Open access
Technical Papers
Jun 29, 2021

Establishing a Range of Extreme Precipitation Estimates in California for Planning in the Face of Climate Change

Publication: Journal of Water Resources Planning and Management
Volume 147, Issue 9

Abstract

For California water resource planning in the face of climate change, hydrological and water distribution models require inputs of high spatial– and temporal–resolution temperature and precipitation projections. We used a quantile delta mapping (QDM) procedure along with bias correction and localized constructed analogs (LOCA) downscaling to produce 6-km temperature and precipitation fields that preserve the relative changes in these quantities from climate model projections. We developed a wetter moderate warming (WMW) case from the Representative Concentration Pathway (RCP) 4.5 emissions scenario and a dry extreme warming (DEW) case from the RCP8.5 scenario to establish a range of projected hydroclimatological conditions. In both cases, we found that extreme precipitation becomes more extreme, but the sign of changes in moderate precipitation events differs between the two cases. The precipitation estimate range is most broad in southern California, where it varies by a factor of 2 and is 50% across the Sierra Nevada. This approach, adopted by the California Department of Water Resources, balances a host of practical water resource planning considerations with the evolving state of the science for future hydroclimatological projections.

Formats available

You can view the full content in the following formats:

Data Availability Statement

The analyses presented here were derived from several data sets available elsewhere. The data set from Livneh et al. (2013) can be downloaded from ftp://ftp.cdc.noaa.gov/Datasets/livneh/metvars/. The DEW and WMW data sets can be downloaded from ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/cmip5/loca/LOCA_2016-04-02/ by navigating to the HadGEM2-ES and CNRM-CM5 model results, respectively. The VIC model can be downloaded from https://github.com/UW-Hydro/VIC. The DEW and WMW projections and code used to produce those projections can be downloaded from https://bit.ly/2WQBjaE.

Acknowledgments

This research was supported by funding from the California Department of Water Resources Climate Change Program, with supplemental funding from the Strategic Environmental Research and Development Program under Project RC18-1577. The discussions with Alan Rhoades of LBNL and Minxue (Kevin) He, Elissa Lynn, and Dr. Mike Anderson of DWR also contributed to this work.

References

AghaKouchak, A., E. Ragno, C. Love, and H. Moftakhari. 2018. Projected changes in California’s precipitation intensity-duration-frequency curves. Sacramento, CA: California’s Fourth Climate Change Assessment, California Energy Commission.
Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor. 2012. “Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models.” Geophys. Res. Lett. 39 (9): L09712. https://doi.org/10.1029/2012GL051607.
Barros, A. P., and D. P. Lettenmaier. 1994. “Dynamic modeling of orographically induced precipitation.” Rev. Geophys. 32 (3): 265–284. https://doi.org/10.1029/94RG00625.
Barsugli, J., C. Anderson, J. B. Smith, and J. M. Vogel. 2009. Options for improving climate modeling to assist water utility planning for climate change, 146. San Francisco, CA: Water Utility Climate Alliance.
Brekke, L. D., M. D. Dettinger, E. P. Maurer, and M. Anderson. 2008. “Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments.” Clim. Change 89 (3): 371–394. https://doi.org/10.1007/s10584-007-9388-3.
California Natural Resources Agency. 2017. CalSim 3.0 draft report. Accessed January 10, 2021. https://data.cnra.ca.gov/dataset/calsim-3/resource/1d61d890-3782-4ca2-aa68-874f2ecbe8e3.
Cannon, A. J., S. R. Sobie, and T. Q. Murdock. 2015. “Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?” J. Clim. 28 (17): 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1.
Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe. 2008. “Climate change scenarios for the California region.” Clim. Change 87 (1): 21–42. https://doi.org/10.1007/s10584-007-9377-6.
CCTAG (California Department of Water Resources, Climate Change Technical Advisory Group). 2015. Perspectives and guidance for climate change analysis. Edited by E. Lynn, A. Schwarz, J. Anderson, M. Correa, W. O’Daly, F. Keeley, and J. Woled. Sacramento, CA: California Department of Water Resources.
Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher. 2008. “On the need for bias correction of regional climate change projections of temperature and precipitation.” Geophys. Res. Lett. 35 (20): L20709. https://doi.org/10.1029/2008GL035694.
Dettinger, M., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011. “Atmospheric rivers, floods and the water resources of California.” Water 3 (2): 445–478. https://doi.org/10.3390/w3020445.
Draper, A., A. Munevar, S. K. Arora, E. Reyes, N. L. Parker, F. I. Chung, and L. E. Peterson. 2004. “CalSim: Generalized model for reservoir system analysis.” J. Water Resour. Plann. Manage. 130 (6): 480–489. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:6(480).
Eden, J. M., M. Widmann, D. Grawe, and S. Rast. 2012. “Skill, correction, and downscaling of GCM-simulated precipitation.” J. Clim. 25 (11): 3970–3984. https://doi.org/10.1175/JCLI-D-11-00254.1.
Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert. 2012. “HESS opinions: ‘Should we apply bias correction to global and regional climate model data?’” Hydrol. Earth Syst. Sci. 16 (9): 3391–3404. https://doi.org/10.5194/hess-16-3391-2012.
Flato, G., et al. 2013. The physical science basis. Cambridge, UK: Cambridge University Press.
Gao, H., Q. Tang, X. Shi, C. Zhu, T. Bohn, F. Su, J. Sheffield, M. Pan, D. Lettenmaier, and E. Wood. 2010. “Water budget record from variable infiltration capacity (VIC) model.” In Algorithm theoretical basis document for terrestrial water cycle data records, 120–173. Princeton, NJ: Princeton Univ.
Gersonius, B., R. Ashley, A. Pathirana, and C. Zevenbergen. 2013. “Climate change uncertainty: Building flexibility into water and flood risk infrastructure.” Clim. Change 116 (2): 411. https://doi.org/10.1007/s10584-012-0494-5.
Giorgi, F., C. Jones, and G. R. Asrar. 2009. “Addressing climate information needs at the regional level: The CORDEX framework.” World Meteorol. Organ. (WMO) Bull. 58 (3): 175–183.
Haarsma, R. J., et al. 2016. “High resolution model intercomparison project (HighResMIP v1.0) for CMIP6.” Geosci. Model Dev. 9 (11): 4185–4208. https://doi.org/10.5194/gmd-9-4185-2016.
Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani. 2011. “Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models.” J. Hydrometeorol. 12 (4): 556–578. https://doi.org/10.1175/2011JHM1336.1.
Hallegatte, S. 2009. “Strategies to adapt to an uncertain climate change.” Global Environ. Change 19 (2): 240–247. https://doi.org/10.1016/j.gloenvcha.2008.12.003.
Hamann, A., T. Wang, D. L. Spittlehouse, and T. Q. Murdock. 2013. “A comprehensive, high-resolution database of historical and projected climate surfaces for western North America.” Bull. Am. Meteorol. Soc. 94 (9): 1307–1309. https://doi.org/10.1175/BAMS-D-12-00145.1.
Herger, N., G. Abramowitz, R. Knutti, O. Angélil, K. Lehmann, and B. M. Sanderson. 2018. “Selecting a climate model subset to optimise key ensemble properties.” Earth Syst. Dyn. 9 (1): 135–151. https://doi.org/10.5194/esd-9-135-2018.
Hertig, E., D. Maraun, J. Bartholy, R. Pongracz, M. Vrac, I. Mares, J. M. Gutiérrez, J. Wibig, A. Casanueva, and P. M. Soares. 2019. “Comparison of statistical downscaling methods with respect to extreme events over Europe: Validation results from the perfect predictor experiment of the COST Action VALUE.” Int. J. Climatol. 39 (9): 3846–3867. https://doi.org/10.1002/joc.5469.
Jones, C., et al. 2011a. “The HadGEM2-ES implementation of CMIP5 centennial simulations.” Geosci. Model Dev. 4 (3): 543–570. https://doi.org/10.5194/gmd-4-543-2011.
Jones, C., F. Giorgi, and G. Asrar. 2011b. “The coordinated regional downscaling experiment: CORDEX, an international downscaling link to CMIP5.” CLIVAR Exchanges 56 (16): 34–40.
Knutti, R., D. Masson, and A. Gettelman. 2013. “Climate model genealogy: Generation CMIP5 and how we got there.” Geophys. Res. Lett. 40 (6): 1194–1199. https://doi.org/10.1002/grl.50256.
Lanzante, J. R., M. J. Nath, C. E. Whitlock, K. W. Dixon, and D. Adams-Smith. 2019. “Evaluation and improvement of tail behaviour in the cumulative distribution function transform downscaling method.” Int. J. Climatol. 39 (4): 2449–2460. https://doi.org/10.1002/joc.5964.
Lenderink, G., R. Barbero, J. M. Loriaux, and H. J. Fowler. 2017. “Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions.” J. Clim. 30 (15): 6037–6052. https://doi.org/10.1175/JCLI-D-16-0808.1.
Leung, L. R., and S. J. Ghan. 1995. “A subgrid parameterization of orographic precipitation.” Theor. Appl. Climatol. 52 (1): 95–118. https://doi.org/10.1007/BF00865510.
Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges. 1994. “A simple hydrologically based model of land surface water and energy fluxes for general circulation models.” J. Geophys. Res. 99 (D7): 14415–14428. https://doi.org/10.1029/94JD00483.
Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier. 2013. “A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions.” J. Clim. 26 (23): 9384–9392. https://doi.org/10.1175/JCLI-D-12-00508.1.
Maraun, D. 2016. “Bias correcting climate change simulations—A critical review.” Curr. Clim. Change Rep. 2 (4): 211–220. https://doi.org/10.1007/s40641-016-0050-x.
Maraun, D., M. Widmann, and J. M. Gutiérrez. 2018. “Statistical downscaling skill under present climate conditions: A synthesis of the VALUE perfect predictor experiment.” Int. J. Climatol. 39 (9): 3692–3703. https://doi.org/10.1002/joc.5877.
Maskey, M. L., C. E. Puente, B. Sivakumar, and A. Cortis. 2016. “Encoding daily rainfall records via adaptations of the fractal multifractal method.” Stochastic Environ. Res. Risk Assess. 30 (7): 1917–1931. https://doi.org/10.1007/s00477-015-1201-7.
Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy. 2007. “Fine-resolution climate projections enhance regional climate change impact studies.” Eos Trans. AGU 88 (47): 504. https://doi.org/10.1029/2007EO470006.
Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger, and D. R. Cayan. 2010. “The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California.” Hydrol. Earth Syst. Sci. 14 (6): 1125–1138. https://doi.org/10.5194/hess-14-1125-2010.
Mearns, L. O., et al. 2012. “The North American regional climate change assessment program: Overview of phase I results.” Bull. Am. Meteorol. Soc. 93 (9): 1337–1362. https://doi.org/10.1175/BAMS-D-11-00223.1.
Muerth, M. J., B. Gauvin St-Denis, S. Ricard, J. A. Velázquez, J. Schmid, M. Minville, D. Caya, D. Chaumont, R. Ludwig, and R. Turcotte. 2013. “On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff.” Hydrol. Earth Syst. Sci. 17 (3): 1189–1204. https://doi.org/10.5194/hess-17-1189-2013.
Ntegeka, V., P. Baguis, E. Roulin, and P. Willems. 2014. “Developing tailored climate change scenarios for hydrological impact assessments.” J. Hydrol. 508 (Jan): 307–321. https://doi.org/10.1016/j.jhydrol.2013.11.001.
Pierce, D. W., et al. 2013. “Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling.” Clim. Dyn. 40 (3–4): 839–856. https://doi.org/10.1007/s00382-012-1337-9.
Pierce, D. W., D. R. Cayan, and B. L. Thrasher. 2014. “Statistical downscaling using localized constructed analogs (LOCA).” J. Hydrometeorol. 15 (6): 2558–2585. https://doi.org/10.1175/JHM-D-14-0082.1.
Rhoades, A. M., X. Huang, P. A. Ullrich, and C. M. Zarzycki. 2016. “Characterizing Sierra Nevada snowpack using variable-resolution CESM.” J. Appl. Meteorol. Climatol. 55 (1): 173–196. https://doi.org/10.1175/JAMC-D-15-0156.1.
Rhoades, A. M., A. D. Jones, and P. A. Ullrich. 2018. “The changing character of the California Sierra Nevada as a natural reservoir.” Geophys. Res. Lett. 45 (23): 13008–13019. https://doi.org/10.1029/2018GL080308.
Risser, M. D., C. J. Paciorek, M. F. Wehner, T. A. O’Brien, and W. D. Collins. 2019. “A probabilistic gridded product for daily precipitation extremes over the United States.” Clim. Dyn. 53 (5): 2517–2538. https://doi.org/10.1007/s00382-019-04636-0.
Rupp, D. E., J. T. Abatzoglou, K. C. Hegewisch, and P. W. Mote. 2013. “Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA.” J. Geophys. Res.: Atmos. 118 (19): 10884–10906. https://doi.org/10.1002/jgrd.50843.
Sanderson, B. M., M. Wehner, and R. Knutti. 2017. “Skill and independence weighting for multi-model assessments.” Geosci. Model Dev. 10 (6): 2379–2395. https://doi.org/10.5194/gmd-10-2379-2017.
Sheffield, J., et al. 2013. “North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology.” J. Clim. 26 (23): 9209–9245. https://doi.org/10.1175/JCLI-D-12-00592.1.
Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh. 2013. “Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate.” J. Geophys. Res.: Atmos. 118 (4): 1716–1733. https://doi.org/10.1002/jgrd.50203.
Sylla, M. B., F. Giorgi, E. Coppola, and L. Mariotti. 2013. “Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation.” Int. J. Climatol. 33 (7): 1805–1817. https://doi.org/10.1002/joc.3551.
Tang, Q., et al. 2019. “Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling.” Geosci. Model Dev. 12 (7): 2679–2706. https://doi.org/10.5194/gmd-12-2679-2019.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An overview of CMIP5 and the experiment design.” Bull. Am. Meteorol. Soc. 93 (4): 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.
Teutschbein, C., and J. Seibert. 2012. “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods.” J. Hydrol. 456–457 (Aug): 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
Ullrich, P. A., Z. Xu, A. M. Rhoades, M. D. Dettinger, J. F. Mount, A. D. Jones, and P. Vahmani. 2018. “California’s drought of the future: A midcentury recreation of the exceptional conditions of 2012–2017.” Earth’s Future 6 (11): 1568–1587. https://doi.org/10.1029/2018EF001007.
van Vuuren, D. P., et al. 2011. “The representative concentration pathways: an overview.” Clim. Change 109 (1): 5–31. https://doi.org/10.1007/s10584-011-0148-z.
Voldoire, A., et al. 2013. “The CNRM-CM5.1 global climate model: Description and basic evaluation.” Clim. Dyn. 40 (9): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y.
Walton, D., N. Berg, D. Pierce, E. Maurer, A. Hall, Y.-H. Lin, S. Rahimi, and D. Cayan. 2020. “Understanding differences in California climate projections produced by dynamical and statistical downscaling.” J. Geophys. Res.: Atmos. 125 (19): e2020JD032812. https://doi.org/10.1029/2020JD032812.
Wang, T., A. Hamann, D. L. Spittlehouse, and T. Q. Murdock. 2012. “ClimateWNA—High-resolution spatial climate data for western North America.” J. Appl. Meteorol. Climatol. 51 (1): 16–29. https://doi.org/10.1175/JAMC-D-11-043.1.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 147Issue 9September 2021

History

Received: Apr 1, 2020
Accepted: Mar 1, 2021
Published online: Jun 29, 2021
Published in print: Sep 1, 2021
Discussion open until: Nov 29, 2021

Authors

Affiliations

Earth Research Scientist, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (corresponding author). ORCID: https://orcid.org/0000-0003-3365-5233. Email: [email protected]
Earth Project Scientist, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720. ORCID: https://orcid.org/0000-0003-4655-5063
Engineer, Climate Change Adaptation Program, Water Resources, California Dept. of Water Resources, 1416 9th St., Sacramento, CA 95814. ORCID: https://orcid.org/0000-0002-9769-6344
Senior Water Resources Engineer, Delta Plan Development, Policy, and Implementation, Delta Stewardship Council, 980 9th St., Sacramento, CA 95814. ORCID: https://orcid.org/0000-0001-9440-5719

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share