Abstract

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020 led to a significant change in human behaviors, mainly because of the quarantine to avoid the spread of the virus. Measures affected both economic activities and citizens’ behaviors as they developed more intense hygiene habits to avoid contamination and switched to home offices. These exceptional behaviors also affected the way that water is consumed and need to be fully understood to manage supply systems. Therefore, this study aims to investigate changes in residential and commercial water consumption in 31 municipalities in the state of São Paulo, Brazil, during SARS-CoV-2. To do this, the expected consumption for the first half of 2020 was forecasted using the Holt-Winters multiplicative method and compared with the data observed for the same period. In addition, we compared monthly records of new contaminations and the social distancing index to establish a correlation with changes in water consumption. The results show an average difference between forecasted and observed consumption equal to +6.23% and 18.59% for residential and commercial activities, respectively. For the first one, the consumption per capita increased at the rate of 8.44  L.person1.day1. The observed changes in consumption seem to be a consequence of hygiene habits, social distancing and the closing of nonessential services in commerce.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to thank the Companhia de Saneamento Básico do Estado de São Paulo (Sabesp) for providing the database. The researchers were supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and by the Pró-Reitoria de Pesquisa (USP). Authors also thank FAPESP # 14/50848-9 (INCTMC2—Nat. Inst. Sci. & Techn. Climate Change, Water Security) and FAPESP # 19/07665-4 (C4AI—Center for Artificial Intelligence).

References

Abu-Bakar, H., L. Williams, and S. H. Hallett. 2021. “Quantifying the impact of the COVID-19 lockdown on household water consumption patterns in England.” npj Clean Water 4 (1): 1–9. https://doi.org/10.1038/s41545-021-00103-8.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. De Moraes Gonçalves, and G. Sparovek. 2013. “Köppen’s climate classification map for Brazil.” Meteorol. Z. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
Aquino, E. M. L., I. H. Silveira, J. M. Pescarini, R. Aquino, and J. A. de Souza-Filho. 2020. “Social distancing measures to control the COVID-19 pandemic: Potential impacts and challenges in Brazil.” Supplement, Ciencia e Saude Coletiva 25 (S1): 2423–2446. https://doi.org/10.1590/1413-81232020256.1.10502020.
Balacco, G., V. Totaro, V. Iacobellis, A. Manni, M. Spagnoletta, and A. F. Piccinni. 2020. “Influence of COVID-19 spread on water drinking demand: The case of Puglia region (southern Italy).” Sustainability 12 (15): 5919. https://doi.org/10.3390/su12155919.
Bastos, S. B., M. M. Morato, D. O. Cajueiro, and J. E. Normey-Rico. 2021. “The COVID-19 (SARS-CoV-2) uncertainty tripod in Brazil: Assessments on model-based predictions with large under-reporting.” Alexandria Eng. J. 60 (5): 4363–4380. https://doi.org/10.1016/j.aej.2021.03.004.
Bich-Ngoc, N., and J. Teller. 2020. “Potential effects of the COVID-19 pandemic through changes in outbound tourism on water demand: The case of Liège (Belgium).” Water 12 (10): 2820. https://doi.org/10.3390/w12102820.
Bliemel, F. 1973. “Theil’s forecast accuracy coefficient: A clarification.” J. Marketing Res. 10 (4): 444–446. https://doi.org/10.2307/3149394.
Cheval, S., C. M. Adamescu, T. Georgiadis, M. Herrnegger, A. Piticar, and D. R. Legates. 2020. “Observed and potential impacts of the COVID-19 pandemic on the environment.” Int. J. Environ. Res. Public Health 17 (11): 4140. https://doi.org/10.3390/ijerph17114140.
Collischonn, W., and F. Dornelles. 2013. Hidrologia para Engenharia e Ciências Ambientais. Porto Alegre, Brazil: Associação Brasileira de Recursos Hídricos.
Da Veiga, C. P., C. R. P. Da Veiga, A. Catapan, U. Tortato, and W. V. Da Silva. 2014. “Demand forecasting in food retail: A comparison between the Holt-Winters and ARIMA models.” WSEAS Trans. Bus. Econ. 11 (1): 608–614.
de Souza Rolim, G., and L. E. O. Aparecido. 2016. “Camargo, Köppen and Thornthwaite climate classification systems in defining climatical regions of the state of São Paulo, Brazil.” Int. J. Climatol. 36 (2): 636–643. https://doi.org/10.1002/joc.4372.
Heydari, M., H. B. Ghadim, M. Rashidi, and M. Noori. 2020. “Application of holt-winters time series models for predicting climatic parameters (Case study: Robat Garah-Bil station, Iran).” Polish J. Environ. Stud. 29 (1): 617–627. https://doi.org/10.15244/pjoes/100496.
Hsiang, S., et al. 2020. “The effect of large-scale anti-contagion policies on the COVID-19 pandemic.” Nature 584 (7820): 262–267. https://doi.org/10.1038/s41586-020-2404-8.
Hyndman, R. J., and G. Athanasopoulos. 2018. “Forecasting: Principles and practice.” In Principles of optimal design. Melbourne, Australia: OTexts.
Hyndman, R. J., and Y. Khandakar. 2008. “Automatic time series forecasting: The forecast package for R.” J. Stat. Software 27 (3): 1–22. https://doi.org/10.18637/jss.v027.i03.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2018. “Brasil/Cidades e Estados.” Accessed January 5, 2021. https://cidades.ibge.gov.br/.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2020. Pesquisa Pulso Empresa—Nota Técnica 01/2020. Brasília/DF: IBGE.
Jacobi, P. R., J. Cibim, and R. D. S. Leão. 2015. “Crise hídrica na Macrometrópole Paulista e respostas da sociedade civil.” Estudos Avancados 29 (84): 27–42. https://doi.org/10.1590/S0103-40142015000200003.
Kalbusch, A., E. Henning, M. P. Brikalski, F. V. de Luca, and A. C. Konrath. 2020. “Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption.” Resour. Conserv. Recycl. 163 (Dec): 105098. https://doi.org/10.1016/j.resconrec.2020.105098.
Kays, H. M. E., A. N. M. Karim, M. R. C. Daud, M. L. R. Varela, G. D. Putnik, and J. M. Machado. 2018. “A collaborative multiplicative Holt-Winters forecasting approach with dynamic fuzzy-level component.” Appl. Sci. 8 (4): 530. https://doi.org/10.3390/app8040530.
Lüdtke, D. U., R. Luetkemeier, M. Schneemann, and S. Liehr. 2021. “Increase in daily household water demand during the first wave of the COVID-19 pandemic in Germany.” Water 13 (3): 260. https://doi.org/10.3390/w13030260.
Mattei, L., and V. L. Heinen. 2020. “Impactos da crise da COVID-19 no mercado de trabalho brasileiro.” Braz. J. Political Econ. 40 (4): 647–668. https://doi.org/10.1590/0101-31572020-3200.
Milano, M., E. Reynard, G. Muniz-Miranda, and J. Guerrin. 2018. “Water supply basins of São Paulo metropolitan region: Hydro-climatic characteristics of the 2013-2015 water crisis.” Water 10 (11): 1517. https://doi.org/10.3390/w10111517.
Moghadas, S. M., M. C. Fitzpatrick, P. Sah, A. Pandey, A. Shoukat, B. H. Singer, and A. P. Galvani. 2020. “The implications of silent transmission for the control of COVID-19 outbreaks.” Proc., Natl. Acad. Sci. U.S.A. 117 (30): 17513–17515. https://doi.org/10.1073/pnas.2008373117.
Mukherjee, A., S. S. Babu, and S. Ghosh. 2020. “Thinking about water and air to attain Sustainable Development Goals during times of COVID-19 Pandemic.” J. Earth Syst. Sci. 129 (1): 1–8. https://doi.org/10.1007/s12040-020-01475-0.
Mushi, V., and M. Shao. 2020. “Tailoring of the ongoing water, sanitation and hygiene interventions for prevention and control of COVID-19.” Trop. Med. Health 48 (1): 47–49. https://doi.org/10.1186/s41182-020-00236-5.
Oliveira, A. C. S., L. H. M. Morita, E. B. da Silva, L. A. R. Zardo, C. J. F. Fontes, and D. C. T. Granzotto. 2020. “Bayesian modeling of COVID-19 cases with a correction to account for under-reported cases.” Infect. Dis. Modell. 5 (Oct): 699–713. https://doi.org/10.1016/j.idm.2020.09.005.
Phelipe, A., and I. Medeiros. 2020. “COVID-19 muda a rotina do mercado de trabalho com o home office.” Accessed February 11, 2020. https://www.correiobraziliense.com.br/app/noticia/economia/2020/03/21/internas_economia,835717/covid-19-muda-a-rotina-do-mercado-de-trabalho-com-o-home-office.shtml.
Poch, M., M. Garrido-Baserba, L. Corominas, A. Perelló-Moragues, H. Monclús, M. Cermerón-Romero, N. Melitas, S. C. Jiang, and D. Rosso. 2020. “When the fourth water and digital revolution encountered COVID-19.” Sci. Total Environ. 744 (Nov): 140980. https://doi.org/10.1016/j.scitotenv.2020.140980.
Przekwas, A., and Z. Chen. 2020. “Washing hands and the face may reduce COVID-19 infection.” Med. Hypotheses 144 (Sep): 110261. https://doi.org/10.1016/j.mehy.2020.110261.
Reis, R. F., B. de Melo Quintela, J. de Oliveira Campos, J. M. Gomes, B. M. Rocha, M. Lobosco, and R. Weber dos Santos. 2020. “Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil.” Chaos Solitons Fractals 136 (Jul): 109888. https://doi.org/10.1016/j.chaos.2020.109888.
Reyes-Olavarría, D., P. Á. Latorre-Román, I. P. Guzmán-Guzmán, D. Jerez-Mayorga, F. Caamaño-Navarrete, and P. Delgado-Floody. 2020. “Positive and negative changes in food habits, physical activity patterns, and weight status during COVID-19 confinement: Associated factors in the Chilean population.” Int. J. Environ. Res. Public Health 17 (15): 5431. https://doi.org/10.3390/ijerph17155431.
Roidt, M., C. M. Chini, A. S. Stillwell, and A. Cominola. 2020. “Unlocking the impacts of COVID-19 lockdowns: Changes in thermal electricity generation water footprint and virtual water trade in Europe.” Environ. Sci. Technol. Lett. 7 (9): 683–689. https://doi.org/10.1021/acs.estlett.0c00381.
Rolim, G. D. S., M. B. P. D. Camargo, D. G. Lania, and J. F. L. D. Moraes. 2007. “Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo.” Bragantia 66 (4): 711–720. https://doi.org/10.1590/S0006-87052007000400022.
Severo, E. A., J. C. F. De Guimarães, and M. L. Dellarmelin. 2021. “Impact of the COVID-19 pandemic on environmental awareness, sustainable consumption and social responsibility: Evidence from generations in Brazil and Portugal.” J. Cleaner Prod. 286 (Mar): 124947. https://doi.org/10.1016/j.jclepro.2020.124947.
Sharma, A., S. Tiwari, M. K. Deb, and J. L. Marty. 2020. “Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies.” Int. J. Antimicrob. Agents 56 (2): 106054. https://doi.org/10.1016/j.ijantimicag.2020.106054.
SIMA (Secretaria de Infraestrutura e Meio Ambiente). 2020. Plano Estadual de Recursos Hídricos (2020-2023). São Paulo, Brazil: SIMA.
Soriano, É., L. De Resende Londe, L. T. Di Gregorio, M. P. Coutinho, and L. B. L. Santos. 2016. “Water crisis in São Paulo evaluated under the disaster’s point of view.” Ambiente e Sociedade 19 (Mar): 21–42. https://doi.org/10.1590/1809-4422asoc150120r1v1912016.
Souza, G. P., R. W. Samohyl, and R. G. Miranda. 2008. Métodos simplificados de previsão Empresarial. Rio de Janeiro, Brazil: Ciência Moderna LTDA.
Spearing, L. A., N. Thelemaque, J. A. Kaminsky, L. E. Katz, K. A. Kinney, M. J. Kirisits, L. Sela, and K. M. Faust. 2021. “Implications of social distancing policies on drinking water infrastructure: An overview of the challenges to and responses of U.S. utilities during the COVID-19 pandemic.” ACS ES&T Water 1 (4): 888–899. https://doi.org/10.1021/acsestwater.0c00229.
Temóteo, A., and F. Andretta. 2020. “O que muda com a lei do saneamento? Água e esgoto podem ficar mais caros?” Accessed September 11, 2020. https://economia.uol.com.br/noticias/redacao/2020/06/24/marco-saneamento-basico-preco-agua-esgoto.htm.
Thomopoulos, N. T. 2015. Demand forecasting for inventory control. Cham, Switzerland: Springer.
Tratar, L. F., and E. Strmčnik. 2016. “The comparison of Holt-Winters method and multiple regression method: A case study.” Energy 109 (Aug): 266–276. https://doi.org/10.1016/j.energy.2016.04.115.
Ussami, K. A., and J. J. M. Guilhoto. 2018. “Economic and water dependence among regions: The case of Alto Tiete, Sao Paulo State, Brazil.” EconomiA 19 (3): 350–376. https://doi.org/10.1016/j.econ.2018.06.001.
WHO (World Health Organization). 2020a. “Coronavirus disease 2019 (COVID-19).” Accessed September 3, 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
WHO (World Health Organization). 2020b. Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations. Geneva: WHO.
WHO (World Health Organization). 2020c. Water, sanitation, hygiene, and waste management for SARS-CoV-2, the virus that causes COVID-19. Geneva, Switzerland: WHO.
Winters, P. R. 1960. “Forecasting sales by exponentially weighted moving averages.” Manage. Sci. 6 (3): 324–342. https://doi.org/10.1287/mnsc.6.3.324.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 148Issue 11November 2022

History

Received: Jan 8, 2021
Accepted: Jun 20, 2022
Published online: Aug 27, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 27, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Master’s Student, Dept. of Hydraulics Engineering and Sanitation, São Carlos School of Engineering, Univ. of São Paulo, 13566-590 São Carlos, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-1809-0521. Email: [email protected]; [email protected]
Tassiana Halmenschlager Oliveira [email protected]
Master’s Student, Dept. of Hydraulics Engineering and Sanitation, São Carlos School of Engineering, Univ. of São Paulo, 13566-590 São Carlos, Brazil. Email: [email protected]
Rafael Santos Carvalho [email protected]
Master’s Student, Dept. of Hydraulics Engineering and Sanitation, São Carlos School of Engineering, Univ. of São Paulo, 13566-590 São Carlos, Brazil. Email: [email protected]
Master’s Student, Dept. of Hydraulics Engineering and Sanitation, São Carlos School of Engineering, Univ. of São Paulo, 13566-590 São Carlos, Brazil. ORCID: https://orcid.org/0000-0003-0866-2044. Email: [email protected]
Felipe Augusto Arguello de Souza [email protected]
Ph.D. Student, Dept. of Hydraulics Engineering and Sanitation, São Carlos School of Engineering, Univ. of São Paulo, 13566-590 São Carlos, Brazil. Email: [email protected]
Eduardo Mario Mendiondo [email protected]
Professor, Dept. of Hydraulics Engineering and Sanitation, São Carlos School of Engineering, Univ. of São Paulo, 13566-590 São Carlos, Brazil. Email: [email protected]
Professor, Dept. of Physics, Federal Univ. of São Carlos, 13565-905 São Carlos, Brazil. ORCID: https://orcid.org/0000-0002-7795-6858. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Financial Implications of COVID-19 for Public Water Systems, Journal of Water Resources Planning and Management, 10.1061/JWRMD5.WRENG-5907, 149, 10, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share