): 60 – 74. https://doi.org/10.1016/j.coastaleng.2017.02.001.
De Andres, A., R. Guanche, C. Vidal, and I. J. Losada. 2015. “ Adaptability of a generic wave energy converter to different climate conditions.” Renewable Energy 78 : 322 – 333. https://doi.org/10.1016/j.renene.2015.01.020.
De Rouck, J., B. Van de Walle, and J. Geeraerts. 2004. “ Crest level assessment of coastal structures by full scale monitoring, neural network prediction and hazard analysis on permissible wave overtopping.” In Proc., European Conf. on Marine Science & Ocean Technology, 261. Galway, Ireland : Directorate-General for Research and Innovation (European Commission).
EurOtop. 2016. Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. Edited by Van der Meer, et al.
Evans, D. V. 1982. “ Wave-power absorption by systems of oscillating surface pressure distributions.” J. Fluid Mech. 114 ( Jan ): 481 – 499. https://doi.org/10.1017/S0022112082000263.
Falcão, A. F. de O. 2000. “ The shoreline OWC wave power plant at the Azores.” In Proc., 4th European Wave Energy Conf. Aalborg, Denmark : Energy Centre Denmark.
Falcão, A. F. de O. 2010. “ Wave energy utilization: A review of the technologies.” Renewable Sustainable Energy Rev. 14 ( 3 ): 899 – 918. https://doi.org/10.1016/j.rser.2009.11.003.
Falcão, A. F. O., L. M. C. Gato, A. J. N. A. Sarmento, and A. Brito-Melo. 2018. “ The Pico OWC wave power plant: Its life from conception to closure 1986–2018.” In Advances in Renewable Energies Offshore: Proc., 3rd Int. Conf. on Renewable Energies Offshore (RENEW 2018), p. 475. Boca Raton, FL : CRC Press.
Falcão, A. F. O., and J. C. C. Henriques. 2016. “ Oscillating-water-column wave energy converters and air turbines: A review.” Renewable Energy 85 ( Jan ): 1 – 34.
Falnes, J., ed. 2002. Ocean wave energy. Cambridge, UK : Cambridge University Press.
Franco, L. 1994. “ Vertical breakwaters: The Italian experience.” Coastal Eng. 22 ( 1–2 ): 31 – 55. https://doi.org/10.1016/0378-3839(94)90047-7.
Franco, L. 1996. “ Ancient Mediterranean harbours: A heritage to preserve.” Ocean Coastal Manage. 30 ( 2–3 ): 115 – 151. https://doi.org/10.1016/0964-5691(95)00062-3.
Funakoshi, H., H. Katoh, T. Saito, S. Takahashi, and K. Oikawa. 1993. “ Development of a wave power extracting caisson breakwater.” Doboku Gakkai Ronbunshu ( 474 ): 37 – 39. https://doi.org/10.2208/jscej.1993.474_37.
Garrido, A. J., E. Otaola, I. Garrido, J. Otaola, F. J. Maseda, P. Liria, and J. Mader. 2015. “ Mathematical modeling of oscillating water columns wave-structure interaction in ocean energy plants.” Math. Prob. Eng. 2015 : 727982. https://doi.org/10.1155/2015/727982.
Gato, L. M. C., V. Warfield, and A. Thakker. 1993. “ Performance of a high-solidity Wells turbine for an OWC wave power plant.” In Proc., European Wave Energy Symp. Edinburgh, UK : European Wave Energy Symposium.
Geeraerts, J., J. De Rouck, C. Beels, S. Gysens, and P. De Wolf. 2007. “ Reduction of wave overtopping at seadikes: Stilling wave basin (SWB).” In Proc., 30th Int. Conf., Coastal Engineering 2006, 4680 – 4691. Singapore : World Scientific.
Goda, Y. 1974. “ A new method of wave pressure calculation for the design of composite breakwaters.” In Proc., 14th Conf. on Coastal Engineering, 1702 – 1720. Reston, VA : ASCE.
Goda, Y. 1985. Random seas and Maritime structures. Tokyo : University of Tokyo Press.
Goda, Y. 2000. Random seas and design of maritime structures. 2nd ed. Singapore : World Scientific Publishing.
Goda, Y., H. Nakada, H. Ohneda, M. Suzuki, S. Takahashi, and M. Shikamori. 1991. “ Results of field experiment of a wave power extracting caisson breakwater.” Proc. Civ. Eng. Ocean 7 : 143 – 148. https://doi.org/10.2208/prooe.7.143.
Haggi, A. 2010. “ Report on underwater excavation at the Phoenician Harbour, Atlit, Israel.” Int. J. Naut. Archaeol. 39 ( 2 ): 278 – 285. https://doi.org/10.1111/j.1095-9270.2009.00254.x.
Heath, T. V. 2007. “ The development of a turbo-generation system for application in OWC breakwaters.” In Proc., 7th European Wave Tidal Energy Conf. Southampton, UK : European Wave and Tidal Energy Conference.
Heath, T., T. J. T. Whittaker, and C. B. Boake. 2000. “ The design, construction and operation of the LIMPET wave energy converter.” In Proc., 4th European Wave Energy Conference. Aalborg, Denmark : Energy Centre Denmark.
Hiroi, I. 1919. “ On a method of estimating the force of waves. Memoirs of engineering facility.” Imperial University of Tokyo, 10 ( 1 ): 19.
Horvath, E. 2009. “ Wave loading at coastal wave energy converters.” MSc dissertation, Univ. of Edinburgh.
Huang, Y., H. Shi, D. Liu, and Z. Liu. 2010. “ Study on the breakwater caisson as oscillating water column facility.” J. Ocean Univ. China 9 ( 3 ): 244 – 250. https://doi.org/10.1007/s11802-010-1720-2.
Hughes, S. A. 2004. “ Wave momentum flux parameter: A descriptor for nearshore waves.” Coastal Eng. 51 ( 11–12 ): 1067 – 1084. https://doi.org/10.1016/j.coastaleng.2004.07.025.
Hull, P., and G. Müller. 2002. “ An investigation of breaker heights, shapes and pressures.” Ocean Eng. Vol. 29 ( 1 ): 59 – 79. https://doi.org/10.1016/S0029-8018(00)00075-5.
Ibarra-Berastegi, G., J. Sáenz, A. Ulazia, P. Serras, G. Esnaola, and C. Garcia-Soto. 2018. “ Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014–2016).” Ocean Eng. 147 : 20 – 29. https://doi.org/10.1016/j.oceaneng.2017.10.018.
Iuppa, C., P. Contestabile, L. Cavallaro, E. Foti, and D. Vicinanza. 2016. “ Hydraulic performance of an innovative breakwater for overtopping wave energy conversion.” Sustainability 8 ( 12 ): 1226. https://doi.org/10.3390/su8121226.
Jayakumar, V. S. 1994. “ Wave force on oscillating water column type wave energy caisson: An experiment study.” Ph.D. thesis, Dept. of Ocean Engineering, Indian Institute of Technology.
Kofoed, J. P., D. Vicinanza, and E. Osaland. 2006. “ Estimation of design wave loads on the SSG WEC pilot plant based on 3-D model tests.” In Proc., 16th Int. Offshore and Polar Engineering Conf. Mountain View, CA : International Society of Offshore and Polar Engineers.
Kramer, M., and H. F. Burcharth. 2002. Environmental design of low crested coastal defence structures: Delos D31 wave basin experiment final form—3D stability tests at AAU. Technical Rep. Prepared for EU Fifth Framework Programme 1998–2002: Energy, Environment and Sustainable Development.
Kuo, Y. S., C. S. Lin, C. Y. Chung, and Y. K. Wang. 2015. “ Wave loading distribution of oscillating water column caisson breakwaters under non-breaking wave forces.” J. Mar. Sci. Technol. 23 ( 1 ): 78 – 87.
Leijon, M., O. Danielsson, M. Eriksson, K. Thorburn, H. Bernhoff, and J. Isberg. 2006. “ An electrical approach to wave energy conversion.” Renewable Energy 31 ( 9 ): 1309 – 1319. https://doi.org/10.1016/j.renene.2005.07.009.
Lesser, J. A., and X. Su. 2008. “ Design of an economically efficient feed-in tariff structure for renewable energy development.” Energy Policy 36 ( 3 ): 981 – 990. https://doi.org/10.1016/j.enpol.2007.11.007.
Liu, Y., H. Shi, Z. Liu, and Z. Ma. 2011. “ Experiment study on a new designed OWC caisson breakwater.” In Proc., Asia-Pacific Power and Energy Engineering Conf., 1 – 5. New York : IEEE.
Macdonald, R. W., T. Harner, and J. Fyfe. 2005. “ Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.” Sci. Total Environ. 342 ( 1–3 ): 5 – 86. https://doi.org/10.1016/j.scitotenv.2004.12.059.
Malara, G., R. P. F. Gomes, F. Arena, J. C. C. Henriques, L. M. C. Gato, and A. F. O. Falcão. 2017a. “ The influence of three-dimensional effects on the performance of U-type oscillating water column wave energy harvesters.” Renewable Energy 111 : 506 – 522. https://doi.org/10.1016/j.renene.2017.04.038.
Malara, G., A. Romolo, V. Fiamma, and F. Arena. 2017b. “ On the modelling of water column oscillations in U-OWC energy harvesters.” Renewable Energy 101 : 964 – 972. https://doi.org/10.1016/j.renene.2016.09.051.
Mansard, E. P., and E. R. Funke, 1980. “ The measurement of incident and reflected spectra using a least squares method.” In Proc., 17th Int. Conf. on Coastal Engineering, 154 – 172. Reston, VA : ASCE.
Margheritini, L., P. Frigaard, and D. Vicinanza. 2008. “ Sea slot cone generator overtopping performance in 3D conditions.” In Proc., 18th Int. Offshore and Polar Engineering Conf. Mountain View, CA : International Society of Offshore and Polar Engineers.
Matos, A., F. Madeira, C. J. E. M. Fortes, E. Didier, P. Poseiro, and J. Jacob. 2016. “ Wave energy at Azores islands.” In Proc., SCACR 2015—7th Int. Short Course and Conf. on Applied Coastal 2015. Florence, Italy : Univ. of Florence.
McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, and N. Roulet. 2009. “ Sensitivity of the carbon cycle in the Arctic to climate change.” Ecol. Monogr. 79 ( 4 ): 523 – 555. https://doi.org/10.1890/08-2025.1.
McStay, P. 1995. “ An experimental study of cylindrical oscillating water column wave power devices.” M.Sc. thesis, Queen’s Univ. of Belfast.
Medina-Lopez, E., N. W. H. Allsop, A. Dimakopoulos, and T. Bruce. 2015. “ Conjectures on the failure of the OWC breakwater at Mutriku.” In Proc., Coastal Structures and Solutions to Coastal Disasters Joint Conf. Reston, VA : ASCE.
Müller, G. U., and T. J. T. Whittaker. 1993. “ An investigation of breaking wave pressures on inclined walls.” Ocean Eng. 20 ( 4 ): 349 – 358. https://doi.org/10.1016/0029-8018(93)90001-X.
Muller, G. U., and T. J. T. Whittaker. 1995. “ Field measurements of breaking wave loads on a shoreline wave power station.” Proc. Inst. Civ. Eng. Water Marit. Energy 112 ( 3 ): 187 – 197. https://doi.org/10.1680/iwtme.1995.27881.
Mustapa, M. A., O. B. Yaakob, Y. M. Ahmed, C. K. Rheem, K. K. Koh, and F. A. Adnan. 2017. “ Wave energy device and breakwater integration: A review.” Renewable Sustainable Energy Rev. 77 : 43 – 58. https://doi.org/10.1016/j.rser.2017.03.110.
Nakada, H., H. Ohneda, S. Takahashi, M. Shikamori, and T. Nakazono. 1992. “ Field experiments of a wave power converter with caisson breakwater.” In Renewable energy, technology and the environment. 3rd ed., 2530 – 2535. Reading, UK : Univ. of Reading.
Naty, S., A. Viviano, and E. Foti. 2016. “ Wave energy exploitation system integrated in the coastal structure of a Mediterranean port.” Sustainability 8 ( 12 ): 1342. https://doi.org/10.3390/su8121342.
Neumann, F., and I. Le Crom. 2011. “ Pico OWC—The Frog Prince of Wave Energy? Recent autonomous operational experience and plans for an open real-sea test centre in semi-controlled environment.” In Proc., 9th European Wave and Tidal Energy Conf. (EWTEC 2011). Southampton, UK : European Wave and Tidal Energy Conference.
Neumann, F., and A. J. N. A. Sarmento. 2001. “ OWC-caisson economy and its dependency on breaking wave design loads.” In Vol. 1 of Proc., 11th Int. Offshore Polar Eng. Conf., 561 – 566. Mountain View, CA : International Society of Offshore and Polar Engineers.
Oumeraci, H. 1994. “ Review and analysis of vertical breakwater failures—Lesson learned.” Coastal Eng. 22 ( 1–2 ): 3 – 29. https://doi.org/10.1016/0378-3839(94)90046-9.
Oumeraci, H., A. Kortenhaus, N. W. H. Allsop, M. B. de Groot, R. S. Crouch, J. K. Vrijling, and H. G. Voortman. 2001. Probabilistic design tools for vertical breakwaters. Rotterdam, Netherlands : AA Balkema.
Patterson, C., R. Dunsire, and S. Hillier. 2009. “ Development of wave energy breakwater at Siadar, Isle of Lewis.” In Proc., 9th Int. Conf. on Coasts, Marine Structures and Breakwaters, 738 – 749. London : Thomas Telford.
Preen, S., and G. Robertshaw. 2009. “ Development of a generic caisson design for an oscillating water column power generator.” In Proc., 9th Int. Conf. on Coasts, Marine Structures and Breakwaters, 266 – 277, London : Thomas Telford.
Raju, V. S., and S. Neelamani. 1992. “ Concrete caisson for a 150 KW wave energy pilot plant: Design, construction, and installation aspects.” In Proc., 2nd Int. Offshore and Polar Engineering Conf., 584 – 591. Mountain View, CA : International Society of Offshore and Polar Engineers.
Sainflou, G. 1928. “ Essai sur les digues maritimes verticales.” Annales des Ponts et Chaussees 98 ( 1 ): 5 – 48.
Seed, M., and D. Langston. 2010. “ Wave energy—Towards commercialization.” In Proc., Int. Conf. on Ocean Energy (ICOE 2010). Lisbon, Portugal : International Conference on Ocean Energy.
Spanos, P. D., F. M. Strati, G. Malara, and F. Arena. 2018. “ An approach for nonlinear stochastic analysis of U-shaped OWC wave energy converters.” Probab. Eng. Mech. 54 : 44 – 52. https://doi.org/10.1016/j.probengmech.2017.07.001.
Strati, F. M., G. Malara, and F. Arena. 2016. “ Performance optimization of a U-oscillating-water-column wave energy harvester.” Renewable Energy 99 : 1019 – 1028. https://doi.org/10.1016/j.renene.2016.07.080.
Suzuki, M., C. Arakawa, and S. Takahashi. 2004. “ Performance of wave power generating system installed in breakwater at Sakata port in Japan.” In Proc., 14th Int. Offshore and Polar Engineering, 202 – 209. Mountain View, CA : International Society of Offshore and Polar Engineers.
Takahashi, S. 1988. “ A study on design of a wave power extracting caisson breakwater.” Wave power laboratory. Yokosuka, Japan : Port and Harbour Research Institute.
Takahashi, S., H. Nakada, H. Ohneda, and M. Shikamori. 1992. “ Wave power conversion by a prototype wave power extracting caisson in Sakata port.” In Proc., 23rd Int. Conf. on Coastal Engineering, 3440 – 3453. Reston, VA : ASCE.
Takahashi, S., K. Tanimoto, and K. Shimosako. 1994a. “ A proposal of impulsive pressure coefficient for design of composite breakwaters.” In Proc., Int. Conf. on Hydro-Technical Engineering for Port and Harbour Construction (Yokosuka, Japan ), 489 – 504. Yokosuka, Japan : Port and Harbour Research Institute.
Takahashi, S., K. Tanimoto, and K. Shimosako. 1994b. “ Wave pressure on perforated wall caissons.” In Proc., of Int. Conf. on Hydro-Technical Engineering for Port and Harbour Construction (Yokosuka, Japan), 747 – 764. Yokosuka, Japan : Port and Harbour Research Institute.
Tanimoto, K., S. Takahashi, and K. Kimura. 1987. “ Structures and hydraulic characteristics of breakwaters-the state of the art of breakwater design in Japan.” Rep. Port Harbour Res. Inst. 26 ( 5 ): 11 – 55.
Thiruvenkatasamy, K., S. Neelamani, and M. Sato. 2005. “ Nonbreaking wave forces on multiresonant oscillating water column wave power caisson breakwater.” J. Waterway, Port, Coastal, Ocean Eng. 131 ( 2 ): 77 – 84. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(77).
Thorpe, T. W. 1995. An assessment of the ART OSPREY wave energy device. ETSU Rep. No. R-90. London : UK Department of Trade and Industry.
Thorpe, T. W. 1999. A brief review of wave energy. ETSU Rep. No. R-120. London : Harwell Laboratory, Energy Technology Support Unit.
Torre-Enciso, Y., J. Marqués, and L. I. López de Aguileta. 2010. “ Mutriku. Lessons learnt.” In Proc., 3rd Int. Conf. on Ocean Energy. Bilbao, Spain : EU-OEA and IEA-OES.
Torre-Enciso, Y., I. Ortubia, L. I. Lopez de Aguileta, and J. Marques. 2009. “ Mutriku wave power plant: From the thinking out to the reality.” In Proc., 8th European Wave Tidal Energy Conf., 319 – 329. Uppsala, Sweden : Uppsala Universitet.
Tseng, R. S., R. I. I. Wu, and C. C. Huang. 2000. “ Model study of a shoreline wave-power system.” Ocean Eng. 27 ( 8 ): 801 – 821. https://doi.org/10.1016/S0029-8018(99)00028-1.
USACE. 1984. Shore protection manual. Army engineer waterways experiment station, 37 – 53. Washington, DC : USACE.
USACE. 2002. Coastal engineering manual. Washington, DC : USACE.
Van der Meer, J. W. 1995. “ Conceptual design of rubble mound breakwaters.” Adv. Coastal Ocean Eng. 1 :  221 – 315.
Van Doorslaer, K., J. De Rouck, S. Audenaert, and V. Duquet. 2015. “ Crest modifications to reduce wave overtopping of non-breaking waves over a smooth dike slope.” Coastal Eng. 101 : 69 – 88. https://doi.org/10.1016/j.coastaleng.2015.02.004.
Veigas, M., M. López, and G. Iglesias. 2014. “ Assessing the optimal location for a shoreline wave energy converter.” Appl. Energy 132 : 404 – 411. https://doi.org/10.1016/j.apenergy.2014.07.067.
Venu, M. 2012. “ Innovation lost to the waves.” http://www.yentha.com/news/view/4/innovation-lost-to-the-waves.
Vicinanza, D. 1997. “ Pressioni e forze di impatto di onde frangenti su dighe a paramento verticale e composte.” [ In Italian.] Ph.D. thesis, Univ. of Naples.
Vicinanza, D., F. Ciardulli, M. Buccino, M. Calabrese, and J. P. Koefed. 2011. “ Wave loadings acting on an innovative breakwater for energy production.” J. Coastal Res. ( 64 ): 608 – 612.
Vicinanza, D., P. Contestabile, J. Nørgaard, and T. Lykke-Andersen. 2014. “ Innovative rubble mound breakwaters for overtopping wave energy conversion.” Coastal Eng. 88 : 154 – 170. https://doi.org/10.1016/j.coastaleng.2014.02.004.
Vicinanza, D., and P. Frigaard. 2008. “ Wave pressure acting on a seawave slot-cone generator.” Coastal Eng. 55 ( 6 ): 553 – 568. https://doi.org/10.1016/j.coastaleng.2008.02.011.
Vicinanza, D., L. Margheritini, P. Contestabile, J. P. Kofoed, and P. Frigaard. 2009. “ Seawave slot-cone generator: An innovative caisson breakwaters for energy production.” In Proc., 31st Int. Conf., Coastal Engineering 2008, 3694 – 3705. Singapore : World Scientific.
Vicinanza, D., L. Margheritini, J. P. Kofoed, and M. Buccino. 2012a. “ The SSG wave energy converter: Performance, status and recent developments.” Energies 5 ( 2 ): 193 – 226. https://doi.org/10.3390/en5020193.
Vicinanza, D., J. H. Nørgaard, P. Contestabile, and T. L. Andersen. 2013. “ Wave loadings acting on overtopping breakwater for energy conversion.” J. Coastal Res. 65 ( 2 ): 1669 – 1674. https://doi.org/10.2112/SI65-282.1.
Vicinanza, D., D. Stagonas, G. Müller, J. H. Nørgaard, and T. L. Andersen. 2012b. “ Innovative breakwaters design for wave energy conversion.” Coastal Eng. Proc. 1 ( 33 ): 1. https://doi.org/10.9753/icce.v33.structures.1.
Vieira, M., A. Sarmento, and L. Reis. 2015. “ Failure analysis of the guide vanes of the Pico wave power plant Wells turbine.” Eng. Fail. Anal. 56 : 98 – 108. https://doi.org/10.1016/j.engfailanal.2015.04.004.
Viviano, A., S. Naty, E. Foti, T. Bruce, W. Allsop, and D. Vicinanza. 2016. “ Large-scale experiments on the behaviour of a generalised oscillating water column under random waves.” Renewable Energy 99 : 875 – 887. https://doi.org/10.1016/j.renene.2016.07.067.
Whittaker, T. J. T., W. Beattie, M. Folley, C. Boake, A. Wright, M. Osterried, and T. Heath. 2004. “ The Limpet wave power project—The first years of operation.” Accessed October 29, 2016. https://www.hw.ac.uk/%20staffprofiles/A/bdgsa/shsg/Documents/2004sem/limpet.PDF.
Zanuttigh, B., L. Margheritini, L. Gambles, and L. Martinelli, 2009. “ Analysis of wave reflection from wave energy converters installed as breakwaters in harbour.” In Proc., 8th European Wave and Tidal Energy Conf. (EWTEC), 7 – 10. Southampton, UK : European Wave and Tidal Energy Conference.
Zanuttigh, B., and J. W. Van der Meer. 2008. “ Wave reflection from coastal structures in design conditions.” Coastal Eng. 55 ( 10 ): 771 – 779. https://doi.org/10.1016/j.coastaleng.2008.02.009.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 145Issue 4July 2019

History

Published online: May 13, 2019
Published in print: Jul 1, 2019
Discussion open until: Oct 13, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Diego Vicinanza, Ph.D. [email protected]
Associate Professor, Dept. of Engineering, Univ. of Campania “Luigi Vanvitelli,” via Roma 29, Aversa (Caserta) 81031, Italy (corresponding author). Email: [email protected]
Enrico Di Lauro, Ph.D. [email protected]
Ph.D. Student, Dept. of Engineering, Univ. of Campania “Luigi Vanvitelli,” via Roma 29, Aversa (Caserta) 81031, Italy. Email: [email protected]
Pasquale Contestabile, Ph.D. [email protected]
Research Fellow, Dept. of Engineering, Univ. of Campania “Luigi Vanvitelli,” via Roma 29, Aversa (Caserta) 81031, Italy. Email: [email protected]
Corrado Gisonni, Ph.D. [email protected]
Full Professor, Dept. of Engineering, Univ. of Campania “Luigi Vanvitelli,” via Roma 29, Aversa (Caserta) 81031, Italy. Email: [email protected]
Javier L. Lara, Ph.D. [email protected]
Associate Professor, Environmental Hydraulics Institute (IHCantabria), Univ. de Cantabria, C/Isabel Torres 15, Parque Científico y Tecnológico de Cantabria, Santander 39011, Spain. Email: [email protected]
Inigo J. Losada, M.ASCE [email protected]
Full Professor, Environmental Hydraulics Institute (IHCantabria), Univ. de Cantabria, C/Isabel Torres 15, Parque Científico y Tecnológico de Cantabria, Santander 39011, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share